blob: ceb8a58fb4b3b516972d1059aa0be44191286e4d [file] [log] [blame]
//===- HexagonPLT.cpp -----------------------------------------------------===//
//
// The MCLinker Project
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "HexagonPLT.h"
#include "HexagonRelocationFunctions.h"
#include <llvm/Support/ELF.h>
#include <llvm/Support/Casting.h>
#include <mcld/LD/LDSection.h>
#include <mcld/LinkerConfig.h>
#include <mcld/Support/MsgHandling.h>
using namespace mcld;
//===----------------------------------------------------------------------===//
// PLT entry data
//===----------------------------------------------------------------------===//
HexagonPLT0::HexagonPLT0(SectionData& pParent)
: PLT::Entry<sizeof(hexagon_plt0)>(pParent)
{
}
HexagonPLT1::HexagonPLT1(SectionData& pParent)
: PLT::Entry<sizeof(hexagon_plt1)>(pParent)
{
}
//===----------------------------------------------------------------------===//
// HexagonPLT
//===----------------------------------------------------------------------===//
HexagonPLT::HexagonPLT(LDSection& pSection,
HexagonGOTPLT &pGOTPLT,
const LinkerConfig& pConfig)
: PLT(pSection),
m_GOTPLT(pGOTPLT),
m_Config(pConfig)
{
assert(LinkerConfig::DynObj == m_Config.codeGenType() ||
LinkerConfig::Exec == m_Config.codeGenType() ||
LinkerConfig::Binary == m_Config.codeGenType());
m_PLT0 = hexagon_plt0;
m_PLT0Size = sizeof (hexagon_plt0);
// create PLT0
new HexagonPLT0(*m_SectionData);
m_Last = m_SectionData->begin();
pSection.setAlign(16);
}
HexagonPLT::~HexagonPLT()
{
}
PLTEntryBase* HexagonPLT::getPLT0() const
{
iterator first = m_SectionData->getFragmentList().begin();
assert(first != m_SectionData->getFragmentList().end() &&
"FragmentList is empty, getPLT0 failed!");
PLTEntryBase* plt0 = &(llvm::cast<PLTEntryBase>(*first));
return plt0;
}
void HexagonPLT::finalizeSectionSize()
{
uint64_t size = 0;
// plt0 size
size = getPLT0()->size();
// get first plt1 entry
HexagonPLT::iterator it = begin();
++it;
if (end() != it) {
// plt1 size
PLTEntryBase* plt1 = &(llvm::cast<PLTEntryBase>(*it));
size += (m_SectionData->size() - 1) * plt1->size();
}
m_Section.setSize(size);
uint32_t offset = 0;
SectionData::iterator frag, fragEnd = m_SectionData->end();
for (frag = m_SectionData->begin(); frag != fragEnd; ++frag) {
frag->setOffset(offset);
offset += frag->size();
}
}
bool HexagonPLT::hasPLT1() const
{
return (m_SectionData->size() > 1);
}
void HexagonPLT::reserveEntry(size_t pNum)
{
PLTEntryBase* plt1_entry = NULL;
for (size_t i = 0; i < pNum; ++i) {
plt1_entry = new HexagonPLT1(*m_SectionData);
if (NULL == plt1_entry)
fatal(diag::fail_allocate_memory_plt);
}
}
HexagonPLT1* HexagonPLT::consume()
{
++m_Last;
assert(m_Last != m_SectionData->end() &&
"The number of PLT Entries and ResolveInfo doesn't match");
return llvm::cast<HexagonPLT1>(&(*m_Last));
}
void HexagonPLT::applyPLT0()
{
PLTEntryBase* plt0 = getPLT0();
uint64_t pltBase = m_Section.addr();
unsigned char* data = 0;
data = static_cast<unsigned char*>(malloc(plt0->size()));
if (!data)
fatal(diag::fail_allocate_memory_plt);
memcpy(data, m_PLT0, plt0->size());
uint32_t gotpltAddr = m_GOTPLT.addr();
int32_t *dest = (int32_t *)data;
int32_t result = ((gotpltAddr - pltBase ) >> 6);
*dest |= ApplyMask<int32_t>(0xfff3fff, result);
dest = dest + 1;
// Already calculated using pltBase
result = (gotpltAddr - pltBase);
*(dest) |= ApplyMask<int32_t>(0x1f80, result);
plt0->setValue(data);
}
void HexagonPLT::applyPLT1() {
uint64_t plt_base = m_Section.addr();
assert(plt_base && ".plt base address is NULL!");
uint64_t got_base = m_GOTPLT.addr();
assert(got_base && ".got base address is NULL!");
HexagonPLT::iterator it = m_SectionData->begin();
HexagonPLT::iterator ie = m_SectionData->end();
assert(it != ie && "FragmentList is empty, applyPLT1 failed!");
uint32_t GOTEntrySize = HexagonGOTEntry::EntrySize;
uint32_t GOTEntryAddress =
got_base + GOTEntrySize * 4;
uint64_t PLTEntryAddress =
plt_base + HexagonPLT0::EntrySize; //Offset of PLT0
++it; //skip PLT0
uint64_t PLT1EntrySize = HexagonPLT1::EntrySize;
HexagonPLT1* plt1 = NULL;
uint32_t* Out = NULL;
while (it != ie) {
plt1 = &(llvm::cast<HexagonPLT1>(*it));
Out = static_cast<uint32_t*>(malloc(HexagonPLT1::EntrySize));
if (!Out)
fatal(diag::fail_allocate_memory_plt);
memcpy(Out, hexagon_plt1, plt1->size());
int32_t *dest = (int32_t *)Out;
int32_t result = ((GOTEntryAddress - PLTEntryAddress ) >> 6);
*dest |= ApplyMask<int32_t>(0xfff3fff, result);
dest = dest + 1;
result = (GOTEntryAddress - PLTEntryAddress);
*(dest) |= ApplyMask<int32_t>(0x1f80, result);
// Address in the PLT entries point to the corresponding GOT entries
// TODO: Fixup plt to point to the corresponding GOTEntryAddress
// We need to borrow the same relocation code to fix the relocation
plt1->setValue(reinterpret_cast<unsigned char*>(Out));
++it;
GOTEntryAddress += GOTEntrySize;
PLTEntryAddress += PLT1EntrySize;
}
}
uint64_t HexagonPLT::emit(MemoryRegion& pRegion)
{
uint64_t result = 0x0;
iterator it = begin();
unsigned char* buffer = pRegion.getBuffer();
memcpy(buffer, llvm::cast<HexagonPLT0>((*it)).getValue(), HexagonPLT0::EntrySize);
result += HexagonPLT0::EntrySize;
++it;
HexagonPLT1* plt1 = 0;
HexagonPLT::iterator ie = end();
while (it != ie) {
plt1 = &(llvm::cast<HexagonPLT1>(*it));
memcpy(buffer + result, plt1->getValue(), HexagonPLT1::EntrySize);
result += HexagonPLT1::EntrySize;
++it;
}
return result;
}