blob: 1b6960aa1d59f8c5634261ec4b72e8e47cf8a114 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "SampleDriver"
#include "SampleDriver.h"
#include "CpuExecutor.h"
#include "ExecutionBurstServer.h"
#include "HalInterfaces.h"
#include "Tracing.h"
#include "ValidateHal.h"
#include <android-base/logging.h>
#include <hidl/LegacySupport.h>
#include <chrono>
#include <optional>
#include <thread>
namespace android {
namespace nn {
namespace sample_driver {
namespace {
using time_point = std::chrono::steady_clock::time_point;
auto now() {
return std::chrono::steady_clock::now();
};
auto microsecondsDuration(decltype(now()) end, decltype(now()) start) {
return std::chrono::duration_cast<std::chrono::microseconds>(end - start).count();
};
} // namespace
static const Timing kNoTiming = {.timeOnDevice = UINT64_MAX, .timeInDriver = UINT64_MAX};
Return<void> SampleDriver::getCapabilities(getCapabilities_cb cb) {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_INITIALIZATION,
"SampleDriver::getCapabilities");
return getCapabilities_1_2([&](ErrorStatus error, const V1_2::Capabilities& capabilities) {
// TODO(dgross): Do we need to check compliantWithV1_0(capabilities)?
cb(error, convertToV1_0(capabilities));
});
}
Return<void> SampleDriver::getCapabilities_1_1(getCapabilities_1_1_cb cb) {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_INITIALIZATION,
"SampleDriver::getCapabilities_1_1");
return getCapabilities_1_2([&](ErrorStatus error, const V1_2::Capabilities& capabilities) {
// TODO(dgross): Do we need to check compliantWithV1_1(capabilities)?
cb(error, convertToV1_1(capabilities));
});
}
Return<void> SampleDriver::getVersionString(getVersionString_cb cb) {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_INITIALIZATION,
"SampleDriver::getVersionString");
cb(ErrorStatus::NONE, "JUST_AN_EXAMPLE");
return Void();
}
Return<void> SampleDriver::getType(getType_cb cb) {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_INITIALIZATION, "SampleDriver::getType");
cb(ErrorStatus::NONE, V1_2::DeviceType::CPU);
return Void();
}
Return<void> SampleDriver::getSupportedExtensions(getSupportedExtensions_cb cb) {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_INITIALIZATION,
"SampleDriver::getSupportedExtensions");
cb(ErrorStatus::NONE, {/* No extensions. */});
return Void();
}
Return<void> SampleDriver::getSupportedOperations(const V1_0::Model& model,
getSupportedOperations_cb cb) {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_COMPILATION,
"SampleDriver::getSupportedOperations");
if (!validateModel(model)) {
VLOG(DRIVER) << "getSupportedOperations";
std::vector<bool> supported;
cb(ErrorStatus::INVALID_ARGUMENT, supported);
return Void();
}
return getSupportedOperations_1_2(convertToV1_2(model), cb);
}
Return<void> SampleDriver::getSupportedOperations_1_1(const V1_1::Model& model,
getSupportedOperations_1_1_cb cb) {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_COMPILATION,
"SampleDriver::getSupportedOperations_1_1");
if (!validateModel(model)) {
VLOG(DRIVER) << "getSupportedOperations_1_1";
std::vector<bool> supported;
cb(ErrorStatus::INVALID_ARGUMENT, supported);
return Void();
}
return getSupportedOperations_1_2(convertToV1_2(model), cb);
}
Return<void> SampleDriver::getNumberOfCacheFilesNeeded(getNumberOfCacheFilesNeeded_cb cb) {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_INITIALIZATION,
"SampleDriver::getNumberOfCacheFilesNeeded");
// Set both numbers to be 0 for cache not supported.
cb(ErrorStatus::NONE, /*numModelCache=*/0, /*numDataCache=*/0);
return Void();
}
static void notify(const sp<V1_0::IPreparedModelCallback>& callback, const ErrorStatus& status,
const sp<SamplePreparedModel>& preparedModel) {
const auto ret = callback->notify(status, preparedModel);
if (!ret.isOk()) {
LOG(ERROR) << "Error when calling IPreparedModelCallback::notify: " << ret.description();
}
}
static void notify(const sp<V1_2::IPreparedModelCallback>& callback, const ErrorStatus& status,
const sp<SamplePreparedModel>& preparedModel) {
const auto ret = callback->notify_1_2(status, preparedModel);
if (!ret.isOk()) {
LOG(ERROR) << "Error when calling IPreparedModelCallback::notify_1_2: "
<< ret.description();
}
}
template <typename T_Model, typename T_IPreparedModelCallback>
Return<ErrorStatus> prepareModelBase(const T_Model& model, const SampleDriver* driver,
ExecutionPreference preference,
const sp<T_IPreparedModelCallback>& callback) {
if (callback.get() == nullptr) {
LOG(ERROR) << "invalid callback passed to prepareModelBase";
return ErrorStatus::INVALID_ARGUMENT;
}
if (VLOG_IS_ON(DRIVER)) {
VLOG(DRIVER) << "prepareModelBase";
logModelToInfo(model);
}
if (!validateModel(model) || !validateExecutionPreference(preference)) {
notify(callback, ErrorStatus::INVALID_ARGUMENT, nullptr);
return ErrorStatus::INVALID_ARGUMENT;
}
// asynchronously prepare the model from a new, detached thread
std::thread([model, driver, callback] {
sp<SamplePreparedModel> preparedModel =
new SamplePreparedModel(convertToV1_2(model), driver);
if (!preparedModel->initialize()) {
notify(callback, ErrorStatus::INVALID_ARGUMENT, nullptr);
return;
}
notify(callback, ErrorStatus::NONE, preparedModel);
}).detach();
return ErrorStatus::NONE;
}
Return<ErrorStatus> SampleDriver::prepareModel(const V1_0::Model& model,
const sp<V1_0::IPreparedModelCallback>& callback) {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_COMPILATION, "SampleDriver::prepareModel");
return prepareModelBase(model, this, ExecutionPreference::FAST_SINGLE_ANSWER, callback);
}
Return<ErrorStatus> SampleDriver::prepareModel_1_1(
const V1_1::Model& model, ExecutionPreference preference,
const sp<V1_0::IPreparedModelCallback>& callback) {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_COMPILATION, "SampleDriver::prepareModel_1_1");
return prepareModelBase(model, this, preference, callback);
}
Return<ErrorStatus> SampleDriver::prepareModel_1_2(
const V1_2::Model& model, ExecutionPreference preference, const hidl_vec<hidl_handle>&,
const hidl_vec<hidl_handle>&, const HidlToken&,
const sp<V1_2::IPreparedModelCallback>& callback) {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_COMPILATION, "SampleDriver::prepareModel_1_2");
return prepareModelBase(model, this, preference, callback);
}
Return<ErrorStatus> SampleDriver::prepareModelFromCache(
const hidl_vec<hidl_handle>&, const hidl_vec<hidl_handle>&, const HidlToken&,
const sp<V1_2::IPreparedModelCallback>& callback) {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_COMPILATION,
"SampleDriver::prepareModelFromCache");
notify(callback, ErrorStatus::GENERAL_FAILURE, nullptr);
return ErrorStatus::GENERAL_FAILURE;
}
Return<DeviceStatus> SampleDriver::getStatus() {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_UNSPECIFIED,
"SampleDriver::getStatus");
VLOG(DRIVER) << "getStatus()";
return DeviceStatus::AVAILABLE;
}
int SampleDriver::run() {
android::hardware::configureRpcThreadpool(4, true);
if (registerAsService(mName) != android::OK) {
LOG(ERROR) << "Could not register service";
return 1;
}
android::hardware::joinRpcThreadpool();
LOG(ERROR) << "Service exited!";
return 1;
}
bool SamplePreparedModel::initialize() {
return setRunTimePoolInfosFromHidlMemories(&mPoolInfos, mModel.pools);
}
static void notify(const sp<V1_0::IExecutionCallback>& callback, const ErrorStatus& status,
const hidl_vec<OutputShape>&, Timing) {
const auto ret = callback->notify(status);
if (!ret.isOk()) {
LOG(ERROR) << "Error when calling IExecutionCallback::notify: " << ret.description();
}
}
static void notify(const sp<V1_2::IExecutionCallback>& callback, const ErrorStatus& status,
const hidl_vec<OutputShape>& outputShapes, Timing timing) {
const auto ret = callback->notify_1_2(status, outputShapes, timing);
if (!ret.isOk()) {
LOG(ERROR) << "Error when calling IExecutionCallback::notify_1_2: " << ret.description();
}
}
template <typename T_IExecutionCallback>
void asyncExecute(const Request& request, MeasureTiming measure, time_point driverStart,
const Model& model, const SampleDriver& driver,
const std::vector<RunTimePoolInfo>& poolInfos,
const sp<T_IExecutionCallback>& callback) {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_INPUTS_AND_OUTPUTS,
"SampleDriver::asyncExecute");
std::vector<RunTimePoolInfo> requestPoolInfos;
if (!setRunTimePoolInfosFromHidlMemories(&requestPoolInfos, request.pools)) {
notify(callback, ErrorStatus::GENERAL_FAILURE, {}, kNoTiming);
return;
}
NNTRACE_FULL_SWITCH(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_EXECUTION,
"SampleDriver::asyncExecute");
CpuExecutor executor = driver.getExecutor();
time_point driverEnd, deviceStart, deviceEnd;
if (measure == MeasureTiming::YES) deviceStart = now();
int n = executor.run(model, request, poolInfos, requestPoolInfos);
if (measure == MeasureTiming::YES) deviceEnd = now();
VLOG(DRIVER) << "executor.run returned " << n;
ErrorStatus executionStatus = convertResultCodeToErrorStatus(n);
hidl_vec<OutputShape> outputShapes = executor.getOutputShapes();
if (measure == MeasureTiming::YES && executionStatus == ErrorStatus::NONE) {
driverEnd = now();
Timing timing = {.timeOnDevice = uint64_t(microsecondsDuration(deviceEnd, deviceStart)),
.timeInDriver = uint64_t(microsecondsDuration(driverEnd, driverStart))};
VLOG(DRIVER) << "SampleDriver::asyncExecute timing = " << toString(timing);
notify(callback, executionStatus, outputShapes, timing);
} else {
notify(callback, executionStatus, outputShapes, kNoTiming);
}
}
template <typename T_IExecutionCallback>
Return<ErrorStatus> executeBase(const Request& request, MeasureTiming measure, const Model& model,
const SampleDriver& driver,
const std::vector<RunTimePoolInfo>& poolInfos,
const sp<T_IExecutionCallback>& callback) {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_EXECUTION, "SampleDriver::executeBase");
VLOG(DRIVER) << "executeBase(" << SHOW_IF_DEBUG(toString(request)) << ")";
time_point driverStart;
if (measure == MeasureTiming::YES) driverStart = now();
if (callback.get() == nullptr) {
LOG(ERROR) << "invalid callback passed to executeBase";
return ErrorStatus::INVALID_ARGUMENT;
}
if (!validateRequest(request, model)) {
notify(callback, ErrorStatus::INVALID_ARGUMENT, {}, kNoTiming);
return ErrorStatus::INVALID_ARGUMENT;
}
// This thread is intentionally detached because the sample driver service
// is expected to live forever.
std::thread([&model, &driver, &poolInfos, request, measure, driverStart, callback] {
asyncExecute(request, measure, driverStart, model, driver, poolInfos, callback);
})
.detach();
return ErrorStatus::NONE;
}
Return<ErrorStatus> SamplePreparedModel::execute(const Request& request,
const sp<V1_0::IExecutionCallback>& callback) {
return executeBase(request, MeasureTiming::NO, mModel, *mDriver, mPoolInfos, callback);
}
Return<ErrorStatus> SamplePreparedModel::execute_1_2(const Request& request, MeasureTiming measure,
const sp<V1_2::IExecutionCallback>& callback) {
return executeBase(request, measure, mModel, *mDriver, mPoolInfos, callback);
}
Return<void> SamplePreparedModel::executeSynchronously(const Request& request,
MeasureTiming measure,
executeSynchronously_cb cb) {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_EXECUTION,
"SampleDriver::executeSynchronously");
VLOG(DRIVER) << "executeSynchronously(" << SHOW_IF_DEBUG(toString(request)) << ")";
time_point driverStart, driverEnd, deviceStart, deviceEnd;
if (measure == MeasureTiming::YES) driverStart = now();
if (!validateRequest(request, mModel)) {
cb(ErrorStatus::INVALID_ARGUMENT, {}, kNoTiming);
return Void();
}
NNTRACE_FULL_SWITCH(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_INPUTS_AND_OUTPUTS,
"SampleDriver::executeSynchronously");
std::vector<RunTimePoolInfo> requestPoolInfos;
if (!setRunTimePoolInfosFromHidlMemories(&requestPoolInfos, request.pools)) {
cb(ErrorStatus::GENERAL_FAILURE, {}, kNoTiming);
return Void();
}
NNTRACE_FULL_SWITCH(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_EXECUTION,
"SampleDriver::executeSynchronously");
CpuExecutor executor = mDriver->getExecutor();
if (measure == MeasureTiming::YES) deviceStart = now();
int n = executor.run(mModel, request, mPoolInfos, requestPoolInfos);
if (measure == MeasureTiming::YES) deviceEnd = now();
VLOG(DRIVER) << "executor.run returned " << n;
ErrorStatus executionStatus = convertResultCodeToErrorStatus(n);
hidl_vec<OutputShape> outputShapes = executor.getOutputShapes();
if (measure == MeasureTiming::YES && executionStatus == ErrorStatus::NONE) {
driverEnd = now();
Timing timing = {.timeOnDevice = uint64_t(microsecondsDuration(deviceEnd, deviceStart)),
.timeInDriver = uint64_t(microsecondsDuration(driverEnd, driverStart))};
VLOG(DRIVER) << "executeSynchronously timing = " << toString(timing);
cb(executionStatus, outputShapes, timing);
} else {
cb(executionStatus, outputShapes, kNoTiming);
}
return Void();
}
// BurstExecutorWithCache maps hidl_memory when it is first seen, and preserves
// the mapping until either (1) the memory is freed in the runtime, or (2) the
// burst object is destroyed. This allows for subsequent executions operating on
// pools that have been used before to reuse the mapping instead of mapping and
// unmapping the memory on each execution.
class BurstExecutorWithCache : public ExecutionBurstServer::IBurstExecutorWithCache {
public:
BurstExecutorWithCache(const Model& model, const SampleDriver* driver,
const std::vector<RunTimePoolInfo>& poolInfos)
: mModel(model), mDriver(driver), mModelPoolInfos(poolInfos) {}
bool isCacheEntryPresent(int32_t slot) const override {
const auto it = mMemoryCache.find(slot);
return (it != mMemoryCache.end()) && it->second.has_value();
}
void addCacheEntry(const hidl_memory& memory, int32_t slot) override {
mMemoryCache[slot] = RunTimePoolInfo::createFromHidlMemory(memory);
}
void removeCacheEntry(int32_t slot) override { mMemoryCache.erase(slot); }
std::tuple<ErrorStatus, hidl_vec<OutputShape>, Timing> execute(
const Request& request, const std::vector<int32_t>& slots,
MeasureTiming measure) override {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_EXECUTION,
"BurstExecutorWithCache::execute");
time_point driverStart, driverEnd, deviceStart, deviceEnd;
if (measure == MeasureTiming::YES) driverStart = now();
// ensure all relevant pools are valid
if (!std::all_of(slots.begin(), slots.end(),
[this](int32_t slot) { return isCacheEntryPresent(slot); })) {
return {ErrorStatus::INVALID_ARGUMENT, {}, kNoTiming};
}
// finish the request object (for validation)
hidl_vec<hidl_memory> pools(slots.size());
std::transform(slots.begin(), slots.end(), pools.begin(),
[this](int32_t slot) { return mMemoryCache[slot]->getHidlMemory(); });
Request fullRequest = request;
fullRequest.pools = std::move(pools);
// validate request object against the model
if (!validateRequest(fullRequest, mModel)) {
return {ErrorStatus::INVALID_ARGUMENT, {}, kNoTiming};
}
// select relevant entries from cache
std::vector<RunTimePoolInfo> requestPoolInfos;
requestPoolInfos.reserve(slots.size());
std::transform(slots.begin(), slots.end(), std::back_inserter(requestPoolInfos),
[this](int32_t slot) { return *mMemoryCache[slot]; });
// execution
CpuExecutor executor = mDriver->getExecutor();
if (measure == MeasureTiming::YES) deviceStart = now();
int n = executor.run(mModel, request, mModelPoolInfos, requestPoolInfos);
if (measure == MeasureTiming::YES) deviceEnd = now();
VLOG(DRIVER) << "executor.run returned " << n;
ErrorStatus executionStatus = convertResultCodeToErrorStatus(n);
hidl_vec<OutputShape> outputShapes = executor.getOutputShapes();
if (measure == MeasureTiming::YES && executionStatus == ErrorStatus::NONE) {
driverEnd = now();
Timing timing = {
.timeOnDevice = uint64_t(microsecondsDuration(deviceEnd, deviceStart)),
.timeInDriver = uint64_t(microsecondsDuration(driverEnd, driverStart))};
VLOG(DRIVER) << "BurstExecutorWithCache::execute timing = " << toString(timing);
return std::make_tuple(executionStatus, outputShapes, timing);
} else {
return std::make_tuple(executionStatus, outputShapes, kNoTiming);
}
}
private:
const Model mModel;
const SampleDriver* const mDriver;
const std::vector<RunTimePoolInfo> mModelPoolInfos;
std::map<int32_t, std::optional<RunTimePoolInfo>> mMemoryCache; // cached requestPoolInfos
};
Return<void> SamplePreparedModel::configureExecutionBurst(
const sp<V1_2::IBurstCallback>& callback,
const MQDescriptorSync<V1_2::FmqRequestDatum>& requestChannel,
const MQDescriptorSync<V1_2::FmqResultDatum>& resultChannel,
configureExecutionBurst_cb cb) {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_EXECUTION,
"SampleDriver::configureExecutionBurst");
// Alternatively, the burst could be configured via:
// const sp<V1_2::IBurstContext> burst =
// ExecutionBurstServer::create(callback, requestChannel,
// resultChannel, this);
//
// However, this alternative representation does not include a memory map
// caching optimization, and adds overhead.
const std::shared_ptr<BurstExecutorWithCache> executorWithCache =
std::make_shared<BurstExecutorWithCache>(mModel, mDriver, mPoolInfos);
const sp<V1_2::IBurstContext> burst = ExecutionBurstServer::create(
callback, requestChannel, resultChannel, executorWithCache);
if (burst == nullptr) {
cb(ErrorStatus::GENERAL_FAILURE, {});
} else {
cb(ErrorStatus::NONE, burst);
}
return Void();
}
} // namespace sample_driver
} // namespace nn
} // namespace android