blob: ecc5cfee5fe2e5af2faab6fa2221cb9e1996ded7 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Class used to build a model through a succession of successive calls
// to the NN API.
#ifndef ANDROID_FRAMEWORKS_ML_NN_RUNTIME_MODEL_BUILDER_H
#define ANDROID_FRAMEWORKS_ML_NN_RUNTIME_MODEL_BUILDER_H
#include <memory>
#include "HalInterfaces.h"
#include "Memory.h"
#include "NeuralNetworks.h"
#include "Utils.h"
#include <vector>
namespace android {
namespace nn {
class CompilationBuilder;
class Device;
class ExecutionPlan;
class Memory;
class ModelBuilder {
public:
ModelBuilder() {}
// Returns an operand/operation type corresponding to a given extension operand/operation type.
int getExtensionType(const char* extensionName, uint16_t typeWithinExtension, int32_t* type);
// Adds an operand to the model.
int addOperand(const ANeuralNetworksOperandType& type);
int setOperandValue(uint32_t index, const void* buffer, size_t length);
int setOperandValueFromMemory(uint32_t index, const Memory* memory, uint32_t offset,
size_t length);
int setOperandValueFromModel(uint32_t index, const ModelBuilder* value);
int setOperandSymmPerChannelQuantParams(
uint32_t index, const ANeuralNetworksSymmPerChannelQuantParams& extraParams);
int setOperandExtensionData(uint32_t index, const void* data, size_t length);
int addOperation(ANeuralNetworksOperationType type, uint32_t inputCount, const uint32_t* inputs,
uint32_t outputCount, const uint32_t* outputs);
int identifyInputsAndOutputs(uint32_t inputCount, const uint32_t* inputs, uint32_t outputCount,
const uint32_t* outputs);
int relaxComputationFloat32toFloat16(bool allow);
bool isComputationFloat32RelaxedToFloat16() const { return mRelaxComputationFloat32toFloat16; }
int finish();
bool isFinished() const { return mCompletedModel; }
bool isValid() const { return !mInvalidModel; }
bool hasOEMOperation() const { return mHasOEMOperation; }
bool hasExtensionOperation() const { return mHasExtensionOperation; }
// explicitDeviceList is true if the list of devices was provided explicitly
// via the ANeuralNetworksModel_createForDevices API (which has certain
// special semantics) and false otherwise.
int createCompilation(CompilationBuilder** compilation,
const std::vector<std::shared_ptr<Device>>& devices,
bool explicitDeviceList = false);
hal::Model makeHidlModel() const;
uint32_t operandCount() const {
// We don't allow more than uint32_t worth of operands
return static_cast<uint32_t>(mOperands.size());
}
uint32_t operationCount() const {
// We don't allow more than uint32_t worth of operations
return static_cast<uint32_t>(mOperations.size());
}
uint32_t inputCount() const { return static_cast<uint32_t>(mInputIndexes.size()); }
uint32_t outputCount() const { return static_cast<uint32_t>(mOutputIndexes.size()); }
uint32_t getInputOperandIndex(uint32_t i) const {
CHECK_LT(i, mInputIndexes.size());
return mInputIndexes[i];
}
const std::vector<uint32_t>& getInputOperandIndexes() const { return mInputIndexes; }
const hal::Operand& getInputOperand(uint32_t i) const {
uint32_t index = getInputOperandIndex(i);
CHECK_LT(index, mOperands.size());
return mOperands[index];
}
uint32_t getOutputOperandIndex(uint32_t i) const {
CHECK_LT(i, mOutputIndexes.size());
return mOutputIndexes[i];
}
const std::vector<uint32_t>& getOutputOperandIndexes() const { return mOutputIndexes; }
const hal::Operand& getOutputOperand(uint32_t i) const {
uint32_t index = getOutputOperandIndex(i);
CHECK_LT(index, mOperands.size());
return mOperands[index];
}
const hal::Operand& getOperand(uint32_t index) const { return mOperands[index]; }
const hal::Operation& getOperation(uint32_t index) const { return mOperations[index]; }
const MemoryTracker& getMemories() const { return mMemories; }
const std::vector<hal::Operation>& getOperations() const { return mOperations; }
const std::vector<uint32_t>& getSortedOperationMapping() const {
return mSortedOperationIndexMap;
}
const uint8_t* getPointerToOperandValue(uint32_t offset) const {
return mSmallOperandValues.data() + offset;
}
uint32_t referencedModelCount() const {
return static_cast<uint32_t>(mReferencedModels.size());
}
const ModelBuilder* getReferencedModel(uint32_t i) const {
CHECK_LT(i, mReferencedModels.size());
return mReferencedModels[i];
}
const ModelBuilder* getReferencedModel(const hal::Operand& operand) const {
CHECK(operand.lifetime == hal::OperandLifeTime::SUBGRAPH);
return getReferencedModel(operand.location.offset);
}
int partitionTheWork(const std::vector<std::shared_ptr<Device>>& devices, uint32_t preference,
uint32_t priority, const std::optional<Deadline>& deadline,
ExecutionPlan* plan) const;
private:
// TODO(b/132322449): move partitionTheWork, partitionTheWorkInternal,
// findBestDeviceForEachOperation, sortIntoRunOrder to CompilationBuilder?
// Populates bestDeviceForOperation
//
// For 0 <= i < operationCount(), produces
//
// 0 <= (*bestDeviceForOperation)[i] <= devices.size()
//
// (*bestDeviceForOperation)[i] == devices.size() is a special value meaning
// that this is a control flow operation scheduled for interpreted execution
// (see LogicalStep).
int findBestDeviceForEachOperation(uint32_t preference,
const std::vector<std::shared_ptr<Device>>& devices,
std::vector<int>* bestDeviceForOperation) const;
float getPerformance(uint32_t preference, const std::shared_ptr<Device> device) const;
float getPerformance(uint32_t preference, const std::shared_ptr<Device> device,
uint32_t operationIndex) const;
int partitionTheWorkInternal(uint32_t sourceModelIndex,
const std::vector<std::shared_ptr<Device>>& devices,
uint32_t preference, uint32_t priority,
const std::optional<Deadline>& deadline,
ExecutionPlan* plan) const;
// Return true if either mCompleteModel or mInvalidModel is true.
bool badState(const char* name);
// Sorts the operations to be in the correct order for single threaded
// node-at-a-time execution.
bool sortIntoRunOrder();
// Copies the large values to a shared memory, if we have any.
int copyLargeValuesToSharedMemory();
// The operations of the graph.
std::vector<hal::Operation> mOperations;
// The mapping from sorted index to the original index of operations in mOperations.
// mSortedOperationIndexMap is empty before sortIntoRunOrder() is called.
std::vector<uint32_t> mSortedOperationIndexMap;
// Is at least one of those operations an OEM_OPERATION?
bool mHasOEMOperation = false;
// Is at least one of those operations an extension operation?
bool mHasExtensionOperation = false;
// The description of the operands of the graph.
std::vector<hal::Operand> mOperands;
// Is at least one of those operands an OEM operand?
bool mHasOEMOperand = false;
// Specifies where to find the list of indexes identifying
// the inputs and outputs of the model. The offset is into
// the mOperandIndexes table.
std::vector<uint32_t> mInputIndexes;
std::vector<uint32_t> mOutputIndexes;
MemoryTracker mMemories;
// The value of the small operands that are defined at model
// creation time.
std::vector<uint8_t> mSmallOperandValues;
struct LargeValue {
uint32_t operandIndex;
const void* buffer;
};
// Operand index and buffer pointer for all the large operand values of this model.
std::vector<LargeValue> mLargeOperandValues;
// The shared memory region that will contain the large values.
std::unique_ptr<MemoryAshmem> mLargeValueMemory;
// Once the model has been finished, we should not allow further
// modifications to the model.
bool mCompletedModel = false;
// Any invalid manipulation of the model will mark the model invalid.
// No further modifications are allowed to the model.
bool mInvalidModel = false;
// 'true' indicates TENSOR_FLOAT32 may be calculated with range and/or
// precision as low as that of the IEEE 754 16-bit floating-point format.
// 'false' indicates TENSOR_FLOAT32 must be calculated using at least the
// range and precision of the IEEE 754 32-bit floating-point format.
bool mRelaxComputationFloat32toFloat16 = false;
// Models referenced by operands in this model.
std::vector<const ModelBuilder*> mReferencedModels;
class HidlModelMaker;
};
} // namespace nn
} // namespace android
#endif // ANDROID_FRAMEWORKS_ML_NN_RUNTIME_MODEL_BUILDER_H