blob: 8c91232685a41d7b3968398323a02f85d4129283 [file] [log] [blame]
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "ExecutionBurstServer"
#include "ExecutionBurstServer.h"
#include <android-base/logging.h>
#include <algorithm>
#include <cstring>
#include <limits>
#include <map>
#include <memory>
#include <tuple>
#include <utility>
#include <vector>
#include "HalInterfaces.h"
#include "Tracing.h"
namespace android::nn {
namespace {
using namespace hal;
using hardware::MQDescriptorSync;
using V1_2::FmqRequestDatum;
using V1_2::FmqResultDatum;
using V1_2::IBurstCallback;
using V1_2::IBurstContext;
constexpr Timing kNoTiming = {std::numeric_limits<uint64_t>::max(),
std::numeric_limits<uint64_t>::max()};
// DefaultBurstExecutorWithCache adapts an IPreparedModel so that it can be
// used as an IBurstExecutorWithCache. Specifically, the cache simply stores the
// hidl_memory object, and the execution forwards calls to the provided
// IPreparedModel's "executeSynchronously" method. With this class, hidl_memory
// must be mapped and unmapped for each execution.
class DefaultBurstExecutorWithCache : public ExecutionBurstServer::IBurstExecutorWithCache {
public:
DefaultBurstExecutorWithCache(V1_2::IPreparedModel* preparedModel)
: mpPreparedModel(preparedModel) {}
bool isCacheEntryPresent(int32_t slot) const override {
const auto it = mMemoryCache.find(slot);
return (it != mMemoryCache.end()) && it->second.valid();
}
void addCacheEntry(const hidl_memory& memory, int32_t slot) override {
mMemoryCache[slot] = memory;
}
void removeCacheEntry(int32_t slot) override { mMemoryCache.erase(slot); }
std::tuple<V1_0::ErrorStatus, hidl_vec<OutputShape>, Timing> execute(
const V1_0::Request& request, const std::vector<int32_t>& slots,
MeasureTiming measure) override {
// convert slots to pools
hidl_vec<hidl_memory> pools(slots.size());
std::transform(slots.begin(), slots.end(), pools.begin(),
[this](int32_t slot) { return mMemoryCache[slot]; });
// create full request
V1_0::Request fullRequest = request;
fullRequest.pools = std::move(pools);
// setup execution
V1_0::ErrorStatus returnedStatus = V1_0::ErrorStatus::GENERAL_FAILURE;
hidl_vec<OutputShape> returnedOutputShapes;
Timing returnedTiming;
auto cb = [&returnedStatus, &returnedOutputShapes, &returnedTiming](
V1_0::ErrorStatus status, const hidl_vec<OutputShape>& outputShapes,
const Timing& timing) {
returnedStatus = status;
returnedOutputShapes = outputShapes;
returnedTiming = timing;
};
// execute
const Return<void> ret = mpPreparedModel->executeSynchronously(fullRequest, measure, cb);
if (!ret.isOk() || returnedStatus != V1_0::ErrorStatus::NONE) {
LOG(ERROR) << "IPreparedModelAdapter::execute -- Error executing";
return {returnedStatus, std::move(returnedOutputShapes), kNoTiming};
}
return std::make_tuple(returnedStatus, std::move(returnedOutputShapes), returnedTiming);
}
private:
V1_2::IPreparedModel* const mpPreparedModel;
std::map<int32_t, hidl_memory> mMemoryCache;
};
} // anonymous namespace
// serialize result
std::vector<FmqResultDatum> serialize(V1_0::ErrorStatus errorStatus,
const std::vector<OutputShape>& outputShapes, Timing timing) {
// count how many elements need to be sent for a request
size_t count = 2 + outputShapes.size();
for (const auto& outputShape : outputShapes) {
count += outputShape.dimensions.size();
}
// create buffer to temporarily store elements
std::vector<FmqResultDatum> data;
data.reserve(count);
// package packetInfo
{
FmqResultDatum datum;
datum.packetInformation({/*.packetSize=*/static_cast<uint32_t>(count),
/*.errorStatus=*/errorStatus,
/*.numberOfOperands=*/static_cast<uint32_t>(outputShapes.size())});
data.push_back(datum);
}
// package output shape data
for (const auto& operand : outputShapes) {
// package operand information
FmqResultDatum::OperandInformation info{};
info.isSufficient = operand.isSufficient;
info.numberOfDimensions = static_cast<uint32_t>(operand.dimensions.size());
FmqResultDatum datum;
datum.operandInformation(info);
data.push_back(datum);
// package operand dimensions
for (uint32_t dimension : operand.dimensions) {
FmqResultDatum datum;
datum.operandDimensionValue(dimension);
data.push_back(datum);
}
}
// package executionTiming
{
FmqResultDatum datum;
datum.executionTiming(timing);
data.push_back(datum);
}
// return result
return data;
}
// deserialize request
std::optional<std::tuple<V1_0::Request, std::vector<int32_t>, MeasureTiming>> deserialize(
const std::vector<FmqRequestDatum>& data) {
using discriminator = FmqRequestDatum::hidl_discriminator;
size_t index = 0;
// validate packet information
if (index >= data.size() ||
data.at(index).getDiscriminator() != discriminator::packetInformation) {
LOG(ERROR) << "FMQ Request packet ill-formed";
return std::nullopt;
}
// unpackage packet information
const FmqRequestDatum::PacketInformation& packetInfo = data.at(index).packetInformation();
index++;
const uint32_t packetSize = packetInfo.packetSize;
const uint32_t numberOfInputOperands = packetInfo.numberOfInputOperands;
const uint32_t numberOfOutputOperands = packetInfo.numberOfOutputOperands;
const uint32_t numberOfPools = packetInfo.numberOfPools;
// verify packet size
if (data.size() != packetSize) {
LOG(ERROR) << "FMQ Request packet ill-formed";
return std::nullopt;
}
// unpackage input operands
std::vector<RequestArgument> inputs;
inputs.reserve(numberOfInputOperands);
for (size_t operand = 0; operand < numberOfInputOperands; ++operand) {
// validate input operand information
if (index >= data.size() ||
data.at(index).getDiscriminator() != discriminator::inputOperandInformation) {
LOG(ERROR) << "FMQ Request packet ill-formed";
return std::nullopt;
}
// unpackage operand information
const FmqRequestDatum::OperandInformation& operandInfo =
data.at(index).inputOperandInformation();
index++;
const bool hasNoValue = operandInfo.hasNoValue;
const DataLocation location = operandInfo.location;
const uint32_t numberOfDimensions = operandInfo.numberOfDimensions;
// unpackage operand dimensions
std::vector<uint32_t> dimensions;
dimensions.reserve(numberOfDimensions);
for (size_t i = 0; i < numberOfDimensions; ++i) {
// validate dimension
if (index >= data.size() ||
data.at(index).getDiscriminator() != discriminator::inputOperandDimensionValue) {
LOG(ERROR) << "FMQ Request packet ill-formed";
return std::nullopt;
}
// unpackage dimension
const uint32_t dimension = data.at(index).inputOperandDimensionValue();
index++;
// store result
dimensions.push_back(dimension);
}
// store result
inputs.push_back(
{/*.hasNoValue=*/hasNoValue, /*.location=*/location, /*.dimensions=*/dimensions});
}
// unpackage output operands
std::vector<RequestArgument> outputs;
outputs.reserve(numberOfOutputOperands);
for (size_t operand = 0; operand < numberOfOutputOperands; ++operand) {
// validate output operand information
if (index >= data.size() ||
data.at(index).getDiscriminator() != discriminator::outputOperandInformation) {
LOG(ERROR) << "FMQ Request packet ill-formed";
return std::nullopt;
}
// unpackage operand information
const FmqRequestDatum::OperandInformation& operandInfo =
data.at(index).outputOperandInformation();
index++;
const bool hasNoValue = operandInfo.hasNoValue;
const DataLocation location = operandInfo.location;
const uint32_t numberOfDimensions = operandInfo.numberOfDimensions;
// unpackage operand dimensions
std::vector<uint32_t> dimensions;
dimensions.reserve(numberOfDimensions);
for (size_t i = 0; i < numberOfDimensions; ++i) {
// validate dimension
if (index >= data.size() ||
data.at(index).getDiscriminator() != discriminator::outputOperandDimensionValue) {
LOG(ERROR) << "FMQ Request packet ill-formed";
return std::nullopt;
}
// unpackage dimension
const uint32_t dimension = data.at(index).outputOperandDimensionValue();
index++;
// store result
dimensions.push_back(dimension);
}
// store result
outputs.push_back(
{/*.hasNoValue=*/hasNoValue, /*.location=*/location, /*.dimensions=*/dimensions});
}
// unpackage pools
std::vector<int32_t> slots;
slots.reserve(numberOfPools);
for (size_t pool = 0; pool < numberOfPools; ++pool) {
// validate input operand information
if (index >= data.size() ||
data.at(index).getDiscriminator() != discriminator::poolIdentifier) {
LOG(ERROR) << "FMQ Request packet ill-formed";
return std::nullopt;
}
// unpackage operand information
const int32_t poolId = data.at(index).poolIdentifier();
index++;
// store result
slots.push_back(poolId);
}
// validate measureTiming
if (index >= data.size() || data.at(index).getDiscriminator() != discriminator::measureTiming) {
LOG(ERROR) << "FMQ Request packet ill-formed";
return std::nullopt;
}
// unpackage measureTiming
const MeasureTiming measure = data.at(index).measureTiming();
index++;
// validate packet information
if (index != packetSize) {
LOG(ERROR) << "FMQ Request packet ill-formed";
return std::nullopt;
}
// return request
V1_0::Request request = {/*.inputs=*/inputs, /*.outputs=*/outputs, /*.pools=*/{}};
return std::make_tuple(std::move(request), std::move(slots), measure);
}
// RequestChannelReceiver methods
std::unique_ptr<RequestChannelReceiver> RequestChannelReceiver::create(
const FmqRequestDescriptor& requestChannel, std::chrono::microseconds pollingTimeWindow) {
std::unique_ptr<FmqRequestChannel> fmqRequestChannel =
std::make_unique<FmqRequestChannel>(requestChannel);
if (!fmqRequestChannel->isValid()) {
LOG(ERROR) << "Unable to create RequestChannelReceiver";
return nullptr;
}
if (fmqRequestChannel->getEventFlagWord() == nullptr) {
LOG(ERROR)
<< "RequestChannelReceiver::create was passed an MQDescriptor without an EventFlag";
return nullptr;
}
return std::make_unique<RequestChannelReceiver>(std::move(fmqRequestChannel),
pollingTimeWindow);
}
RequestChannelReceiver::RequestChannelReceiver(std::unique_ptr<FmqRequestChannel> fmqRequestChannel,
std::chrono::microseconds pollingTimeWindow)
: mFmqRequestChannel(std::move(fmqRequestChannel)), kPollingTimeWindow(pollingTimeWindow) {}
std::optional<std::tuple<V1_0::Request, std::vector<int32_t>, MeasureTiming>>
RequestChannelReceiver::getBlocking() {
const auto packet = getPacketBlocking();
if (!packet) {
return std::nullopt;
}
return deserialize(*packet);
}
void RequestChannelReceiver::invalidate() {
mTeardown = true;
// force unblock
// ExecutionBurstServer is by default waiting on a request packet. If the
// client process destroys its burst object, the server may still be waiting
// on the futex. This force unblock wakes up any thread waiting on the
// futex.
// TODO: look for a different/better way to signal/notify the futex to wake
// up any thread waiting on it
FmqRequestDatum datum;
datum.packetInformation({/*.packetSize=*/0, /*.numberOfInputOperands=*/0,
/*.numberOfOutputOperands=*/0, /*.numberOfPools=*/0});
mFmqRequestChannel->writeBlocking(&datum, 1);
}
std::optional<std::vector<FmqRequestDatum>> RequestChannelReceiver::getPacketBlocking() {
using discriminator = FmqRequestDatum::hidl_discriminator;
if (mTeardown) {
return std::nullopt;
}
// First spend time polling if results are available in FMQ instead of
// waiting on the futex. Polling is more responsive (yielding lower
// latencies), but can take up more power, so only poll for a limited period
// of time.
auto& getCurrentTime = std::chrono::high_resolution_clock::now;
const auto timeToStopPolling = getCurrentTime() + kPollingTimeWindow;
while (getCurrentTime() < timeToStopPolling) {
// if class is being torn down, immediately return
if (mTeardown.load(std::memory_order_relaxed)) {
return std::nullopt;
}
// Check if data is available. If it is, immediately retrieve it and
// return.
const size_t available = mFmqRequestChannel->availableToRead();
if (available > 0) {
// This is the first point when we know an execution is occurring,
// so begin to collect systraces. Note that a similar systrace does
// not exist at the corresponding point in
// ResultChannelReceiver::getPacketBlocking because the execution is
// already in flight.
NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION,
"ExecutionBurstServer getting packet");
std::vector<FmqRequestDatum> packet(available);
const bool success = mFmqRequestChannel->read(packet.data(), available);
if (!success) {
LOG(ERROR) << "Error receiving packet";
return std::nullopt;
}
return std::make_optional(std::move(packet));
}
}
// If we get to this point, we either stopped polling because it was taking
// too long or polling was not allowed. Instead, perform a blocking call
// which uses a futex to save power.
// wait for request packet and read first element of request packet
FmqRequestDatum datum;
bool success = mFmqRequestChannel->readBlocking(&datum, 1);
// This is the first point when we know an execution is occurring, so begin
// to collect systraces. Note that a similar systrace does not exist at the
// corresponding point in ResultChannelReceiver::getPacketBlocking because
// the execution is already in flight.
NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION, "ExecutionBurstServer getting packet");
// retrieve remaining elements
// NOTE: all of the data is already available at this point, so there's no
// need to do a blocking wait to wait for more data. This is known because
// in FMQ, all writes are published (made available) atomically. Currently,
// the producer always publishes the entire packet in one function call, so
// if the first element of the packet is available, the remaining elements
// are also available.
const size_t count = mFmqRequestChannel->availableToRead();
std::vector<FmqRequestDatum> packet(count + 1);
std::memcpy(&packet.front(), &datum, sizeof(datum));
success &= mFmqRequestChannel->read(packet.data() + 1, count);
// terminate loop
if (mTeardown) {
return std::nullopt;
}
// ensure packet was successfully received
if (!success) {
LOG(ERROR) << "Error receiving packet";
return std::nullopt;
}
return std::make_optional(std::move(packet));
}
// ResultChannelSender methods
std::unique_ptr<ResultChannelSender> ResultChannelSender::create(
const FmqResultDescriptor& resultChannel) {
std::unique_ptr<FmqResultChannel> fmqResultChannel =
std::make_unique<FmqResultChannel>(resultChannel);
if (!fmqResultChannel->isValid()) {
LOG(ERROR) << "Unable to create RequestChannelSender";
return nullptr;
}
if (fmqResultChannel->getEventFlagWord() == nullptr) {
LOG(ERROR) << "ResultChannelSender::create was passed an MQDescriptor without an EventFlag";
return nullptr;
}
return std::make_unique<ResultChannelSender>(std::move(fmqResultChannel));
}
ResultChannelSender::ResultChannelSender(std::unique_ptr<FmqResultChannel> fmqResultChannel)
: mFmqResultChannel(std::move(fmqResultChannel)) {}
bool ResultChannelSender::send(V1_0::ErrorStatus errorStatus,
const std::vector<OutputShape>& outputShapes, Timing timing) {
const std::vector<FmqResultDatum> serialized = serialize(errorStatus, outputShapes, timing);
return sendPacket(serialized);
}
bool ResultChannelSender::sendPacket(const std::vector<FmqResultDatum>& packet) {
if (packet.size() > mFmqResultChannel->availableToWrite()) {
LOG(ERROR)
<< "ResultChannelSender::sendPacket -- packet size exceeds size available in FMQ";
const std::vector<FmqResultDatum> errorPacket =
serialize(V1_0::ErrorStatus::GENERAL_FAILURE, {}, kNoTiming);
// Always send the packet with "blocking" because this signals the futex
// and unblocks the consumer if it is waiting on the futex.
return mFmqResultChannel->writeBlocking(errorPacket.data(), errorPacket.size());
}
// Always send the packet with "blocking" because this signals the futex and
// unblocks the consumer if it is waiting on the futex.
return mFmqResultChannel->writeBlocking(packet.data(), packet.size());
}
// ExecutionBurstServer methods
sp<ExecutionBurstServer> ExecutionBurstServer::create(
const sp<IBurstCallback>& callback, const MQDescriptorSync<FmqRequestDatum>& requestChannel,
const MQDescriptorSync<FmqResultDatum>& resultChannel,
std::shared_ptr<IBurstExecutorWithCache> executorWithCache,
std::chrono::microseconds pollingTimeWindow) {
// check inputs
if (callback == nullptr || executorWithCache == nullptr) {
LOG(ERROR) << "ExecutionBurstServer::create passed a nullptr";
return nullptr;
}
// create FMQ objects
std::unique_ptr<RequestChannelReceiver> requestChannelReceiver =
RequestChannelReceiver::create(requestChannel, pollingTimeWindow);
std::unique_ptr<ResultChannelSender> resultChannelSender =
ResultChannelSender::create(resultChannel);
// check FMQ objects
if (!requestChannelReceiver || !resultChannelSender) {
LOG(ERROR) << "ExecutionBurstServer::create failed to create FastMessageQueue";
return nullptr;
}
// make and return context
return new ExecutionBurstServer(callback, std::move(requestChannelReceiver),
std::move(resultChannelSender), std::move(executorWithCache));
}
sp<ExecutionBurstServer> ExecutionBurstServer::create(
const sp<IBurstCallback>& callback, const MQDescriptorSync<FmqRequestDatum>& requestChannel,
const MQDescriptorSync<FmqResultDatum>& resultChannel, V1_2::IPreparedModel* preparedModel,
std::chrono::microseconds pollingTimeWindow) {
// check relevant input
if (preparedModel == nullptr) {
LOG(ERROR) << "ExecutionBurstServer::create passed a nullptr";
return nullptr;
}
// adapt IPreparedModel to have caching
const std::shared_ptr<DefaultBurstExecutorWithCache> preparedModelAdapter =
std::make_shared<DefaultBurstExecutorWithCache>(preparedModel);
// make and return context
return ExecutionBurstServer::create(callback, requestChannel, resultChannel,
preparedModelAdapter, pollingTimeWindow);
}
ExecutionBurstServer::ExecutionBurstServer(
const sp<IBurstCallback>& callback, std::unique_ptr<RequestChannelReceiver> requestChannel,
std::unique_ptr<ResultChannelSender> resultChannel,
std::shared_ptr<IBurstExecutorWithCache> executorWithCache)
: mCallback(callback),
mRequestChannelReceiver(std::move(requestChannel)),
mResultChannelSender(std::move(resultChannel)),
mExecutorWithCache(std::move(executorWithCache)) {
// TODO: highly document the threading behavior of this class
mWorker = std::thread([this] { task(); });
}
ExecutionBurstServer::~ExecutionBurstServer() {
// set teardown flag
mTeardown = true;
mRequestChannelReceiver->invalidate();
// wait for task thread to end
mWorker.join();
}
Return<void> ExecutionBurstServer::freeMemory(int32_t slot) {
std::lock_guard<std::mutex> hold(mMutex);
mExecutorWithCache->removeCacheEntry(slot);
return Void();
}
void ExecutionBurstServer::ensureCacheEntriesArePresentLocked(const std::vector<int32_t>& slots) {
const auto slotIsKnown = [this](int32_t slot) {
return mExecutorWithCache->isCacheEntryPresent(slot);
};
// find unique unknown slots
std::vector<int32_t> unknownSlots = slots;
auto unknownSlotsEnd = unknownSlots.end();
std::sort(unknownSlots.begin(), unknownSlotsEnd);
unknownSlotsEnd = std::unique(unknownSlots.begin(), unknownSlotsEnd);
unknownSlotsEnd = std::remove_if(unknownSlots.begin(), unknownSlotsEnd, slotIsKnown);
unknownSlots.erase(unknownSlotsEnd, unknownSlots.end());
// quick-exit if all slots are known
if (unknownSlots.empty()) {
return;
}
V1_0::ErrorStatus errorStatus = V1_0::ErrorStatus::GENERAL_FAILURE;
std::vector<hidl_memory> returnedMemories;
auto cb = [&errorStatus, &returnedMemories](V1_0::ErrorStatus status,
const hidl_vec<hidl_memory>& memories) {
errorStatus = status;
returnedMemories = memories;
};
const Return<void> ret = mCallback->getMemories(unknownSlots, cb);
if (!ret.isOk() || errorStatus != V1_0::ErrorStatus::NONE ||
returnedMemories.size() != unknownSlots.size()) {
LOG(ERROR) << "Error retrieving memories";
return;
}
// add memories to unknown slots
for (size_t i = 0; i < unknownSlots.size(); ++i) {
mExecutorWithCache->addCacheEntry(returnedMemories[i], unknownSlots[i]);
}
}
void ExecutionBurstServer::task() {
// loop until the burst object is being destroyed
while (!mTeardown) {
// receive request
auto arguments = mRequestChannelReceiver->getBlocking();
// if the request packet was not properly received, return a generic
// error and skip the execution
//
// if the burst is being torn down, skip the execution exection so the
// "task" function can end
if (!arguments) {
if (!mTeardown) {
mResultChannelSender->send(V1_0::ErrorStatus::GENERAL_FAILURE, {}, kNoTiming);
}
continue;
}
// otherwise begin tracing execution
NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION,
"ExecutionBurstServer getting memory, executing, and returning results");
// unpack the arguments; types are Request, std::vector<int32_t>, and
// MeasureTiming, respectively
const auto [requestWithoutPools, slotsOfPools, measure] = std::move(*arguments);
// ensure executor with cache has required memory
std::lock_guard<std::mutex> hold(mMutex);
ensureCacheEntriesArePresentLocked(slotsOfPools);
// perform computation; types are ErrorStatus, hidl_vec<OutputShape>,
// and Timing, respectively
const auto [errorStatus, outputShapes, returnedTiming] =
mExecutorWithCache->execute(requestWithoutPools, slotsOfPools, measure);
// return result
mResultChannelSender->send(errorStatus, outputShapes, returnedTiming);
}
}
} // namespace android::nn