blob: 5c929a3c9630fc440bd41fb51742eaae9b4f3654 [file] [log] [blame]
/*
* Copyright 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//#define LOG_NDEBUG 0
#undef LOG_TAG
#define LOG_TAG "RenderEngine"
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include "GLES20RenderEngine.h"
#include <math.h>
#include <fstream>
#include <sstream>
#include <GLES2/gl2.h>
#include <GLES2/gl2ext.h>
#include <cutils/compiler.h>
#include <renderengine/Mesh.h>
#include <renderengine/Texture.h>
#include <renderengine/private/Description.h>
#include <ui/ColorSpace.h>
#include <ui/DebugUtils.h>
#include <ui/Rect.h>
#include <ui/Region.h>
#include <utils/String8.h>
#include <utils/Trace.h>
#include "GLExtensions.h"
#include "GLFramebuffer.h"
#include "GLImage.h"
#include "GLSurface.h"
#include "Program.h"
#include "ProgramCache.h"
extern "C" EGLAPI const char* eglQueryStringImplementationANDROID(EGLDisplay dpy, EGLint name);
bool checkGlError(const char* op, int lineNumber) {
bool errorFound = false;
GLint error = glGetError();
while (error != GL_NO_ERROR) {
errorFound = true;
error = glGetError();
ALOGV("after %s() (line # %d) glError (0x%x)\n", op, lineNumber, error);
}
return errorFound;
}
static constexpr bool outputDebugPPMs = false;
void writePPM(const char* basename, GLuint width, GLuint height) {
ALOGV("writePPM #%s: %d x %d", basename, width, height);
std::vector<GLubyte> pixels(width * height * 4);
std::vector<GLubyte> outBuffer(width * height * 3);
// TODO(courtneygo): We can now have float formats, need
// to remove this code or update to support.
// Make returned pixels fit in uint32_t, one byte per component
glReadPixels(0, 0, width, height, GL_RGBA, GL_UNSIGNED_BYTE, pixels.data());
if (checkGlError(__FUNCTION__, __LINE__)) {
return;
}
std::string filename(basename);
filename.append(".ppm");
std::ofstream file(filename.c_str(), std::ios::binary);
if (!file.is_open()) {
ALOGE("Unable to open file: %s", filename.c_str());
ALOGE("You may need to do: \"adb shell setenforce 0\" to enable "
"surfaceflinger to write debug images");
return;
}
file << "P6\n";
file << width << "\n";
file << height << "\n";
file << 255 << "\n";
auto ptr = reinterpret_cast<char*>(pixels.data());
auto outPtr = reinterpret_cast<char*>(outBuffer.data());
for (int y = height - 1; y >= 0; y--) {
char* data = ptr + y * width * sizeof(uint32_t);
for (GLuint x = 0; x < width; x++) {
// Only copy R, G and B components
outPtr[0] = data[0];
outPtr[1] = data[1];
outPtr[2] = data[2];
data += sizeof(uint32_t);
outPtr += 3;
}
}
file.write(reinterpret_cast<char*>(outBuffer.data()), outBuffer.size());
}
namespace android {
namespace renderengine {
namespace gl {
using ui::Dataspace;
static status_t selectConfigForAttribute(EGLDisplay dpy, EGLint const* attrs, EGLint attribute,
EGLint wanted, EGLConfig* outConfig) {
EGLint numConfigs = -1, n = 0;
eglGetConfigs(dpy, nullptr, 0, &numConfigs);
EGLConfig* const configs = new EGLConfig[numConfigs];
eglChooseConfig(dpy, attrs, configs, numConfigs, &n);
if (n) {
if (attribute != EGL_NONE) {
for (int i = 0; i < n; i++) {
EGLint value = 0;
eglGetConfigAttrib(dpy, configs[i], attribute, &value);
if (wanted == value) {
*outConfig = configs[i];
delete[] configs;
return NO_ERROR;
}
}
} else {
// just pick the first one
*outConfig = configs[0];
delete[] configs;
return NO_ERROR;
}
}
delete[] configs;
return NAME_NOT_FOUND;
}
class EGLAttributeVector {
struct Attribute;
class Adder;
friend class Adder;
KeyedVector<Attribute, EGLint> mList;
struct Attribute {
Attribute() : v(0){};
explicit Attribute(EGLint v) : v(v) {}
EGLint v;
bool operator<(const Attribute& other) const {
// this places EGL_NONE at the end
EGLint lhs(v);
EGLint rhs(other.v);
if (lhs == EGL_NONE) lhs = 0x7FFFFFFF;
if (rhs == EGL_NONE) rhs = 0x7FFFFFFF;
return lhs < rhs;
}
};
class Adder {
friend class EGLAttributeVector;
EGLAttributeVector& v;
EGLint attribute;
Adder(EGLAttributeVector& v, EGLint attribute) : v(v), attribute(attribute) {}
public:
void operator=(EGLint value) {
if (attribute != EGL_NONE) {
v.mList.add(Attribute(attribute), value);
}
}
operator EGLint() const { return v.mList[attribute]; }
};
public:
EGLAttributeVector() { mList.add(Attribute(EGL_NONE), EGL_NONE); }
void remove(EGLint attribute) {
if (attribute != EGL_NONE) {
mList.removeItem(Attribute(attribute));
}
}
Adder operator[](EGLint attribute) { return Adder(*this, attribute); }
EGLint operator[](EGLint attribute) const { return mList[attribute]; }
// cast-operator to (EGLint const*)
operator EGLint const*() const { return &mList.keyAt(0).v; }
};
static status_t selectEGLConfig(EGLDisplay display, EGLint format, EGLint renderableType,
EGLConfig* config) {
// select our EGLConfig. It must support EGL_RECORDABLE_ANDROID if
// it is to be used with WIFI displays
status_t err;
EGLint wantedAttribute;
EGLint wantedAttributeValue;
EGLAttributeVector attribs;
if (renderableType) {
attribs[EGL_RENDERABLE_TYPE] = renderableType;
attribs[EGL_RECORDABLE_ANDROID] = EGL_TRUE;
attribs[EGL_SURFACE_TYPE] = EGL_WINDOW_BIT | EGL_PBUFFER_BIT;
attribs[EGL_FRAMEBUFFER_TARGET_ANDROID] = EGL_TRUE;
attribs[EGL_RED_SIZE] = 8;
attribs[EGL_GREEN_SIZE] = 8;
attribs[EGL_BLUE_SIZE] = 8;
attribs[EGL_ALPHA_SIZE] = 8;
wantedAttribute = EGL_NONE;
wantedAttributeValue = EGL_NONE;
} else {
// if no renderable type specified, fallback to a simplified query
wantedAttribute = EGL_NATIVE_VISUAL_ID;
wantedAttributeValue = format;
}
err = selectConfigForAttribute(display, attribs, wantedAttribute, wantedAttributeValue, config);
if (err == NO_ERROR) {
EGLint caveat;
if (eglGetConfigAttrib(display, *config, EGL_CONFIG_CAVEAT, &caveat))
ALOGW_IF(caveat == EGL_SLOW_CONFIG, "EGL_SLOW_CONFIG selected!");
}
return err;
}
std::unique_ptr<GLES20RenderEngine> GLES20RenderEngine::create(int hwcFormat,
uint32_t featureFlags) {
// initialize EGL for the default display
EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
if (!eglInitialize(display, nullptr, nullptr)) {
LOG_ALWAYS_FATAL("failed to initialize EGL");
}
GLExtensions& extensions = GLExtensions::getInstance();
extensions.initWithEGLStrings(eglQueryStringImplementationANDROID(display, EGL_VERSION),
eglQueryStringImplementationANDROID(display, EGL_EXTENSIONS));
// The code assumes that ES2 or later is available if this extension is
// supported.
EGLConfig config = EGL_NO_CONFIG;
if (!extensions.hasNoConfigContext()) {
config = chooseEglConfig(display, hwcFormat, /*logConfig*/ true);
}
EGLint renderableType = 0;
if (config == EGL_NO_CONFIG) {
renderableType = EGL_OPENGL_ES2_BIT;
} else if (!eglGetConfigAttrib(display, config, EGL_RENDERABLE_TYPE, &renderableType)) {
LOG_ALWAYS_FATAL("can't query EGLConfig RENDERABLE_TYPE");
}
EGLint contextClientVersion = 0;
if (renderableType & EGL_OPENGL_ES2_BIT) {
contextClientVersion = 2;
} else if (renderableType & EGL_OPENGL_ES_BIT) {
contextClientVersion = 1;
} else {
LOG_ALWAYS_FATAL("no supported EGL_RENDERABLE_TYPEs");
}
std::vector<EGLint> contextAttributes;
contextAttributes.reserve(6);
contextAttributes.push_back(EGL_CONTEXT_CLIENT_VERSION);
contextAttributes.push_back(contextClientVersion);
bool useContextPriority = extensions.hasContextPriority() &&
(featureFlags & RenderEngine::USE_HIGH_PRIORITY_CONTEXT);
if (useContextPriority) {
contextAttributes.push_back(EGL_CONTEXT_PRIORITY_LEVEL_IMG);
contextAttributes.push_back(EGL_CONTEXT_PRIORITY_HIGH_IMG);
}
contextAttributes.push_back(EGL_NONE);
EGLContext ctxt = eglCreateContext(display, config, nullptr, contextAttributes.data());
// if can't create a GL context, we can only abort.
LOG_ALWAYS_FATAL_IF(ctxt == EGL_NO_CONTEXT, "EGLContext creation failed");
// now figure out what version of GL did we actually get
// NOTE: a dummy surface is not needed if KHR_create_context is supported
EGLConfig dummyConfig = config;
if (dummyConfig == EGL_NO_CONFIG) {
dummyConfig = chooseEglConfig(display, hwcFormat, /*logConfig*/ true);
}
EGLint attribs[] = {EGL_WIDTH, 1, EGL_HEIGHT, 1, EGL_NONE, EGL_NONE};
EGLSurface dummy = eglCreatePbufferSurface(display, dummyConfig, attribs);
LOG_ALWAYS_FATAL_IF(dummy == EGL_NO_SURFACE, "can't create dummy pbuffer");
EGLBoolean success = eglMakeCurrent(display, dummy, dummy, ctxt);
LOG_ALWAYS_FATAL_IF(!success, "can't make dummy pbuffer current");
extensions.initWithGLStrings(glGetString(GL_VENDOR), glGetString(GL_RENDERER),
glGetString(GL_VERSION), glGetString(GL_EXTENSIONS));
GlesVersion version = parseGlesVersion(extensions.getVersion());
// initialize the renderer while GL is current
std::unique_ptr<GLES20RenderEngine> engine;
switch (version) {
case GLES_VERSION_1_0:
case GLES_VERSION_1_1:
LOG_ALWAYS_FATAL("SurfaceFlinger requires OpenGL ES 2.0 minimum to run.");
break;
case GLES_VERSION_2_0:
case GLES_VERSION_3_0:
engine = std::make_unique<GLES20RenderEngine>(featureFlags);
break;
}
engine->setEGLHandles(display, config, ctxt);
ALOGI("OpenGL ES informations:");
ALOGI("vendor : %s", extensions.getVendor());
ALOGI("renderer : %s", extensions.getRenderer());
ALOGI("version : %s", extensions.getVersion());
ALOGI("extensions: %s", extensions.getExtensions());
ALOGI("GL_MAX_TEXTURE_SIZE = %zu", engine->getMaxTextureSize());
ALOGI("GL_MAX_VIEWPORT_DIMS = %zu", engine->getMaxViewportDims());
eglMakeCurrent(display, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
eglDestroySurface(display, dummy);
return engine;
}
EGLConfig GLES20RenderEngine::chooseEglConfig(EGLDisplay display, int format, bool logConfig) {
status_t err;
EGLConfig config;
// First try to get an ES2 config
err = selectEGLConfig(display, format, EGL_OPENGL_ES2_BIT, &config);
if (err != NO_ERROR) {
// If ES2 fails, try ES1
err = selectEGLConfig(display, format, EGL_OPENGL_ES_BIT, &config);
if (err != NO_ERROR) {
// still didn't work, probably because we're on the emulator...
// try a simplified query
ALOGW("no suitable EGLConfig found, trying a simpler query");
err = selectEGLConfig(display, format, 0, &config);
if (err != NO_ERROR) {
// this EGL is too lame for android
LOG_ALWAYS_FATAL("no suitable EGLConfig found, giving up");
}
}
}
if (logConfig) {
// print some debugging info
EGLint r, g, b, a;
eglGetConfigAttrib(display, config, EGL_RED_SIZE, &r);
eglGetConfigAttrib(display, config, EGL_GREEN_SIZE, &g);
eglGetConfigAttrib(display, config, EGL_BLUE_SIZE, &b);
eglGetConfigAttrib(display, config, EGL_ALPHA_SIZE, &a);
ALOGI("EGL information:");
ALOGI("vendor : %s", eglQueryString(display, EGL_VENDOR));
ALOGI("version : %s", eglQueryString(display, EGL_VERSION));
ALOGI("extensions: %s", eglQueryString(display, EGL_EXTENSIONS));
ALOGI("Client API: %s", eglQueryString(display, EGL_CLIENT_APIS) ?: "Not Supported");
ALOGI("EGLSurface: %d-%d-%d-%d, config=%p", r, g, b, a, config);
}
return config;
}
GLES20RenderEngine::GLES20RenderEngine(uint32_t featureFlags)
: renderengine::impl::RenderEngine(featureFlags),
mEGLDisplay(EGL_NO_DISPLAY),
mEGLConfig(nullptr),
mEGLContext(EGL_NO_CONTEXT),
mVpWidth(0),
mVpHeight(0),
mUseColorManagement(featureFlags & USE_COLOR_MANAGEMENT) {
glGetIntegerv(GL_MAX_TEXTURE_SIZE, &mMaxTextureSize);
glGetIntegerv(GL_MAX_VIEWPORT_DIMS, mMaxViewportDims);
glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
glPixelStorei(GL_PACK_ALIGNMENT, 4);
const uint16_t protTexData[] = {0};
glGenTextures(1, &mProtectedTexName);
glBindTexture(GL_TEXTURE_2D, mProtectedTexName);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 1, 1, 0, GL_RGB, GL_UNSIGNED_SHORT_5_6_5, protTexData);
// mColorBlindnessCorrection = M;
if (mUseColorManagement) {
ColorSpace srgb(ColorSpace::sRGB());
ColorSpace displayP3(ColorSpace::DisplayP3());
ColorSpace bt2020(ColorSpace::BT2020());
// Compute sRGB to Display P3 transform matrix.
// NOTE: For now, we are limiting output wide color space support to
// Display-P3 only.
mSrgbToDisplayP3 = mat4(ColorSpaceConnector(srgb, displayP3).getTransform());
// Compute Display P3 to sRGB transform matrix.
mDisplayP3ToSrgb = mat4(ColorSpaceConnector(displayP3, srgb).getTransform());
// no chromatic adaptation needed since all color spaces use D65 for their white points.
mSrgbToXyz = srgb.getRGBtoXYZ();
mDisplayP3ToXyz = displayP3.getRGBtoXYZ();
mBt2020ToXyz = bt2020.getRGBtoXYZ();
mXyzToSrgb = mat4(srgb.getXYZtoRGB());
mXyzToDisplayP3 = mat4(displayP3.getXYZtoRGB());
mXyzToBt2020 = mat4(bt2020.getXYZtoRGB());
}
}
GLES20RenderEngine::~GLES20RenderEngine() {
eglMakeCurrent(mEGLDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
eglTerminate(mEGLDisplay);
}
std::unique_ptr<Framebuffer> GLES20RenderEngine::createFramebuffer() {
return std::make_unique<GLFramebuffer>(*this);
}
std::unique_ptr<Surface> GLES20RenderEngine::createSurface() {
return std::make_unique<GLSurface>(*this);
}
std::unique_ptr<Image> GLES20RenderEngine::createImage() {
return std::make_unique<GLImage>(*this);
}
void GLES20RenderEngine::primeCache() const {
ProgramCache::getInstance().primeCache(mFeatureFlags & USE_COLOR_MANAGEMENT);
}
bool GLES20RenderEngine::isCurrent() const {
return mEGLDisplay == eglGetCurrentDisplay() && mEGLContext == eglGetCurrentContext();
}
bool GLES20RenderEngine::setCurrentSurface(const Surface& surface) {
// Surface is an abstract interface. GLES20RenderEngine only ever
// creates GLSurface's, so it is safe to just cast to the actual
// type.
bool success = true;
const GLSurface& glSurface = static_cast<const GLSurface&>(surface);
EGLSurface eglSurface = glSurface.getEGLSurface();
if (eglSurface != eglGetCurrentSurface(EGL_DRAW)) {
success = eglMakeCurrent(mEGLDisplay, eglSurface, eglSurface, mEGLContext) == EGL_TRUE;
if (success && glSurface.getAsync()) {
eglSwapInterval(mEGLDisplay, 0);
}
if (success) {
mSurfaceHeight = glSurface.getHeight();
}
}
return success;
}
void GLES20RenderEngine::resetCurrentSurface() {
eglMakeCurrent(mEGLDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
mSurfaceHeight = 0;
}
base::unique_fd GLES20RenderEngine::flush() {
if (!GLExtensions::getInstance().hasNativeFenceSync()) {
return base::unique_fd();
}
EGLSyncKHR sync = eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_NATIVE_FENCE_ANDROID, nullptr);
if (sync == EGL_NO_SYNC_KHR) {
ALOGW("failed to create EGL native fence sync: %#x", eglGetError());
return base::unique_fd();
}
// native fence fd will not be populated until flush() is done.
glFlush();
// get the fence fd
base::unique_fd fenceFd(eglDupNativeFenceFDANDROID(mEGLDisplay, sync));
eglDestroySyncKHR(mEGLDisplay, sync);
if (fenceFd == EGL_NO_NATIVE_FENCE_FD_ANDROID) {
ALOGW("failed to dup EGL native fence sync: %#x", eglGetError());
}
return fenceFd;
}
bool GLES20RenderEngine::finish() {
if (!GLExtensions::getInstance().hasFenceSync()) {
ALOGW("no synchronization support");
return false;
}
EGLSyncKHR sync = eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_FENCE_KHR, nullptr);
if (sync == EGL_NO_SYNC_KHR) {
ALOGW("failed to create EGL fence sync: %#x", eglGetError());
return false;
}
EGLint result = eglClientWaitSyncKHR(mEGLDisplay, sync, EGL_SYNC_FLUSH_COMMANDS_BIT_KHR,
2000000000 /*2 sec*/);
EGLint error = eglGetError();
eglDestroySyncKHR(mEGLDisplay, sync);
if (result != EGL_CONDITION_SATISFIED_KHR) {
if (result == EGL_TIMEOUT_EXPIRED_KHR) {
ALOGW("fence wait timed out");
} else {
ALOGW("error waiting on EGL fence: %#x", error);
}
return false;
}
return true;
}
bool GLES20RenderEngine::waitFence(base::unique_fd fenceFd) {
if (!GLExtensions::getInstance().hasNativeFenceSync() ||
!GLExtensions::getInstance().hasWaitSync()) {
return false;
}
EGLint attribs[] = {EGL_SYNC_NATIVE_FENCE_FD_ANDROID, fenceFd, EGL_NONE};
EGLSyncKHR sync = eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_NATIVE_FENCE_ANDROID, attribs);
if (sync == EGL_NO_SYNC_KHR) {
ALOGE("failed to create EGL native fence sync: %#x", eglGetError());
return false;
}
// fenceFd is now owned by EGLSync
(void)fenceFd.release();
// XXX: The spec draft is inconsistent as to whether this should return an
// EGLint or void. Ignore the return value for now, as it's not strictly
// needed.
eglWaitSyncKHR(mEGLDisplay, sync, 0);
EGLint error = eglGetError();
eglDestroySyncKHR(mEGLDisplay, sync);
if (error != EGL_SUCCESS) {
ALOGE("failed to wait for EGL native fence sync: %#x", error);
return false;
}
return true;
}
void GLES20RenderEngine::clearWithColor(float red, float green, float blue, float alpha) {
glClearColor(red, green, blue, alpha);
glClear(GL_COLOR_BUFFER_BIT);
}
void GLES20RenderEngine::fillRegionWithColor(const Region& region, float red, float green,
float blue, float alpha) {
size_t c;
Rect const* r = region.getArray(&c);
Mesh mesh(Mesh::TRIANGLES, c * 6, 2);
Mesh::VertexArray<vec2> position(mesh.getPositionArray<vec2>());
for (size_t i = 0; i < c; i++, r++) {
position[i * 6 + 0].x = r->left;
position[i * 6 + 0].y = r->top;
position[i * 6 + 1].x = r->left;
position[i * 6 + 1].y = r->bottom;
position[i * 6 + 2].x = r->right;
position[i * 6 + 2].y = r->bottom;
position[i * 6 + 3].x = r->left;
position[i * 6 + 3].y = r->top;
position[i * 6 + 4].x = r->right;
position[i * 6 + 4].y = r->bottom;
position[i * 6 + 5].x = r->right;
position[i * 6 + 5].y = r->top;
}
setupFillWithColor(red, green, blue, alpha);
drawMesh(mesh);
}
void GLES20RenderEngine::setScissor(const Rect& region) {
// Invert y-coordinate to map to GL-space.
int32_t canvasHeight = mRenderToFbo ? mFboHeight : mSurfaceHeight;
int32_t glBottom = canvasHeight - region.bottom;
glScissor(region.left, glBottom, region.getWidth(), region.getHeight());
glEnable(GL_SCISSOR_TEST);
}
void GLES20RenderEngine::disableScissor() {
glDisable(GL_SCISSOR_TEST);
}
void GLES20RenderEngine::genTextures(size_t count, uint32_t* names) {
glGenTextures(count, names);
}
void GLES20RenderEngine::deleteTextures(size_t count, uint32_t const* names) {
glDeleteTextures(count, names);
}
void GLES20RenderEngine::bindExternalTextureImage(uint32_t texName,
const Image& image) {
const GLImage& glImage = static_cast<const GLImage&>(image);
const GLenum target = GL_TEXTURE_EXTERNAL_OES;
glBindTexture(target, texName);
if (glImage.getEGLImage() != EGL_NO_IMAGE_KHR) {
glEGLImageTargetTexture2DOES(target,
static_cast<GLeglImageOES>(glImage.getEGLImage()));
}
}
void GLES20RenderEngine::readPixels(size_t l, size_t b, size_t w, size_t h, uint32_t* pixels) {
glReadPixels(l, b, w, h, GL_RGBA, GL_UNSIGNED_BYTE, pixels);
}
status_t GLES20RenderEngine::bindFrameBuffer(Framebuffer* framebuffer) {
GLFramebuffer* glFramebuffer = static_cast<GLFramebuffer*>(framebuffer);
EGLImageKHR eglImage = glFramebuffer->getEGLImage();
uint32_t textureName = glFramebuffer->getTextureName();
uint32_t framebufferName = glFramebuffer->getFramebufferName();
// Bind the texture and turn our EGLImage into a texture
glBindTexture(GL_TEXTURE_2D, textureName);
glEGLImageTargetTexture2DOES(GL_TEXTURE_2D, (GLeglImageOES)eglImage);
// Bind the Framebuffer to render into
glBindFramebuffer(GL_FRAMEBUFFER, framebufferName);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
GL_TEXTURE_2D, textureName, 0);
mRenderToFbo = true;
mFboHeight = glFramebuffer->getBufferHeight();
uint32_t glStatus = glCheckFramebufferStatus(GL_FRAMEBUFFER);
ALOGE_IF(glStatus != GL_FRAMEBUFFER_COMPLETE_OES,
"glCheckFramebufferStatusOES error %d", glStatus);
return glStatus == GL_FRAMEBUFFER_COMPLETE_OES ? NO_ERROR : BAD_VALUE;
}
void GLES20RenderEngine::unbindFrameBuffer(Framebuffer* /* framebuffer */) {
mRenderToFbo = false;
mFboHeight = 0;
// back to main framebuffer
glBindFramebuffer(GL_FRAMEBUFFER, 0);
// Workaround for b/77935566 to force the EGL driver to release the
// screenshot buffer
setScissor(Rect::EMPTY_RECT);
clearWithColor(0.0, 0.0, 0.0, 0.0);
disableScissor();
}
void GLES20RenderEngine::checkErrors() const {
do {
// there could be more than one error flag
GLenum error = glGetError();
if (error == GL_NO_ERROR) break;
ALOGE("GL error 0x%04x", int(error));
} while (true);
}
void GLES20RenderEngine::setViewportAndProjection(size_t vpw, size_t vph, Rect sourceCrop,
ui::Transform::orientation_flags rotation) {
int32_t l = sourceCrop.left;
int32_t r = sourceCrop.right;
int32_t b = sourceCrop.bottom;
int32_t t = sourceCrop.top;
if (mRenderToFbo) {
std::swap(t, b);
}
mat4 m = mat4::ortho(l, r, b, t, 0, 1);
// Apply custom rotation to the projection.
float rot90InRadians = 2.0f * static_cast<float>(M_PI) / 4.0f;
switch (rotation) {
case ui::Transform::ROT_0:
break;
case ui::Transform::ROT_90:
m = mat4::rotate(rot90InRadians, vec3(0, 0, 1)) * m;
break;
case ui::Transform::ROT_180:
m = mat4::rotate(rot90InRadians * 2.0f, vec3(0, 0, 1)) * m;
break;
case ui::Transform::ROT_270:
m = mat4::rotate(rot90InRadians * 3.0f, vec3(0, 0, 1)) * m;
break;
default:
break;
}
glViewport(0, 0, vpw, vph);
mState.setProjectionMatrix(m);
mVpWidth = vpw;
mVpHeight = vph;
}
void GLES20RenderEngine::setupLayerBlending(bool premultipliedAlpha, bool opaque,
bool disableTexture, const half4& color) {
mState.setPremultipliedAlpha(premultipliedAlpha);
mState.setOpaque(opaque);
mState.setColor(color);
if (disableTexture) {
mState.disableTexture();
}
if (color.a < 1.0f || !opaque) {
glEnable(GL_BLEND);
glBlendFunc(premultipliedAlpha ? GL_ONE : GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
} else {
glDisable(GL_BLEND);
}
}
void GLES20RenderEngine::setSourceY410BT2020(bool enable) {
mState.setY410BT2020(enable);
}
void GLES20RenderEngine::setSourceDataSpace(Dataspace source) {
mDataSpace = source;
}
void GLES20RenderEngine::setOutputDataSpace(Dataspace dataspace) {
mOutputDataSpace = dataspace;
}
void GLES20RenderEngine::setDisplayMaxLuminance(const float maxLuminance) {
mState.setDisplayMaxLuminance(maxLuminance);
}
void GLES20RenderEngine::setupLayerTexturing(const Texture& texture) {
GLuint target = texture.getTextureTarget();
glBindTexture(target, texture.getTextureName());
GLenum filter = GL_NEAREST;
if (texture.getFiltering()) {
filter = GL_LINEAR;
}
glTexParameteri(target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(target, GL_TEXTURE_MAG_FILTER, filter);
glTexParameteri(target, GL_TEXTURE_MIN_FILTER, filter);
mState.setTexture(texture);
}
void GLES20RenderEngine::setupLayerBlackedOut() {
glBindTexture(GL_TEXTURE_2D, mProtectedTexName);
Texture texture(Texture::TEXTURE_2D, mProtectedTexName);
texture.setDimensions(1, 1); // FIXME: we should get that from somewhere
mState.setTexture(texture);
}
void GLES20RenderEngine::setupColorTransform(const mat4& colorTransform) {
mState.setColorMatrix(colorTransform);
}
void GLES20RenderEngine::disableTexturing() {
mState.disableTexture();
}
void GLES20RenderEngine::disableBlending() {
glDisable(GL_BLEND);
}
void GLES20RenderEngine::setupFillWithColor(float r, float g, float b, float a) {
mState.setPremultipliedAlpha(true);
mState.setOpaque(false);
mState.setColor(half4(r, g, b, a));
mState.disableTexture();
glDisable(GL_BLEND);
}
void GLES20RenderEngine::drawMesh(const Mesh& mesh) {
ATRACE_CALL();
if (mesh.getTexCoordsSize()) {
glEnableVertexAttribArray(Program::texCoords);
glVertexAttribPointer(Program::texCoords, mesh.getTexCoordsSize(), GL_FLOAT, GL_FALSE,
mesh.getByteStride(), mesh.getTexCoords());
}
glVertexAttribPointer(Program::position, mesh.getVertexSize(), GL_FLOAT, GL_FALSE,
mesh.getByteStride(), mesh.getPositions());
// By default, DISPLAY_P3 is the only supported wide color output. However,
// when HDR content is present, hardware composer may be able to handle
// BT2020 data space, in that case, the output data space is set to be
// BT2020_HLG or BT2020_PQ respectively. In GPU fall back we need
// to respect this and convert non-HDR content to HDR format.
if (mUseColorManagement) {
Description managedState = mState;
Dataspace inputStandard = static_cast<Dataspace>(mDataSpace & Dataspace::STANDARD_MASK);
Dataspace inputTransfer = static_cast<Dataspace>(mDataSpace & Dataspace::TRANSFER_MASK);
Dataspace outputStandard = static_cast<Dataspace>(mOutputDataSpace &
Dataspace::STANDARD_MASK);
Dataspace outputTransfer = static_cast<Dataspace>(mOutputDataSpace &
Dataspace::TRANSFER_MASK);
bool needsXYZConversion = needsXYZTransformMatrix();
if (needsXYZConversion) {
// The supported input color spaces are standard RGB, Display P3 and BT2020.
switch (inputStandard) {
case Dataspace::STANDARD_DCI_P3:
managedState.setInputTransformMatrix(mDisplayP3ToXyz);
break;
case Dataspace::STANDARD_BT2020:
managedState.setInputTransformMatrix(mBt2020ToXyz);
break;
default:
managedState.setInputTransformMatrix(mSrgbToXyz);
break;
}
// The supported output color spaces are BT2020, Display P3 and standard RGB.
switch (outputStandard) {
case Dataspace::STANDARD_BT2020:
managedState.setOutputTransformMatrix(mXyzToBt2020);
break;
case Dataspace::STANDARD_DCI_P3:
managedState.setOutputTransformMatrix(mXyzToDisplayP3);
break;
default:
managedState.setOutputTransformMatrix(mXyzToSrgb);
break;
}
} else if (inputStandard != outputStandard) {
// At this point, the input data space and output data space could be both
// HDR data spaces, but they match each other, we do nothing in this case.
// In addition to the case above, the input data space could be
// - scRGB linear
// - scRGB non-linear
// - sRGB
// - Display P3
// The output data spaces could be
// - sRGB
// - Display P3
if (outputStandard == Dataspace::STANDARD_BT709) {
managedState.setOutputTransformMatrix(mDisplayP3ToSrgb);
} else if (outputStandard == Dataspace::STANDARD_DCI_P3) {
managedState.setOutputTransformMatrix(mSrgbToDisplayP3);
}
}
// we need to convert the RGB value to linear space and convert it back when:
// - there is a color matrix that is not an identity matrix, or
// - there is an output transform matrix that is not an identity matrix, or
// - the input transfer function doesn't match the output transfer function.
if (managedState.hasColorMatrix() || managedState.hasOutputTransformMatrix() ||
inputTransfer != outputTransfer) {
switch (inputTransfer) {
case Dataspace::TRANSFER_ST2084:
managedState.setInputTransferFunction(Description::TransferFunction::ST2084);
break;
case Dataspace::TRANSFER_HLG:
managedState.setInputTransferFunction(Description::TransferFunction::HLG);
break;
case Dataspace::TRANSFER_LINEAR:
managedState.setInputTransferFunction(Description::TransferFunction::LINEAR);
break;
default:
managedState.setInputTransferFunction(Description::TransferFunction::SRGB);
break;
}
switch (outputTransfer) {
case Dataspace::TRANSFER_ST2084:
managedState.setOutputTransferFunction(Description::TransferFunction::ST2084);
break;
case Dataspace::TRANSFER_HLG:
managedState.setOutputTransferFunction(Description::TransferFunction::HLG);
break;
default:
managedState.setOutputTransferFunction(Description::TransferFunction::SRGB);
break;
}
}
ProgramCache::getInstance().useProgram(managedState);
glDrawArrays(mesh.getPrimitive(), 0, mesh.getVertexCount());
if (outputDebugPPMs) {
static uint64_t managedColorFrameCount = 0;
std::ostringstream out;
out << "/data/texture_out" << managedColorFrameCount++;
writePPM(out.str().c_str(), mVpWidth, mVpHeight);
}
} else {
ProgramCache::getInstance().useProgram(mState);
glDrawArrays(mesh.getPrimitive(), 0, mesh.getVertexCount());
}
if (mesh.getTexCoordsSize()) {
glDisableVertexAttribArray(Program::texCoords);
}
}
size_t GLES20RenderEngine::getMaxTextureSize() const {
return mMaxTextureSize;
}
size_t GLES20RenderEngine::getMaxViewportDims() const {
return mMaxViewportDims[0] < mMaxViewportDims[1] ? mMaxViewportDims[0] : mMaxViewportDims[1];
}
void GLES20RenderEngine::dump(String8& result) {
const GLExtensions& extensions = GLExtensions::getInstance();
result.appendFormat("EGL implementation : %s\n", extensions.getEGLVersion());
result.appendFormat("%s\n", extensions.getEGLExtensions());
result.appendFormat("GLES: %s, %s, %s\n", extensions.getVendor(), extensions.getRenderer(),
extensions.getVersion());
result.appendFormat("%s\n", extensions.getExtensions());
result.appendFormat("RenderEngine last dataspace conversion: (%s) to (%s)\n",
dataspaceDetails(static_cast<android_dataspace>(mDataSpace)).c_str(),
dataspaceDetails(static_cast<android_dataspace>(mOutputDataSpace)).c_str());
}
GLES20RenderEngine::GlesVersion GLES20RenderEngine::parseGlesVersion(const char* str) {
int major, minor;
if (sscanf(str, "OpenGL ES-CM %d.%d", &major, &minor) != 2) {
if (sscanf(str, "OpenGL ES %d.%d", &major, &minor) != 2) {
ALOGW("Unable to parse GL_VERSION string: \"%s\"", str);
return GLES_VERSION_1_0;
}
}
if (major == 1 && minor == 0) return GLES_VERSION_1_0;
if (major == 1 && minor >= 1) return GLES_VERSION_1_1;
if (major == 2 && minor >= 0) return GLES_VERSION_2_0;
if (major == 3 && minor >= 0) return GLES_VERSION_3_0;
ALOGW("Unrecognized OpenGL ES version: %d.%d", major, minor);
return GLES_VERSION_1_0;
}
bool GLES20RenderEngine::isHdrDataSpace(const Dataspace dataSpace) const {
const Dataspace standard = static_cast<Dataspace>(dataSpace & Dataspace::STANDARD_MASK);
const Dataspace transfer = static_cast<Dataspace>(dataSpace & Dataspace::TRANSFER_MASK);
return standard == Dataspace::STANDARD_BT2020 &&
(transfer == Dataspace::TRANSFER_ST2084 || transfer == Dataspace::TRANSFER_HLG);
}
// For convenience, we want to convert the input color space to XYZ color space first,
// and then convert from XYZ color space to output color space when
// - SDR and HDR contents are mixed, either SDR content will be converted to HDR or
// HDR content will be tone-mapped to SDR; Or,
// - there are HDR PQ and HLG contents presented at the same time, where we want to convert
// HLG content to PQ content.
// In either case above, we need to operate the Y value in XYZ color space. Thus, when either
// input data space or output data space is HDR data space, and the input transfer function
// doesn't match the output transfer function, we would enable an intermediate transfrom to
// XYZ color space.
bool GLES20RenderEngine::needsXYZTransformMatrix() const {
const bool isInputHdrDataSpace = isHdrDataSpace(mDataSpace);
const bool isOutputHdrDataSpace = isHdrDataSpace(mOutputDataSpace);
const Dataspace inputTransfer = static_cast<Dataspace>(mDataSpace & Dataspace::TRANSFER_MASK);
const Dataspace outputTransfer = static_cast<Dataspace>(mOutputDataSpace &
Dataspace::TRANSFER_MASK);
return (isInputHdrDataSpace || isOutputHdrDataSpace) && inputTransfer != outputTransfer;
}
void GLES20RenderEngine::setEGLHandles(EGLDisplay display, EGLConfig config, EGLContext ctxt) {
mEGLDisplay = display;
mEGLConfig = config;
mEGLContext = ctxt;
}
} // namespace gl
} // namespace renderengine
} // namespace android