blob: 1989d57cd7af6993e8bb44f5cee96fe0c0605055 [file] [log] [blame]
/*
* Copyright 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#undef LOG_TAG
#define LOG_TAG "Scheduler"
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include "Scheduler.h"
#include <android-base/properties.h>
#include <android-base/stringprintf.h>
#include <android/hardware/configstore/1.0/ISurfaceFlingerConfigs.h>
#include <android/hardware/configstore/1.1/ISurfaceFlingerConfigs.h>
#include <configstore/Utils.h>
#include <gui/WindowInfo.h>
#include <system/window.h>
#include <ui/DisplayStatInfo.h>
#include <utils/Timers.h>
#include <utils/Trace.h>
#include <FrameTimeline/FrameTimeline.h>
#include <algorithm>
#include <cinttypes>
#include <cstdint>
#include <functional>
#include <memory>
#include <numeric>
#include "../Layer.h"
#include "DispSyncSource.h"
#include "EventThread.h"
#include "InjectVSyncSource.h"
#include "OneShotTimer.h"
#include "SchedulerUtils.h"
#include "SurfaceFlingerProperties.h"
#include "Timer.h"
#include "VSyncDispatchTimerQueue.h"
#include "VSyncPredictor.h"
#include "VSyncReactor.h"
#include "VsyncController.h"
#define RETURN_IF_INVALID_HANDLE(handle, ...) \
do { \
if (mConnections.count(handle) == 0) { \
ALOGE("Invalid connection handle %" PRIuPTR, handle.id); \
return __VA_ARGS__; \
} \
} while (false)
using namespace std::string_literals;
namespace android {
using gui::WindowInfo;
namespace {
std::unique_ptr<scheduler::VSyncTracker> createVSyncTracker() {
// TODO(b/144707443): Tune constants.
constexpr int kDefaultRate = 60;
constexpr auto initialPeriod = std::chrono::duration<nsecs_t, std::ratio<1, kDefaultRate>>(1);
constexpr nsecs_t idealPeriod =
std::chrono::duration_cast<std::chrono::nanoseconds>(initialPeriod).count();
constexpr size_t vsyncTimestampHistorySize = 20;
constexpr size_t minimumSamplesForPrediction = 6;
constexpr uint32_t discardOutlierPercent = 20;
return std::make_unique<scheduler::VSyncPredictor>(idealPeriod, vsyncTimestampHistorySize,
minimumSamplesForPrediction,
discardOutlierPercent);
}
std::unique_ptr<scheduler::VSyncDispatch> createVSyncDispatch(scheduler::VSyncTracker& tracker) {
// TODO(b/144707443): Tune constants.
constexpr std::chrono::nanoseconds vsyncMoveThreshold = 3ms;
constexpr std::chrono::nanoseconds timerSlack = 500us;
return std::make_unique<
scheduler::VSyncDispatchTimerQueue>(std::make_unique<scheduler::Timer>(), tracker,
timerSlack.count(), vsyncMoveThreshold.count());
}
const char* toContentDetectionString(bool useContentDetection) {
return useContentDetection ? "on" : "off";
}
} // namespace
class PredictedVsyncTracer {
public:
PredictedVsyncTracer(scheduler::VSyncDispatch& dispatch)
: mRegistration(dispatch, std::bind(&PredictedVsyncTracer::callback, this),
"PredictedVsyncTracer") {
scheduleRegistration();
}
private:
TracedOrdinal<bool> mParity = {"VSYNC-predicted", 0};
scheduler::VSyncCallbackRegistration mRegistration;
void scheduleRegistration() { mRegistration.schedule({0, 0, 0}); }
void callback() {
mParity = !mParity;
scheduleRegistration();
}
};
Scheduler::Scheduler(const std::shared_ptr<scheduler::RefreshRateConfigs>& configs,
ISchedulerCallback& callback)
: Scheduler(configs, callback,
{.useContentDetection = sysprop::use_content_detection_for_refresh_rate(false)}) {
}
Scheduler::Scheduler(const std::shared_ptr<scheduler::RefreshRateConfigs>& configs,
ISchedulerCallback& callback, Options options)
: Scheduler(createVsyncSchedule(configs->supportsKernelIdleTimer()), configs, callback,
createLayerHistory(), options) {
using namespace sysprop;
if (const int64_t millis = set_touch_timer_ms(0); millis > 0) {
// Touch events are coming to SF every 100ms, so the timer needs to be higher than that
mTouchTimer.emplace(
"TouchTimer", std::chrono::milliseconds(millis),
[this] { touchTimerCallback(TimerState::Reset); },
[this] { touchTimerCallback(TimerState::Expired); });
mTouchTimer->start();
}
if (const int64_t millis = set_display_power_timer_ms(0); millis > 0) {
mDisplayPowerTimer.emplace(
"DisplayPowerTimer", std::chrono::milliseconds(millis),
[this] { displayPowerTimerCallback(TimerState::Reset); },
[this] { displayPowerTimerCallback(TimerState::Expired); });
mDisplayPowerTimer->start();
}
}
Scheduler::Scheduler(VsyncSchedule schedule,
const std::shared_ptr<scheduler::RefreshRateConfigs>& configs,
ISchedulerCallback& schedulerCallback,
std::unique_ptr<LayerHistory> layerHistory, Options options)
: mOptions(options),
mVsyncSchedule(std::move(schedule)),
mLayerHistory(std::move(layerHistory)),
mSchedulerCallback(schedulerCallback),
mPredictedVsyncTracer(
base::GetBoolProperty("debug.sf.show_predicted_vsync", false)
? std::make_unique<PredictedVsyncTracer>(*mVsyncSchedule.dispatch)
: nullptr) {
setRefreshRateConfigs(configs);
mSchedulerCallback.setVsyncEnabled(false);
}
Scheduler::~Scheduler() {
// Ensure the OneShotTimer threads are joined before we start destroying state.
mDisplayPowerTimer.reset();
mTouchTimer.reset();
mRefreshRateConfigs.reset();
}
Scheduler::VsyncSchedule Scheduler::createVsyncSchedule(bool supportKernelTimer) {
auto clock = std::make_unique<scheduler::SystemClock>();
auto tracker = createVSyncTracker();
auto dispatch = createVSyncDispatch(*tracker);
// TODO(b/144707443): Tune constants.
constexpr size_t pendingFenceLimit = 20;
auto controller =
std::make_unique<scheduler::VSyncReactor>(std::move(clock), *tracker, pendingFenceLimit,
supportKernelTimer);
return {std::move(controller), std::move(tracker), std::move(dispatch)};
}
std::unique_ptr<LayerHistory> Scheduler::createLayerHistory() {
return std::make_unique<scheduler::LayerHistory>();
}
std::unique_ptr<VSyncSource> Scheduler::makePrimaryDispSyncSource(
const char* name, std::chrono::nanoseconds workDuration,
std::chrono::nanoseconds readyDuration, bool traceVsync) {
return std::make_unique<scheduler::DispSyncSource>(*mVsyncSchedule.dispatch, workDuration,
readyDuration, traceVsync, name);
}
std::optional<Fps> Scheduler::getFrameRateOverride(uid_t uid) const {
{
std::scoped_lock lock(mRefreshRateConfigsLock);
if (!mRefreshRateConfigs->supportsFrameRateOverride()) {
return std::nullopt;
}
}
std::lock_guard lock(mFrameRateOverridesLock);
{
const auto iter = mFrameRateOverridesFromBackdoor.find(uid);
if (iter != mFrameRateOverridesFromBackdoor.end()) {
return std::make_optional<Fps>(iter->second);
}
}
{
const auto iter = mFrameRateOverridesByContent.find(uid);
if (iter != mFrameRateOverridesByContent.end()) {
return std::make_optional<Fps>(iter->second);
}
}
return std::nullopt;
}
bool Scheduler::isVsyncValid(nsecs_t expectedVsyncTimestamp, uid_t uid) const {
const auto frameRate = getFrameRateOverride(uid);
if (!frameRate.has_value()) {
return true;
}
return mVsyncSchedule.tracker->isVSyncInPhase(expectedVsyncTimestamp, *frameRate);
}
impl::EventThread::ThrottleVsyncCallback Scheduler::makeThrottleVsyncCallback() const {
std::scoped_lock lock(mRefreshRateConfigsLock);
if (!mRefreshRateConfigs->supportsFrameRateOverride()) {
return {};
}
return [this](nsecs_t expectedVsyncTimestamp, uid_t uid) {
return !isVsyncValid(expectedVsyncTimestamp, uid);
};
}
impl::EventThread::GetVsyncPeriodFunction Scheduler::makeGetVsyncPeriodFunction() const {
return [this](uid_t uid) {
const auto refreshRateConfigs = holdRefreshRateConfigs();
nsecs_t basePeriod = refreshRateConfigs->getCurrentRefreshRate().getVsyncPeriod();
const auto frameRate = getFrameRateOverride(uid);
if (!frameRate.has_value()) {
return basePeriod;
}
const auto divider =
scheduler::RefreshRateConfigs::getFrameRateDivider(refreshRateConfigs
->getCurrentRefreshRate()
.getFps(),
*frameRate);
if (divider <= 1) {
return basePeriod;
}
return basePeriod * divider;
};
}
Scheduler::ConnectionHandle Scheduler::createConnection(
const char* connectionName, frametimeline::TokenManager* tokenManager,
std::chrono::nanoseconds workDuration, std::chrono::nanoseconds readyDuration,
impl::EventThread::InterceptVSyncsCallback interceptCallback) {
auto vsyncSource = makePrimaryDispSyncSource(connectionName, workDuration, readyDuration);
auto throttleVsync = makeThrottleVsyncCallback();
auto getVsyncPeriod = makeGetVsyncPeriodFunction();
auto eventThread = std::make_unique<impl::EventThread>(std::move(vsyncSource), tokenManager,
std::move(interceptCallback),
std::move(throttleVsync),
std::move(getVsyncPeriod));
return createConnection(std::move(eventThread));
}
Scheduler::ConnectionHandle Scheduler::createConnection(std::unique_ptr<EventThread> eventThread) {
const ConnectionHandle handle = ConnectionHandle{mNextConnectionHandleId++};
ALOGV("Creating a connection handle with ID %" PRIuPTR, handle.id);
auto connection = createConnectionInternal(eventThread.get());
std::lock_guard<std::mutex> lock(mConnectionsLock);
mConnections.emplace(handle, Connection{connection, std::move(eventThread)});
return handle;
}
sp<EventThreadConnection> Scheduler::createConnectionInternal(
EventThread* eventThread, ISurfaceComposer::EventRegistrationFlags eventRegistration) {
return eventThread->createEventConnection([&] { resync(); }, eventRegistration);
}
sp<IDisplayEventConnection> Scheduler::createDisplayEventConnection(
ConnectionHandle handle, ISurfaceComposer::EventRegistrationFlags eventRegistration) {
std::lock_guard<std::mutex> lock(mConnectionsLock);
RETURN_IF_INVALID_HANDLE(handle, nullptr);
return createConnectionInternal(mConnections[handle].thread.get(), eventRegistration);
}
sp<EventThreadConnection> Scheduler::getEventConnection(ConnectionHandle handle) {
std::lock_guard<std::mutex> lock(mConnectionsLock);
RETURN_IF_INVALID_HANDLE(handle, nullptr);
return mConnections[handle].connection;
}
void Scheduler::onHotplugReceived(ConnectionHandle handle, PhysicalDisplayId displayId,
bool connected) {
android::EventThread* thread;
{
std::lock_guard<std::mutex> lock(mConnectionsLock);
RETURN_IF_INVALID_HANDLE(handle);
thread = mConnections[handle].thread.get();
}
thread->onHotplugReceived(displayId, connected);
}
void Scheduler::onScreenAcquired(ConnectionHandle handle) {
android::EventThread* thread;
{
std::lock_guard<std::mutex> lock(mConnectionsLock);
RETURN_IF_INVALID_HANDLE(handle);
thread = mConnections[handle].thread.get();
}
thread->onScreenAcquired();
mScreenAcquired = true;
}
void Scheduler::onScreenReleased(ConnectionHandle handle) {
android::EventThread* thread;
{
std::lock_guard<std::mutex> lock(mConnectionsLock);
RETURN_IF_INVALID_HANDLE(handle);
thread = mConnections[handle].thread.get();
}
thread->onScreenReleased();
mScreenAcquired = false;
}
void Scheduler::onFrameRateOverridesChanged(ConnectionHandle handle, PhysicalDisplayId displayId) {
std::vector<FrameRateOverride> overrides;
{
std::lock_guard lock(mFrameRateOverridesLock);
for (const auto& [uid, frameRate] : mFrameRateOverridesFromBackdoor) {
overrides.emplace_back(FrameRateOverride{uid, frameRate.getValue()});
}
for (const auto& [uid, frameRate] : mFrameRateOverridesByContent) {
if (mFrameRateOverridesFromBackdoor.count(uid) == 0) {
overrides.emplace_back(FrameRateOverride{uid, frameRate.getValue()});
}
}
}
android::EventThread* thread;
{
std::lock_guard lock(mConnectionsLock);
RETURN_IF_INVALID_HANDLE(handle);
thread = mConnections[handle].thread.get();
}
thread->onFrameRateOverridesChanged(displayId, std::move(overrides));
}
void Scheduler::onPrimaryDisplayModeChanged(ConnectionHandle handle, DisplayModePtr mode) {
{
std::lock_guard<std::mutex> lock(mFeatureStateLock);
// Cache the last reported modes for primary display.
mFeatures.cachedModeChangedParams = {handle, mode};
// Invalidate content based refresh rate selection so it could be calculated
// again for the new refresh rate.
mFeatures.contentRequirements.clear();
}
onNonPrimaryDisplayModeChanged(handle, mode);
}
void Scheduler::dispatchCachedReportedMode() {
// Check optional fields first.
if (!mFeatures.mode) {
ALOGW("No mode ID found, not dispatching cached mode.");
return;
}
if (!mFeatures.cachedModeChangedParams.has_value()) {
ALOGW("No mode changed params found, not dispatching cached mode.");
return;
}
// If the mode is not the current mode, this means that a
// mode change is in progress. In that case we shouldn't dispatch an event
// as it will be dispatched when the current mode changes.
if (std::scoped_lock lock(mRefreshRateConfigsLock);
mRefreshRateConfigs->getCurrentRefreshRate().getMode() != mFeatures.mode) {
return;
}
// If there is no change from cached mode, there is no need to dispatch an event
if (mFeatures.mode == mFeatures.cachedModeChangedParams->mode) {
return;
}
mFeatures.cachedModeChangedParams->mode = mFeatures.mode;
onNonPrimaryDisplayModeChanged(mFeatures.cachedModeChangedParams->handle,
mFeatures.cachedModeChangedParams->mode);
}
void Scheduler::onNonPrimaryDisplayModeChanged(ConnectionHandle handle, DisplayModePtr mode) {
android::EventThread* thread;
{
std::lock_guard<std::mutex> lock(mConnectionsLock);
RETURN_IF_INVALID_HANDLE(handle);
thread = mConnections[handle].thread.get();
}
thread->onModeChanged(mode);
}
size_t Scheduler::getEventThreadConnectionCount(ConnectionHandle handle) {
std::lock_guard<std::mutex> lock(mConnectionsLock);
RETURN_IF_INVALID_HANDLE(handle, 0);
return mConnections[handle].thread->getEventThreadConnectionCount();
}
void Scheduler::dump(ConnectionHandle handle, std::string& result) const {
android::EventThread* thread;
{
std::lock_guard<std::mutex> lock(mConnectionsLock);
RETURN_IF_INVALID_HANDLE(handle);
thread = mConnections.at(handle).thread.get();
}
thread->dump(result);
}
void Scheduler::setDuration(ConnectionHandle handle, std::chrono::nanoseconds workDuration,
std::chrono::nanoseconds readyDuration) {
android::EventThread* thread;
{
std::lock_guard<std::mutex> lock(mConnectionsLock);
RETURN_IF_INVALID_HANDLE(handle);
thread = mConnections[handle].thread.get();
}
thread->setDuration(workDuration, readyDuration);
}
DisplayStatInfo Scheduler::getDisplayStatInfo(nsecs_t now) {
const auto vsyncTime = mVsyncSchedule.tracker->nextAnticipatedVSyncTimeFrom(now);
const auto vsyncPeriod = mVsyncSchedule.tracker->currentPeriod();
return DisplayStatInfo{.vsyncTime = vsyncTime, .vsyncPeriod = vsyncPeriod};
}
Scheduler::ConnectionHandle Scheduler::enableVSyncInjection(bool enable) {
if (mInjectVSyncs == enable) {
return {};
}
ALOGV("%s VSYNC injection", enable ? "Enabling" : "Disabling");
if (!mInjectorConnectionHandle) {
auto vsyncSource = std::make_unique<InjectVSyncSource>();
mVSyncInjector = vsyncSource.get();
auto eventThread =
std::make_unique<impl::EventThread>(std::move(vsyncSource),
/*tokenManager=*/nullptr,
impl::EventThread::InterceptVSyncsCallback(),
impl::EventThread::ThrottleVsyncCallback(),
impl::EventThread::GetVsyncPeriodFunction());
// EventThread does not dispatch VSYNC unless the display is connected and powered on.
eventThread->onHotplugReceived(PhysicalDisplayId::fromPort(0), true);
eventThread->onScreenAcquired();
mInjectorConnectionHandle = createConnection(std::move(eventThread));
}
mInjectVSyncs = enable;
return mInjectorConnectionHandle;
}
bool Scheduler::injectVSync(nsecs_t when, nsecs_t expectedVSyncTime, nsecs_t deadlineTimestamp) {
if (!mInjectVSyncs || !mVSyncInjector) {
return false;
}
mVSyncInjector->onInjectSyncEvent(when, expectedVSyncTime, deadlineTimestamp);
return true;
}
void Scheduler::enableHardwareVsync() {
std::lock_guard<std::mutex> lock(mHWVsyncLock);
if (!mPrimaryHWVsyncEnabled && mHWVsyncAvailable) {
mVsyncSchedule.tracker->resetModel();
mSchedulerCallback.setVsyncEnabled(true);
mPrimaryHWVsyncEnabled = true;
}
}
void Scheduler::disableHardwareVsync(bool makeUnavailable) {
std::lock_guard<std::mutex> lock(mHWVsyncLock);
if (mPrimaryHWVsyncEnabled) {
mSchedulerCallback.setVsyncEnabled(false);
mPrimaryHWVsyncEnabled = false;
}
if (makeUnavailable) {
mHWVsyncAvailable = false;
}
}
void Scheduler::resyncToHardwareVsync(bool makeAvailable, nsecs_t period) {
{
std::lock_guard<std::mutex> lock(mHWVsyncLock);
if (makeAvailable) {
mHWVsyncAvailable = makeAvailable;
} else if (!mHWVsyncAvailable) {
// Hardware vsync is not currently available, so abort the resync
// attempt for now
return;
}
}
if (period <= 0) {
return;
}
setVsyncPeriod(period);
}
void Scheduler::resync() {
static constexpr nsecs_t kIgnoreDelay = ms2ns(750);
const nsecs_t now = systemTime();
const nsecs_t last = mLastResyncTime.exchange(now);
if (now - last > kIgnoreDelay) {
const auto vsyncPeriod = [&] {
std::scoped_lock lock(mRefreshRateConfigsLock);
return mRefreshRateConfigs->getCurrentRefreshRate().getVsyncPeriod();
}();
resyncToHardwareVsync(false, vsyncPeriod);
}
}
void Scheduler::setVsyncPeriod(nsecs_t period) {
std::lock_guard<std::mutex> lock(mHWVsyncLock);
mVsyncSchedule.controller->startPeriodTransition(period);
if (!mPrimaryHWVsyncEnabled) {
mVsyncSchedule.tracker->resetModel();
mSchedulerCallback.setVsyncEnabled(true);
mPrimaryHWVsyncEnabled = true;
}
}
void Scheduler::addResyncSample(nsecs_t timestamp, std::optional<nsecs_t> hwcVsyncPeriod,
bool* periodFlushed) {
bool needsHwVsync = false;
*periodFlushed = false;
{ // Scope for the lock
std::lock_guard<std::mutex> lock(mHWVsyncLock);
if (mPrimaryHWVsyncEnabled) {
needsHwVsync = mVsyncSchedule.controller->addHwVsyncTimestamp(timestamp, hwcVsyncPeriod,
periodFlushed);
}
}
if (needsHwVsync) {
enableHardwareVsync();
} else {
disableHardwareVsync(false);
}
}
void Scheduler::addPresentFence(const std::shared_ptr<FenceTime>& fenceTime) {
if (mVsyncSchedule.controller->addPresentFence(fenceTime)) {
enableHardwareVsync();
} else {
disableHardwareVsync(false);
}
}
void Scheduler::setIgnorePresentFences(bool ignore) {
mVsyncSchedule.controller->setIgnorePresentFences(ignore);
}
void Scheduler::registerLayer(Layer* layer) {
scheduler::LayerHistory::LayerVoteType voteType;
if (!mOptions.useContentDetection || layer->getWindowType() == WindowInfo::Type::STATUS_BAR) {
voteType = scheduler::LayerHistory::LayerVoteType::NoVote;
} else if (layer->getWindowType() == WindowInfo::Type::WALLPAPER) {
// Running Wallpaper at Min is considered as part of content detection.
voteType = scheduler::LayerHistory::LayerVoteType::Min;
} else {
voteType = scheduler::LayerHistory::LayerVoteType::Heuristic;
}
// If the content detection feature is off, we still keep the layer history,
// since we use it for other features (like Frame Rate API), so layers
// still need to be registered.
mLayerHistory->registerLayer(layer, voteType);
}
void Scheduler::deregisterLayer(Layer* layer) {
mLayerHistory->deregisterLayer(layer);
}
void Scheduler::recordLayerHistory(Layer* layer, nsecs_t presentTime,
LayerHistory::LayerUpdateType updateType) {
{
std::scoped_lock lock(mRefreshRateConfigsLock);
if (!mRefreshRateConfigs->canSwitch()) return;
}
mLayerHistory->record(layer, presentTime, systemTime(), updateType);
}
void Scheduler::setModeChangePending(bool pending) {
mLayerHistory->setModeChangePending(pending);
}
void Scheduler::chooseRefreshRateForContent() {
{
std::scoped_lock lock(mRefreshRateConfigsLock);
if (!mRefreshRateConfigs->canSwitch()) return;
}
ATRACE_CALL();
const auto refreshRateConfigs = holdRefreshRateConfigs();
scheduler::LayerHistory::Summary summary =
mLayerHistory->summarize(*refreshRateConfigs, systemTime());
scheduler::RefreshRateConfigs::GlobalSignals consideredSignals;
DisplayModePtr newMode;
bool frameRateChanged;
bool frameRateOverridesChanged;
{
std::lock_guard<std::mutex> lock(mFeatureStateLock);
mFeatures.contentRequirements = summary;
newMode = calculateRefreshRateModeId(&consideredSignals);
frameRateOverridesChanged = updateFrameRateOverrides(consideredSignals, newMode->getFps());
if (mFeatures.mode == newMode) {
// We don't need to change the display mode, but we might need to send an event
// about a mode change, since it was suppressed due to a previous idleConsidered
if (!consideredSignals.idle) {
dispatchCachedReportedMode();
}
frameRateChanged = false;
} else {
mFeatures.mode = newMode;
frameRateChanged = true;
}
}
if (frameRateChanged) {
auto newRefreshRate = refreshRateConfigs->getRefreshRateFromModeId(newMode->getId());
mSchedulerCallback.changeRefreshRate(newRefreshRate,
consideredSignals.idle ? ModeEvent::None
: ModeEvent::Changed);
}
if (frameRateOverridesChanged) {
mSchedulerCallback.triggerOnFrameRateOverridesChanged();
}
}
void Scheduler::resetIdleTimer() {
std::scoped_lock lock(mRefreshRateConfigsLock);
mRefreshRateConfigs->resetIdleTimer(/*kernelOnly*/ false);
}
void Scheduler::notifyTouchEvent() {
if (mTouchTimer) {
mTouchTimer->reset();
std::scoped_lock lock(mRefreshRateConfigsLock);
mRefreshRateConfigs->resetIdleTimer(/*kernelOnly*/ true);
}
}
void Scheduler::setDisplayPowerState(bool normal) {
{
std::lock_guard<std::mutex> lock(mFeatureStateLock);
mFeatures.isDisplayPowerStateNormal = normal;
}
if (mDisplayPowerTimer) {
mDisplayPowerTimer->reset();
}
// Display Power event will boost the refresh rate to performance.
// Clear Layer History to get fresh FPS detection
mLayerHistory->clear();
}
void Scheduler::kernelIdleTimerCallback(TimerState state) {
ATRACE_INT("ExpiredKernelIdleTimer", static_cast<int>(state));
// TODO(145561154): cleanup the kernel idle timer implementation and the refresh rate
// magic number
const auto refreshRate = [&] {
std::scoped_lock lock(mRefreshRateConfigsLock);
return mRefreshRateConfigs->getCurrentRefreshRate();
}();
constexpr Fps FPS_THRESHOLD_FOR_KERNEL_TIMER{65.0f};
if (state == TimerState::Reset &&
refreshRate.getFps().greaterThanWithMargin(FPS_THRESHOLD_FOR_KERNEL_TIMER)) {
// If we're not in performance mode then the kernel timer shouldn't do
// anything, as the refresh rate during DPU power collapse will be the
// same.
resyncToHardwareVsync(true /* makeAvailable */, refreshRate.getVsyncPeriod());
} else if (state == TimerState::Expired &&
refreshRate.getFps().lessThanOrEqualWithMargin(FPS_THRESHOLD_FOR_KERNEL_TIMER)) {
// Disable HW VSYNC if the timer expired, as we don't need it enabled if
// we're not pushing frames, and if we're in PERFORMANCE mode then we'll
// need to update the VsyncController model anyway.
disableHardwareVsync(false /* makeUnavailable */);
}
mSchedulerCallback.kernelTimerChanged(state == TimerState::Expired);
}
void Scheduler::idleTimerCallback(TimerState state) {
handleTimerStateChanged(&mFeatures.idleTimer, state);
ATRACE_INT("ExpiredIdleTimer", static_cast<int>(state));
}
void Scheduler::touchTimerCallback(TimerState state) {
const TouchState touch = state == TimerState::Reset ? TouchState::Active : TouchState::Inactive;
// Touch event will boost the refresh rate to performance.
// Clear layer history to get fresh FPS detection.
// NOTE: Instead of checking all the layers, we should be checking the layer
// that is currently on top. b/142507166 will give us this capability.
if (handleTimerStateChanged(&mFeatures.touch, touch)) {
mLayerHistory->clear();
}
ATRACE_INT("TouchState", static_cast<int>(touch));
}
void Scheduler::displayPowerTimerCallback(TimerState state) {
handleTimerStateChanged(&mFeatures.displayPowerTimer, state);
ATRACE_INT("ExpiredDisplayPowerTimer", static_cast<int>(state));
}
void Scheduler::dump(std::string& result) const {
using base::StringAppendF;
StringAppendF(&result, "+ Touch timer: %s\n",
mTouchTimer ? mTouchTimer->dump().c_str() : "off");
StringAppendF(&result, "+ Content detection: %s %s\n\n",
toContentDetectionString(mOptions.useContentDetection),
mLayerHistory ? mLayerHistory->dump().c_str() : "(no layer history)");
{
std::lock_guard lock(mFrameRateOverridesLock);
StringAppendF(&result, "Frame Rate Overrides (backdoor): {");
for (const auto& [uid, frameRate] : mFrameRateOverridesFromBackdoor) {
StringAppendF(&result, "[uid: %d frameRate: %s], ", uid, to_string(frameRate).c_str());
}
StringAppendF(&result, "}\n");
StringAppendF(&result, "Frame Rate Overrides (setFrameRate): {");
for (const auto& [uid, frameRate] : mFrameRateOverridesByContent) {
StringAppendF(&result, "[uid: %d frameRate: %s], ", uid, to_string(frameRate).c_str());
}
StringAppendF(&result, "}\n");
}
{
std::lock_guard lock(mHWVsyncLock);
StringAppendF(&result,
"mScreenAcquired=%d mPrimaryHWVsyncEnabled=%d mHWVsyncAvailable=%d\n",
mScreenAcquired.load(), mPrimaryHWVsyncEnabled, mHWVsyncAvailable);
}
}
void Scheduler::dumpVsync(std::string& s) const {
using base::StringAppendF;
StringAppendF(&s, "VSyncReactor:\n");
mVsyncSchedule.controller->dump(s);
StringAppendF(&s, "VSyncDispatch:\n");
mVsyncSchedule.dispatch->dump(s);
}
bool Scheduler::updateFrameRateOverrides(
scheduler::RefreshRateConfigs::GlobalSignals consideredSignals, Fps displayRefreshRate) {
const auto refreshRateConfigs = holdRefreshRateConfigs();
if (!refreshRateConfigs->supportsFrameRateOverride()) {
return false;
}
if (!consideredSignals.idle) {
const auto frameRateOverrides =
refreshRateConfigs->getFrameRateOverrides(mFeatures.contentRequirements,
displayRefreshRate,
consideredSignals.touch);
std::lock_guard lock(mFrameRateOverridesLock);
if (!std::equal(mFrameRateOverridesByContent.begin(), mFrameRateOverridesByContent.end(),
frameRateOverrides.begin(), frameRateOverrides.end(),
[](const std::pair<uid_t, Fps>& a, const std::pair<uid_t, Fps>& b) {
return a.first == b.first && a.second.equalsWithMargin(b.second);
})) {
mFrameRateOverridesByContent = frameRateOverrides;
return true;
}
}
return false;
}
template <class T>
bool Scheduler::handleTimerStateChanged(T* currentState, T newState) {
DisplayModePtr newMode;
bool refreshRateChanged = false;
bool frameRateOverridesChanged;
scheduler::RefreshRateConfigs::GlobalSignals consideredSignals;
const auto refreshRateConfigs = holdRefreshRateConfigs();
{
std::lock_guard<std::mutex> lock(mFeatureStateLock);
if (*currentState == newState) {
return false;
}
*currentState = newState;
newMode = calculateRefreshRateModeId(&consideredSignals);
frameRateOverridesChanged = updateFrameRateOverrides(consideredSignals, newMode->getFps());
if (mFeatures.mode == newMode) {
// We don't need to change the display mode, but we might need to send an event
// about a mode change, since it was suppressed due to a previous idleConsidered
if (!consideredSignals.idle) {
dispatchCachedReportedMode();
}
} else {
mFeatures.mode = newMode;
refreshRateChanged = true;
}
}
if (refreshRateChanged) {
const RefreshRate& newRefreshRate =
refreshRateConfigs->getRefreshRateFromModeId(newMode->getId());
mSchedulerCallback.changeRefreshRate(newRefreshRate,
consideredSignals.idle ? ModeEvent::None
: ModeEvent::Changed);
}
if (frameRateOverridesChanged) {
mSchedulerCallback.triggerOnFrameRateOverridesChanged();
}
return consideredSignals.touch;
}
DisplayModePtr Scheduler::calculateRefreshRateModeId(
scheduler::RefreshRateConfigs::GlobalSignals* consideredSignals) {
ATRACE_CALL();
if (consideredSignals) *consideredSignals = {};
const auto refreshRateConfigs = holdRefreshRateConfigs();
// If Display Power is not in normal operation we want to be in performance mode. When coming
// back to normal mode, a grace period is given with DisplayPowerTimer.
if (mDisplayPowerTimer &&
(!mFeatures.isDisplayPowerStateNormal ||
mFeatures.displayPowerTimer == TimerState::Reset)) {
return refreshRateConfigs->getMaxRefreshRateByPolicy().getMode();
}
const bool touchActive = mTouchTimer && mFeatures.touch == TouchState::Active;
const bool idle = mFeatures.idleTimer == TimerState::Expired;
return refreshRateConfigs
->getBestRefreshRate(mFeatures.contentRequirements,
{.touch = touchActive, .idle = idle}, consideredSignals)
.getMode();
}
DisplayModePtr Scheduler::getPreferredDisplayMode() {
std::lock_guard<std::mutex> lock(mFeatureStateLock);
// Make sure that the default mode ID is first updated, before returned.
if (mFeatures.mode) {
mFeatures.mode = calculateRefreshRateModeId();
}
return mFeatures.mode;
}
void Scheduler::onNewVsyncPeriodChangeTimeline(const hal::VsyncPeriodChangeTimeline& timeline) {
if (timeline.refreshRequired) {
mSchedulerCallback.repaintEverythingForHWC();
}
std::lock_guard<std::mutex> lock(mVsyncTimelineLock);
mLastVsyncPeriodChangeTimeline = std::make_optional(timeline);
const auto maxAppliedTime = systemTime() + MAX_VSYNC_APPLIED_TIME.count();
if (timeline.newVsyncAppliedTimeNanos > maxAppliedTime) {
mLastVsyncPeriodChangeTimeline->newVsyncAppliedTimeNanos = maxAppliedTime;
}
}
void Scheduler::onDisplayRefreshed(nsecs_t timestamp) {
bool callRepaint = false;
{
std::lock_guard<std::mutex> lock(mVsyncTimelineLock);
if (mLastVsyncPeriodChangeTimeline && mLastVsyncPeriodChangeTimeline->refreshRequired) {
if (mLastVsyncPeriodChangeTimeline->refreshTimeNanos < timestamp) {
mLastVsyncPeriodChangeTimeline->refreshRequired = false;
} else {
// We need to send another refresh as refreshTimeNanos is still in the future
callRepaint = true;
}
}
}
if (callRepaint) {
mSchedulerCallback.repaintEverythingForHWC();
}
}
void Scheduler::onActiveDisplayAreaChanged(uint32_t displayArea) {
mLayerHistory->setDisplayArea(displayArea);
}
void Scheduler::setPreferredRefreshRateForUid(FrameRateOverride frameRateOverride) {
if (frameRateOverride.frameRateHz > 0.f && frameRateOverride.frameRateHz < 1.f) {
return;
}
std::lock_guard lock(mFrameRateOverridesLock);
if (frameRateOverride.frameRateHz != 0.f) {
mFrameRateOverridesFromBackdoor[frameRateOverride.uid] = Fps(frameRateOverride.frameRateHz);
} else {
mFrameRateOverridesFromBackdoor.erase(frameRateOverride.uid);
}
}
std::chrono::steady_clock::time_point Scheduler::getPreviousVsyncFrom(
nsecs_t expectedPresentTime) const {
const auto presentTime = std::chrono::nanoseconds(expectedPresentTime);
const auto vsyncPeriod = std::chrono::nanoseconds(mVsyncSchedule.tracker->currentPeriod());
return std::chrono::steady_clock::time_point(presentTime - vsyncPeriod);
}
} // namespace android