blob: ef925fea7644fae3b92e2d226d5a07a5f533d89d [file] [log] [blame]
Michael Butler60296322019-01-17 17:54:51 -08001/*
2 * Copyright (C) 2019 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
Michael Butler89e99ba2019-01-24 02:36:37 -080017#define LOG_TAG "ExecutionBurstServer"
18
Michael Butler60296322019-01-17 17:54:51 -080019#include "ExecutionBurstServer.h"
20
21#include <android-base/logging.h>
Michael Butlerc932ebb2019-04-11 14:24:06 -070022#include <limits>
Michael Butler3db6fe52019-01-29 11:20:30 -080023#include "Tracing.h"
Michael Butler60296322019-01-17 17:54:51 -080024
Michael Butler3db6fe52019-01-29 11:20:30 -080025namespace android::nn {
Michael Butler238fe722019-03-21 12:17:27 -070026namespace {
Michael Butler60296322019-01-17 17:54:51 -080027
Michael Butlerc932ebb2019-04-11 14:24:06 -070028constexpr Timing kNoTiming = {std::numeric_limits<uint64_t>::max(),
29 std::numeric_limits<uint64_t>::max()};
30
Michael Butler238fe722019-03-21 12:17:27 -070031// DefaultBurstExecutorWithCache adapts an IPreparedModel so that it can be
32// used as an IBurstExecutorWithCache. Specifically, the cache simply stores the
33// hidl_memory object, and the execution forwards calls to the provided
34// IPreparedModel's "executeSynchronously" method. With this class, hidl_memory
35// must be mapped and unmapped for each execution.
36class DefaultBurstExecutorWithCache : public ExecutionBurstServer::IBurstExecutorWithCache {
37 public:
38 DefaultBurstExecutorWithCache(IPreparedModel* preparedModel) : mpPreparedModel(preparedModel) {}
Michael Butler60296322019-01-17 17:54:51 -080039
Michael Butler238fe722019-03-21 12:17:27 -070040 bool isCacheEntryPresent(int32_t slot) const override {
Michael Butler47c988f62019-03-14 17:34:48 -070041 return slot < mMemoryCache.size() && mMemoryCache[slot].valid();
Michael Butler238fe722019-03-21 12:17:27 -070042 }
Michael Butler47c988f62019-03-14 17:34:48 -070043
Michael Butler238fe722019-03-21 12:17:27 -070044 void addCacheEntry(const hidl_memory& memory, int32_t slot) override {
45 if (slot >= mMemoryCache.size()) {
46 mMemoryCache.resize(slot + 1);
47 }
48 mMemoryCache[slot] = memory;
49 }
Michael Butler60296322019-01-17 17:54:51 -080050
Michael Butler238fe722019-03-21 12:17:27 -070051 void removeCacheEntry(int32_t slot) override {
52 if (slot < mMemoryCache.size()) {
53 mMemoryCache[slot] = {};
54 }
55 }
56
57 std::tuple<ErrorStatus, hidl_vec<OutputShape>, Timing> execute(
58 const Request& request, const std::vector<int32_t>& slots,
59 MeasureTiming measure) override {
60 // convert slots to pools
61 hidl_vec<hidl_memory> pools(slots.size());
62 std::transform(slots.begin(), slots.end(), pools.begin(), [this](int32_t slot) {
63 return slot < mMemoryCache.size() ? mMemoryCache[slot] : hidl_memory{};
64 });
65
66 // create full request
67 Request fullRequest = request;
68 fullRequest.pools = std::move(pools);
69
70 // setup execution
71 ErrorStatus returnedStatus = ErrorStatus::GENERAL_FAILURE;
72 hidl_vec<OutputShape> returnedOutputShapes;
73 Timing returnedTiming;
74 auto cb = [&returnedStatus, &returnedOutputShapes, &returnedTiming](
75 ErrorStatus status, const hidl_vec<OutputShape>& outputShapes,
76 const Timing& timing) {
77 returnedStatus = status;
78 returnedOutputShapes = outputShapes;
79 returnedTiming = timing;
Michael Butler47c988f62019-03-14 17:34:48 -070080 };
Michael Butler60296322019-01-17 17:54:51 -080081
Michael Butler238fe722019-03-21 12:17:27 -070082 // execute
83 const Return<void> ret = mpPreparedModel->executeSynchronously(fullRequest, measure, cb);
84 if (!ret.isOk() || returnedStatus != ErrorStatus::NONE) {
85 LOG(ERROR) << "IPreparedModelAdapter::execute -- Error executing";
86 return {ErrorStatus::GENERAL_FAILURE, {}, {}};
Michael Butler89e99ba2019-01-24 02:36:37 -080087 }
Michael Butler60296322019-01-17 17:54:51 -080088
Michael Butler238fe722019-03-21 12:17:27 -070089 return std::make_tuple(returnedStatus, std::move(returnedOutputShapes), returnedTiming);
Michael Butler60296322019-01-17 17:54:51 -080090 }
91
Michael Butler238fe722019-03-21 12:17:27 -070092 private:
93 IPreparedModel* const mpPreparedModel;
94 std::vector<hidl_memory> mMemoryCache;
95};
Michael Butler47c988f62019-03-14 17:34:48 -070096
Michael Butler238fe722019-03-21 12:17:27 -070097} // anonymous namespace
Michael Butler60296322019-01-17 17:54:51 -080098
Michael Butler60296322019-01-17 17:54:51 -080099// serialize result
Michael Butlerc932ebb2019-04-11 14:24:06 -0700100std::vector<FmqResultDatum> serialize(ErrorStatus errorStatus,
101 const std::vector<OutputShape>& outputShapes, Timing timing) {
Michael Butler60296322019-01-17 17:54:51 -0800102 // count how many elements need to be sent for a request
103 size_t count = 2 + outputShapes.size();
104 for (const auto& outputShape : outputShapes) {
105 count += outputShape.dimensions.size();
106 }
107
108 // create buffer to temporarily store elements
109 std::vector<FmqResultDatum> data;
110 data.reserve(count);
111
112 // package packetInfo
113 {
114 FmqResultDatum datum;
115 datum.packetInformation({/*.packetSize=*/static_cast<uint32_t>(count),
116 /*.errorStatus=*/errorStatus,
117 /*.numberOfOperands=*/static_cast<uint32_t>(outputShapes.size())});
118 data.push_back(datum);
119 }
120
121 // package output shape data
122 for (const auto& operand : outputShapes) {
123 // package operand information
Steven Moreland393ac6d2019-04-25 15:33:25 -0700124 FmqResultDatum::OperandInformation info{};
125 info.isSufficient = operand.isSufficient;
126 info.numberOfDimensions = static_cast<uint32_t>(operand.dimensions.size());
127
Michael Butler60296322019-01-17 17:54:51 -0800128 FmqResultDatum datum;
Steven Moreland393ac6d2019-04-25 15:33:25 -0700129 datum.operandInformation(info);
Michael Butler60296322019-01-17 17:54:51 -0800130 data.push_back(datum);
131
132 // package operand dimensions
133 for (uint32_t dimension : operand.dimensions) {
134 FmqResultDatum datum;
135 datum.operandDimensionValue(dimension);
136 data.push_back(datum);
137 }
138 }
139
140 // package executionTiming
141 {
142 FmqResultDatum datum;
143 datum.executionTiming(timing);
144 data.push_back(datum);
145 }
146
147 // return result
148 return data;
149}
150
Michael Butlerc932ebb2019-04-11 14:24:06 -0700151// deserialize request
152std::optional<std::tuple<Request, std::vector<int32_t>, MeasureTiming>> deserialize(
153 const std::vector<FmqRequestDatum>& data) {
154 using discriminator = FmqRequestDatum::hidl_discriminator;
Michael Butler60296322019-01-17 17:54:51 -0800155
Michael Butlerc932ebb2019-04-11 14:24:06 -0700156 size_t index = 0;
157
158 // validate packet information
159 if (data[index].getDiscriminator() != discriminator::packetInformation) {
160 LOG(ERROR) << "FMQ Request packet ill-formed";
161 return std::nullopt;
162 }
163
164 // unpackage packet information
165 const FmqRequestDatum::PacketInformation& packetInfo = data[index].packetInformation();
166 index++;
167 const uint32_t packetSize = packetInfo.packetSize;
168 const uint32_t numberOfInputOperands = packetInfo.numberOfInputOperands;
169 const uint32_t numberOfOutputOperands = packetInfo.numberOfOutputOperands;
170 const uint32_t numberOfPools = packetInfo.numberOfPools;
171
172 // unpackage input operands
173 std::vector<RequestArgument> inputs;
174 inputs.reserve(numberOfInputOperands);
175 for (size_t operand = 0; operand < numberOfInputOperands; ++operand) {
176 // validate input operand information
177 if (data[index].getDiscriminator() != discriminator::inputOperandInformation) {
178 LOG(ERROR) << "FMQ Request packet ill-formed";
179 return std::nullopt;
Michael Butler60296322019-01-17 17:54:51 -0800180 }
181
Michael Butlerc932ebb2019-04-11 14:24:06 -0700182 // unpackage operand information
183 const FmqRequestDatum::OperandInformation& operandInfo =
184 data[index].inputOperandInformation();
185 index++;
186 const bool hasNoValue = operandInfo.hasNoValue;
187 const DataLocation location = operandInfo.location;
188 const uint32_t numberOfDimensions = operandInfo.numberOfDimensions;
Michael Butler3db6fe52019-01-29 11:20:30 -0800189
Michael Butlerc932ebb2019-04-11 14:24:06 -0700190 // unpackage operand dimensions
191 std::vector<uint32_t> dimensions;
192 dimensions.reserve(numberOfDimensions);
193 for (size_t i = 0; i < numberOfDimensions; ++i) {
194 // validate dimension
195 if (data[index].getDiscriminator() != discriminator::inputOperandDimensionValue) {
196 LOG(ERROR) << "FMQ Request packet ill-formed";
197 return std::nullopt;
198 }
199
200 // unpackage dimension
201 const uint32_t dimension = data[index].inputOperandDimensionValue();
202 index++;
203
204 // store result
205 dimensions.push_back(dimension);
206 }
207
208 // store result
209 inputs.push_back(
210 {/*.hasNoValue=*/hasNoValue, /*.location=*/location, /*.dimensions=*/dimensions});
211 }
212
213 // unpackage output operands
214 std::vector<RequestArgument> outputs;
215 outputs.reserve(numberOfOutputOperands);
216 for (size_t operand = 0; operand < numberOfOutputOperands; ++operand) {
217 // validate output operand information
218 if (data[index].getDiscriminator() != discriminator::outputOperandInformation) {
219 LOG(ERROR) << "FMQ Request packet ill-formed";
220 return std::nullopt;
221 }
222
223 // unpackage operand information
224 const FmqRequestDatum::OperandInformation& operandInfo =
225 data[index].outputOperandInformation();
226 index++;
227 const bool hasNoValue = operandInfo.hasNoValue;
228 const DataLocation location = operandInfo.location;
229 const uint32_t numberOfDimensions = operandInfo.numberOfDimensions;
230
231 // unpackage operand dimensions
232 std::vector<uint32_t> dimensions;
233 dimensions.reserve(numberOfDimensions);
234 for (size_t i = 0; i < numberOfDimensions; ++i) {
235 // validate dimension
236 if (data[index].getDiscriminator() != discriminator::outputOperandDimensionValue) {
237 LOG(ERROR) << "FMQ Request packet ill-formed";
238 return std::nullopt;
239 }
240
241 // unpackage dimension
242 const uint32_t dimension = data[index].outputOperandDimensionValue();
243 index++;
244
245 // store result
246 dimensions.push_back(dimension);
247 }
248
249 // store result
250 outputs.push_back(
251 {/*.hasNoValue=*/hasNoValue, /*.location=*/location, /*.dimensions=*/dimensions});
252 }
253
254 // unpackage pools
255 std::vector<int32_t> slots;
256 slots.reserve(numberOfPools);
257 for (size_t pool = 0; pool < numberOfPools; ++pool) {
258 // validate input operand information
259 if (data[index].getDiscriminator() != discriminator::poolIdentifier) {
260 LOG(ERROR) << "FMQ Request packet ill-formed";
261 return std::nullopt;
262 }
263
264 // unpackage operand information
265 const int32_t poolId = data[index].poolIdentifier();
266 index++;
267
268 // store result
269 slots.push_back(poolId);
270 }
271
272 // validate measureTiming
273 if (data[index].getDiscriminator() != discriminator::measureTiming) {
274 LOG(ERROR) << "FMQ Request packet ill-formed";
275 return std::nullopt;
276 }
277
278 // unpackage measureTiming
279 const MeasureTiming measure = data[index].measureTiming();
280 index++;
281
282 // validate packet information
283 if (index != packetSize) {
284 LOG(ERROR) << "FMQ Result packet ill-formed";
285 return std::nullopt;
286 }
287
288 // return request
289 Request request = {/*.inputs=*/inputs, /*.outputs=*/outputs, /*.pools=*/{}};
290 return std::make_tuple(std::move(request), std::move(slots), measure);
291}
292
293// RequestChannelReceiver methods
294
295std::unique_ptr<RequestChannelReceiver> RequestChannelReceiver::create(
296 const FmqRequestDescriptor& requestChannel) {
297 std::unique_ptr<FmqRequestChannel> fmqRequestChannel =
298 std::make_unique<FmqRequestChannel>(requestChannel);
299 if (!fmqRequestChannel->isValid()) {
300 LOG(ERROR) << "Unable to create RequestChannelReceiver";
301 return nullptr;
302 }
303 const bool blocking = fmqRequestChannel->getEventFlagWord() != nullptr;
304 return std::make_unique<RequestChannelReceiver>(std::move(fmqRequestChannel), blocking);
305}
306
307RequestChannelReceiver::RequestChannelReceiver(std::unique_ptr<FmqRequestChannel> fmqRequestChannel,
308 bool blocking)
309 : mFmqRequestChannel(std::move(fmqRequestChannel)), mBlocking(blocking) {}
310
311std::optional<std::tuple<Request, std::vector<int32_t>, MeasureTiming>>
312RequestChannelReceiver::getBlocking() {
313 const auto packet = getPacketBlocking();
314 if (!packet) {
315 return std::nullopt;
316 }
317
318 return deserialize(*packet);
319}
320
321void RequestChannelReceiver::invalidate() {
322 mTeardown = true;
323
324 // force unblock
325 // ExecutionBurstServer is by default waiting on a request packet. If the
326 // client process destroys its burst object, the server will still be
327 // waiting on the futex (assuming mBlocking is true). This force unblock
328 // wakes up any thread waiting on the futex.
329 if (mBlocking) {
330 // TODO: look for a different/better way to signal/notify the futex to
331 // wake up any thread waiting on it
332 FmqRequestDatum datum;
333 datum.packetInformation({/*.packetSize=*/0, /*.numberOfInputOperands=*/0,
334 /*.numberOfOutputOperands=*/0, /*.numberOfPools=*/0});
335 mFmqRequestChannel->writeBlocking(&datum, 1);
336 }
337}
338
339std::optional<std::vector<FmqRequestDatum>> RequestChannelReceiver::getPacketBlocking() {
340 using discriminator = FmqRequestDatum::hidl_discriminator;
341
342 if (mTeardown) {
343 return std::nullopt;
344 }
345
346 // wait for request packet and read first element of request packet
347 // TODO: have a more elegant way to wait for data, and read it all at once.
348 // For example, EventFlag can be used to directly wait on the futex, and all
349 // the data can be read at once with a non-blocking call to
350 // MessageQueue::read. For further optimization, MessageQueue::beginRead and
351 // MessageQueue::commitRead can be used to avoid an extra copy of the
352 // metadata.
353 FmqRequestDatum datum;
354 bool success = false;
355 if (mBlocking) {
356 success = mFmqRequestChannel->readBlocking(&datum, 1);
357 } else {
358 while ((success = !mTeardown.load(std::memory_order_relaxed)) &&
359 !mFmqRequestChannel->read(&datum, 1)) {
360 }
361 }
362
363 // terminate loop
364 if (mTeardown) {
365 return std::nullopt;
366 }
367
368 // validate packet information
369 if (!success || datum.getDiscriminator() != discriminator::packetInformation) {
370 LOG(ERROR) << "FMQ Request packet ill-formed";
371 return std::make_optional<std::vector<FmqRequestDatum>>();
372 }
373
374 NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION, "ExecutionBurstServer getting packet");
375
376 // unpack packet information
377 const auto& packetInfo = datum.packetInformation();
378 const size_t count = packetInfo.packetSize;
379
380 // retrieve remaining elements
381 // NOTE: all of the data is already available at this point, so there's no
382 // need to do a blocking wait to wait for more data. This is known because
383 // in FMQ, all writes are published (made available) atomically. Currently,
384 // the producer always publishes the entire packet in one function call, so
385 // if the first element of the packet is available, the remaining elements
386 // are also available.
387 std::vector<FmqRequestDatum> packet(count);
388 packet.front() = datum;
389 success = mFmqRequestChannel->read(packet.data() + 1, packet.size() - 1);
390
391 if (!success) {
392 return std::make_optional<std::vector<FmqRequestDatum>>();
393 }
394
395 return packet;
396}
397
398// ResultChannelSender methods
399
400std::unique_ptr<ResultChannelSender> ResultChannelSender::create(
401 const FmqResultDescriptor& resultChannel) {
402 std::unique_ptr<FmqResultChannel> fmqResultChannel =
403 std::make_unique<FmqResultChannel>(resultChannel);
404 if (!fmqResultChannel->isValid()) {
405 LOG(ERROR) << "Unable to create RequestChannelSender";
406 return nullptr;
407 }
408 const bool blocking = fmqResultChannel->getEventFlagWord() != nullptr;
409 return std::make_unique<ResultChannelSender>(std::move(fmqResultChannel), blocking);
410}
411
412ResultChannelSender::ResultChannelSender(std::unique_ptr<FmqResultChannel> fmqResultChannel,
413 bool blocking)
414 : mFmqResultChannel(std::move(fmqResultChannel)), mBlocking(blocking) {}
415
416bool ResultChannelSender::send(ErrorStatus errorStatus,
417 const std::vector<OutputShape>& outputShapes, Timing timing) {
418 const std::vector<FmqResultDatum> serialized = serialize(errorStatus, outputShapes, timing);
419 return sendPacket(serialized);
420}
421
422bool ResultChannelSender::sendPacket(const std::vector<FmqResultDatum>& packet) {
423 if (mBlocking) {
424 return mFmqResultChannel->writeBlocking(packet.data(), packet.size());
425 } else {
426 return mFmqResultChannel->write(packet.data(), packet.size());
427 }
428}
429
430// ExecutionBurstServer methods
431
432sp<ExecutionBurstServer> ExecutionBurstServer::create(
433 const sp<IBurstCallback>& callback, const MQDescriptorSync<FmqRequestDatum>& requestChannel,
434 const MQDescriptorSync<FmqResultDatum>& resultChannel,
435 std::shared_ptr<IBurstExecutorWithCache> executorWithCache) {
436 // check inputs
437 if (callback == nullptr || executorWithCache == nullptr) {
438 LOG(ERROR) << "ExecutionBurstServer::create passed a nullptr";
439 return nullptr;
440 }
441
442 // create FMQ objects
443 std::unique_ptr<RequestChannelReceiver> requestChannelReceiver =
444 RequestChannelReceiver::create(requestChannel);
445 std::unique_ptr<ResultChannelSender> resultChannelSender =
446 ResultChannelSender::create(resultChannel);
447
448 // check FMQ objects
449 if (!requestChannelReceiver || !resultChannelSender) {
450 LOG(ERROR) << "ExecutionBurstServer::create failed to create FastMessageQueue";
451 return nullptr;
452 }
453
454 // make and return context
455 return new ExecutionBurstServer(callback, std::move(requestChannelReceiver),
456 std::move(resultChannelSender), std::move(executorWithCache));
457}
458
459sp<ExecutionBurstServer> ExecutionBurstServer::create(
460 const sp<IBurstCallback>& callback, const MQDescriptorSync<FmqRequestDatum>& requestChannel,
461 const MQDescriptorSync<FmqResultDatum>& resultChannel, IPreparedModel* preparedModel) {
462 // check relevant input
463 if (preparedModel == nullptr) {
464 LOG(ERROR) << "ExecutionBurstServer::create passed a nullptr";
465 return nullptr;
466 }
467
468 // adapt IPreparedModel to have caching
469 const std::shared_ptr<DefaultBurstExecutorWithCache> preparedModelAdapter =
470 std::make_shared<DefaultBurstExecutorWithCache>(preparedModel);
471
472 // make and return context
473 return ExecutionBurstServer::create(callback, requestChannel, resultChannel,
474 preparedModelAdapter);
475}
476
477ExecutionBurstServer::ExecutionBurstServer(
478 const sp<IBurstCallback>& callback, std::unique_ptr<RequestChannelReceiver> requestChannel,
479 std::unique_ptr<ResultChannelSender> resultChannel,
480 std::shared_ptr<IBurstExecutorWithCache> executorWithCache)
481 : mCallback(callback),
482 mRequestChannelReceiver(std::move(requestChannel)),
483 mResultChannelSender(std::move(resultChannel)),
484 mExecutorWithCache(std::move(executorWithCache)) {
485 // TODO: highly document the threading behavior of this class
486 mWorker = std::thread([this] { task(); });
487}
488
489ExecutionBurstServer::~ExecutionBurstServer() {
490 // set teardown flag
491 mTeardown = true;
492 mRequestChannelReceiver->invalidate();
493
494 // wait for task thread to end
495 mWorker.join();
496}
497
498Return<void> ExecutionBurstServer::freeMemory(int32_t slot) {
499 mExecutorWithCache->removeCacheEntry(slot);
500 return Void();
501}
502
503void ExecutionBurstServer::ensureCacheEntriesArePresentLocked(const std::vector<int32_t>& slots) {
504 const auto slotIsKnown = [this](int32_t slot) {
505 return mExecutorWithCache->isCacheEntryPresent(slot);
506 };
507
508 // find unique unknown slots
509 std::vector<int32_t> unknownSlots = slots;
510 auto unknownSlotsEnd = unknownSlots.end();
511 std::sort(unknownSlots.begin(), unknownSlotsEnd);
512 unknownSlotsEnd = std::unique(unknownSlots.begin(), unknownSlotsEnd);
513 unknownSlotsEnd = std::remove_if(unknownSlots.begin(), unknownSlotsEnd, slotIsKnown);
514 unknownSlots.erase(unknownSlotsEnd, unknownSlots.end());
515
516 // quick-exit if all slots are known
517 if (unknownSlots.empty()) {
518 return;
519 }
520
521 ErrorStatus errorStatus = ErrorStatus::GENERAL_FAILURE;
522 std::vector<hidl_memory> returnedMemories;
523 auto cb = [&errorStatus, &returnedMemories](ErrorStatus status,
524 const hidl_vec<hidl_memory>& memories) {
525 errorStatus = status;
526 returnedMemories = memories;
527 };
528
529 const Return<void> ret = mCallback->getMemories(unknownSlots, cb);
530
531 if (!ret.isOk() || errorStatus != ErrorStatus::NONE ||
532 returnedMemories.size() != unknownSlots.size()) {
533 LOG(ERROR) << "Error retrieving memories";
534 return;
535 }
536
537 // add memories to unknown slots
538 for (size_t i = 0; i < unknownSlots.size(); ++i) {
539 mExecutorWithCache->addCacheEntry(returnedMemories[i], unknownSlots[i]);
540 }
541}
542
543void ExecutionBurstServer::task() {
544 // loop until the burst object is being destroyed
545 while (!mTeardown) {
546 // receive request
547 auto arguments = mRequestChannelReceiver->getBlocking();
548
549 // if the request packet was not properly received, return a generic
550 // error and skip the execution
551 //
552 // if the burst is being torn down, skip the execution exection so the
553 // "task" function can end
554 if (!arguments) {
555 if (!mTeardown) {
556 mResultChannelSender->send(ErrorStatus::GENERAL_FAILURE, {}, kNoTiming);
557 }
558 continue;
559 }
560
561 // otherwise begin tracing execution
562 NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION,
563 "ExecutionBurstServer getting memory, executing, and returning results");
564
565 // unpack the arguments; types are Request, std::vector<int32_t>, and
Michael Butler238fe722019-03-21 12:17:27 -0700566 // MeasureTiming, respectively
Michael Butlerc932ebb2019-04-11 14:24:06 -0700567 const auto [requestWithoutPools, slotsOfPools, measure] = std::move(*arguments);
Michael Butler60296322019-01-17 17:54:51 -0800568
Michael Butler238fe722019-03-21 12:17:27 -0700569 // ensure executor with cache has required memory
570 std::lock_guard<std::mutex> hold(mMutex);
571 ensureCacheEntriesArePresentLocked(slotsOfPools);
572
573 // perform computation; types are ErrorStatus, hidl_vec<OutputShape>,
574 // and Timing, respectively
575 const auto [errorStatus, outputShapes, returnedTiming] =
576 mExecutorWithCache->execute(requestWithoutPools, slotsOfPools, measure);
Michael Butler60296322019-01-17 17:54:51 -0800577
578 // return result
Michael Butlerc932ebb2019-04-11 14:24:06 -0700579 mResultChannelSender->send(errorStatus, outputShapes, returnedTiming);
Michael Butler60296322019-01-17 17:54:51 -0800580 }
581}
582
Michael Butler3db6fe52019-01-29 11:20:30 -0800583} // namespace android::nn