| /* |
| * Copyright (C) 2007 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| // #define LOG_NDEBUG 0 |
| #define ATRACE_TAG ATRACE_TAG_GRAPHICS |
| |
| #include <stdint.h> |
| #include <sys/types.h> |
| #include <algorithm> |
| #include <errno.h> |
| #include <math.h> |
| #include <mutex> |
| #include <dlfcn.h> |
| #include <inttypes.h> |
| #include <stdatomic.h> |
| #include <optional> |
| |
| #include <cutils/properties.h> |
| #include <log/log.h> |
| |
| #include <binder/IPCThreadState.h> |
| #include <binder/IServiceManager.h> |
| #include <binder/PermissionCache.h> |
| |
| #include <dvr/vr_flinger.h> |
| |
| #include <ui/ColorSpace.h> |
| #include <ui/DebugUtils.h> |
| #include <ui/DisplayInfo.h> |
| #include <ui/DisplayStatInfo.h> |
| |
| #include <gui/BufferQueue.h> |
| #include <gui/GuiConfig.h> |
| #include <gui/IDisplayEventConnection.h> |
| #include <gui/LayerDebugInfo.h> |
| #include <gui/Surface.h> |
| #include <renderengine/RenderEngine.h> |
| #include <ui/GraphicBufferAllocator.h> |
| #include <ui/PixelFormat.h> |
| #include <ui/UiConfig.h> |
| |
| #include <utils/misc.h> |
| #include <utils/String8.h> |
| #include <utils/String16.h> |
| #include <utils/StopWatch.h> |
| #include <utils/Timers.h> |
| #include <utils/Trace.h> |
| |
| #include <private/android_filesystem_config.h> |
| #include <private/gui/SyncFeatures.h> |
| |
| #include "BufferLayer.h" |
| #include "BufferQueueLayer.h" |
| #include "BufferStateLayer.h" |
| #include "Client.h" |
| #include "ColorLayer.h" |
| #include "Colorizer.h" |
| #include "ContainerLayer.h" |
| #include "DdmConnection.h" |
| #include "DisplayDevice.h" |
| #include "Layer.h" |
| #include "LayerVector.h" |
| #include "MonitoredProducer.h" |
| #include "NativeWindowSurface.h" |
| #include "SurfaceFlinger.h" |
| |
| #include "DisplayHardware/ComposerHal.h" |
| #include "DisplayHardware/DisplayIdentification.h" |
| #include "DisplayHardware/FramebufferSurface.h" |
| #include "DisplayHardware/HWComposer.h" |
| #include "DisplayHardware/VirtualDisplaySurface.h" |
| #include "Effects/Daltonizer.h" |
| #include "Scheduler/DispSync.h" |
| #include "Scheduler/DispSyncSource.h" |
| #include "Scheduler/EventControlThread.h" |
| #include "Scheduler/EventThread.h" |
| #include "Scheduler/InjectVSyncSource.h" |
| #include "Scheduler/Scheduler.h" |
| |
| #include <cutils/compiler.h> |
| |
| #include "android-base/stringprintf.h" |
| |
| #include <android/hardware/configstore/1.0/ISurfaceFlingerConfigs.h> |
| #include <android/hardware/configstore/1.1/ISurfaceFlingerConfigs.h> |
| #include <android/hardware/configstore/1.2/ISurfaceFlingerConfigs.h> |
| #include <android/hardware/configstore/1.1/types.h> |
| #include <configstore/Utils.h> |
| |
| #include <layerproto/LayerProtoParser.h> |
| |
| #define DISPLAY_COUNT 1 |
| |
| namespace android { |
| |
| using namespace android::hardware::configstore; |
| using namespace android::hardware::configstore::V1_0; |
| using ui::ColorMode; |
| using ui::Dataspace; |
| using ui::Hdr; |
| using ui::RenderIntent; |
| |
| namespace { |
| |
| #pragma clang diagnostic push |
| #pragma clang diagnostic error "-Wswitch-enum" |
| |
| bool isWideColorMode(const ColorMode colorMode) { |
| switch (colorMode) { |
| case ColorMode::DISPLAY_P3: |
| case ColorMode::ADOBE_RGB: |
| case ColorMode::DCI_P3: |
| case ColorMode::BT2020: |
| case ColorMode::BT2100_PQ: |
| case ColorMode::BT2100_HLG: |
| return true; |
| case ColorMode::NATIVE: |
| case ColorMode::STANDARD_BT601_625: |
| case ColorMode::STANDARD_BT601_625_UNADJUSTED: |
| case ColorMode::STANDARD_BT601_525: |
| case ColorMode::STANDARD_BT601_525_UNADJUSTED: |
| case ColorMode::STANDARD_BT709: |
| case ColorMode::SRGB: |
| return false; |
| } |
| return false; |
| } |
| |
| ui::Transform::orientation_flags fromSurfaceComposerRotation(ISurfaceComposer::Rotation rotation) { |
| switch (rotation) { |
| case ISurfaceComposer::eRotateNone: |
| return ui::Transform::ROT_0; |
| case ISurfaceComposer::eRotate90: |
| return ui::Transform::ROT_90; |
| case ISurfaceComposer::eRotate180: |
| return ui::Transform::ROT_180; |
| case ISurfaceComposer::eRotate270: |
| return ui::Transform::ROT_270; |
| } |
| ALOGE("Invalid rotation passed to captureScreen(): %d\n", rotation); |
| return ui::Transform::ROT_0; |
| } |
| |
| #pragma clang diagnostic pop |
| |
| class ConditionalLock { |
| public: |
| ConditionalLock(Mutex& mutex, bool lock) : mMutex(mutex), mLocked(lock) { |
| if (lock) { |
| mMutex.lock(); |
| } |
| } |
| ~ConditionalLock() { if (mLocked) mMutex.unlock(); } |
| private: |
| Mutex& mMutex; |
| bool mLocked; |
| }; |
| |
| } // namespace anonymous |
| |
| // --------------------------------------------------------------------------- |
| |
| const String16 sHardwareTest("android.permission.HARDWARE_TEST"); |
| const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER"); |
| const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER"); |
| const String16 sDump("android.permission.DUMP"); |
| |
| // --------------------------------------------------------------------------- |
| int64_t SurfaceFlinger::vsyncPhaseOffsetNs; |
| int64_t SurfaceFlinger::sfVsyncPhaseOffsetNs; |
| int64_t SurfaceFlinger::dispSyncPresentTimeOffset; |
| bool SurfaceFlinger::useHwcForRgbToYuv; |
| uint64_t SurfaceFlinger::maxVirtualDisplaySize; |
| bool SurfaceFlinger::hasSyncFramework; |
| bool SurfaceFlinger::useVrFlinger; |
| int64_t SurfaceFlinger::maxFrameBufferAcquiredBuffers; |
| // TODO(courtneygo): Rename hasWideColorDisplay to clarify its actual meaning. |
| bool SurfaceFlinger::hasWideColorDisplay; |
| int SurfaceFlinger::primaryDisplayOrientation = DisplayState::eOrientationDefault; |
| bool SurfaceFlinger::useColorManagement; |
| bool SurfaceFlinger::useContextPriority; |
| Dataspace SurfaceFlinger::compositionDataSpace = Dataspace::V0_SRGB; |
| ui::PixelFormat SurfaceFlinger::compositionPixelFormat = ui::PixelFormat::RGBA_8888; |
| |
| std::string getHwcServiceName() { |
| char value[PROPERTY_VALUE_MAX] = {}; |
| property_get("debug.sf.hwc_service_name", value, "default"); |
| ALOGI("Using HWComposer service: '%s'", value); |
| return std::string(value); |
| } |
| |
| bool useTrebleTestingOverride() { |
| char value[PROPERTY_VALUE_MAX] = {}; |
| property_get("debug.sf.treble_testing_override", value, "false"); |
| ALOGI("Treble testing override: '%s'", value); |
| return std::string(value) == "true"; |
| } |
| |
| std::string decodeDisplayColorSetting(DisplayColorSetting displayColorSetting) { |
| switch(displayColorSetting) { |
| case DisplayColorSetting::MANAGED: |
| return std::string("Managed"); |
| case DisplayColorSetting::UNMANAGED: |
| return std::string("Unmanaged"); |
| case DisplayColorSetting::ENHANCED: |
| return std::string("Enhanced"); |
| default: |
| return std::string("Unknown ") + |
| std::to_string(static_cast<int>(displayColorSetting)); |
| } |
| } |
| |
| SurfaceFlingerBE::SurfaceFlingerBE() |
| : mHwcServiceName(getHwcServiceName()), |
| mRenderEngine(nullptr), |
| mFrameBuckets(), |
| mTotalTime(0), |
| mLastSwapTime(0), |
| mComposerSequenceId(0) { |
| } |
| |
| SurfaceFlinger::SurfaceFlinger(SurfaceFlinger::SkipInitializationTag) |
| : BnSurfaceComposer(), |
| mTransactionPending(false), |
| mAnimTransactionPending(false), |
| mLayersRemoved(false), |
| mLayersAdded(false), |
| mBootTime(systemTime()), |
| mDisplayTokens(), |
| mVisibleRegionsDirty(false), |
| mGeometryInvalid(false), |
| mAnimCompositionPending(false), |
| mBootStage(BootStage::BOOTLOADER), |
| mDebugRegion(0), |
| mDebugDDMS(0), |
| mDebugDisableHWC(0), |
| mDebugDisableTransformHint(0), |
| mDebugInTransaction(0), |
| mLastTransactionTime(0), |
| mForceFullDamage(false), |
| mPrimaryHWVsyncEnabled(false), |
| mHWVsyncAvailable(false), |
| mRefreshStartTime(0), |
| mHasPoweredOff(false), |
| mNumLayers(0), |
| mVrFlingerRequestsDisplay(false), |
| mMainThreadId(std::this_thread::get_id()), |
| mCreateBufferQueue(&BufferQueue::createBufferQueue), |
| mCreateNativeWindowSurface(&surfaceflinger::impl::createNativeWindowSurface) {} |
| |
| SurfaceFlinger::SurfaceFlinger() : SurfaceFlinger(SkipInitialization) { |
| ALOGI("SurfaceFlinger is starting"); |
| |
| vsyncPhaseOffsetNs = getInt64< ISurfaceFlingerConfigs, |
| &ISurfaceFlingerConfigs::vsyncEventPhaseOffsetNs>(1000000); |
| |
| sfVsyncPhaseOffsetNs = getInt64< ISurfaceFlingerConfigs, |
| &ISurfaceFlingerConfigs::vsyncSfEventPhaseOffsetNs>(1000000); |
| |
| hasSyncFramework = getBool< ISurfaceFlingerConfigs, |
| &ISurfaceFlingerConfigs::hasSyncFramework>(true); |
| |
| dispSyncPresentTimeOffset = getInt64< ISurfaceFlingerConfigs, |
| &ISurfaceFlingerConfigs::presentTimeOffsetFromVSyncNs>(0); |
| |
| useHwcForRgbToYuv = getBool< ISurfaceFlingerConfigs, |
| &ISurfaceFlingerConfigs::useHwcForRGBtoYUV>(false); |
| |
| maxVirtualDisplaySize = getUInt64<ISurfaceFlingerConfigs, |
| &ISurfaceFlingerConfigs::maxVirtualDisplaySize>(0); |
| |
| // Vr flinger is only enabled on Daydream ready devices. |
| useVrFlinger = getBool< ISurfaceFlingerConfigs, |
| &ISurfaceFlingerConfigs::useVrFlinger>(false); |
| |
| maxFrameBufferAcquiredBuffers = getInt64< ISurfaceFlingerConfigs, |
| &ISurfaceFlingerConfigs::maxFrameBufferAcquiredBuffers>(2); |
| |
| hasWideColorDisplay = |
| getBool<ISurfaceFlingerConfigs, &ISurfaceFlingerConfigs::hasWideColorDisplay>(false); |
| useColorManagement = |
| getBool<V1_2::ISurfaceFlingerConfigs, |
| &V1_2::ISurfaceFlingerConfigs::useColorManagement>(false); |
| |
| auto surfaceFlingerConfigsServiceV1_2 = V1_2::ISurfaceFlingerConfigs::getService(); |
| if (surfaceFlingerConfigsServiceV1_2) { |
| surfaceFlingerConfigsServiceV1_2->getCompositionPreference( |
| [&](Dataspace tmpDataSpace, ui::PixelFormat tmpPixelFormat) { |
| compositionDataSpace = tmpDataSpace; |
| compositionPixelFormat = tmpPixelFormat; |
| }); |
| } |
| |
| useContextPriority = getBool<ISurfaceFlingerConfigs, |
| &ISurfaceFlingerConfigs::useContextPriority>(true); |
| |
| V1_1::DisplayOrientation primaryDisplayOrientation = |
| getDisplayOrientation<V1_1::ISurfaceFlingerConfigs, |
| &V1_1::ISurfaceFlingerConfigs::primaryDisplayOrientation>( |
| V1_1::DisplayOrientation::ORIENTATION_0); |
| |
| switch (primaryDisplayOrientation) { |
| case V1_1::DisplayOrientation::ORIENTATION_90: |
| SurfaceFlinger::primaryDisplayOrientation = DisplayState::eOrientation90; |
| break; |
| case V1_1::DisplayOrientation::ORIENTATION_180: |
| SurfaceFlinger::primaryDisplayOrientation = DisplayState::eOrientation180; |
| break; |
| case V1_1::DisplayOrientation::ORIENTATION_270: |
| SurfaceFlinger::primaryDisplayOrientation = DisplayState::eOrientation270; |
| break; |
| default: |
| SurfaceFlinger::primaryDisplayOrientation = DisplayState::eOrientationDefault; |
| break; |
| } |
| ALOGV("Primary Display Orientation is set to %2d.", SurfaceFlinger::primaryDisplayOrientation); |
| |
| // Note: We create a local temporary with the real DispSync implementation |
| // type temporarily so we can initialize it with the configured values, |
| // before storing it for more generic use using the interface type. |
| auto primaryDispSync = std::make_unique<impl::DispSync>("PrimaryDispSync"); |
| primaryDispSync->init(SurfaceFlinger::hasSyncFramework, |
| SurfaceFlinger::dispSyncPresentTimeOffset); |
| mPrimaryDispSync = std::move(primaryDispSync); |
| |
| // debugging stuff... |
| char value[PROPERTY_VALUE_MAX]; |
| |
| property_get("ro.bq.gpu_to_cpu_unsupported", value, "0"); |
| mGpuToCpuSupported = !atoi(value); |
| |
| property_get("debug.sf.showupdates", value, "0"); |
| mDebugRegion = atoi(value); |
| |
| property_get("debug.sf.ddms", value, "0"); |
| mDebugDDMS = atoi(value); |
| if (mDebugDDMS) { |
| if (!startDdmConnection()) { |
| // start failed, and DDMS debugging not enabled |
| mDebugDDMS = 0; |
| } |
| } |
| ALOGI_IF(mDebugRegion, "showupdates enabled"); |
| ALOGI_IF(mDebugDDMS, "DDMS debugging enabled"); |
| |
| property_get("debug.sf.disable_backpressure", value, "0"); |
| mPropagateBackpressure = !atoi(value); |
| ALOGI_IF(!mPropagateBackpressure, "Disabling backpressure propagation"); |
| |
| property_get("debug.sf.enable_hwc_vds", value, "0"); |
| mUseHwcVirtualDisplays = atoi(value); |
| ALOGI_IF(mUseHwcVirtualDisplays, "Enabling HWC virtual displays"); |
| |
| property_get("ro.sf.disable_triple_buffer", value, "1"); |
| mLayerTripleBufferingDisabled = atoi(value); |
| ALOGI_IF(mLayerTripleBufferingDisabled, "Disabling Triple Buffering"); |
| |
| const size_t defaultListSize = MAX_LAYERS; |
| auto listSize = property_get_int32("debug.sf.max_igbp_list_size", int32_t(defaultListSize)); |
| mMaxGraphicBufferProducerListSize = (listSize > 0) ? size_t(listSize) : defaultListSize; |
| |
| property_get("debug.sf.early_phase_offset_ns", value, "-1"); |
| const int earlySfOffsetNs = atoi(value); |
| |
| property_get("debug.sf.early_gl_phase_offset_ns", value, "-1"); |
| const int earlyGlSfOffsetNs = atoi(value); |
| |
| property_get("debug.sf.early_app_phase_offset_ns", value, "-1"); |
| const int earlyAppOffsetNs = atoi(value); |
| |
| property_get("debug.sf.early_gl_app_phase_offset_ns", value, "-1"); |
| const int earlyGlAppOffsetNs = atoi(value); |
| |
| property_get("debug.sf.use_scheduler", value, "0"); |
| mUseScheduler = atoi(value); |
| |
| const VSyncModulator::Offsets earlyOffsets = |
| {earlySfOffsetNs != -1 ? earlySfOffsetNs : sfVsyncPhaseOffsetNs, |
| earlyAppOffsetNs != -1 ? earlyAppOffsetNs : vsyncPhaseOffsetNs}; |
| const VSyncModulator::Offsets earlyGlOffsets = |
| {earlyGlSfOffsetNs != -1 ? earlyGlSfOffsetNs : sfVsyncPhaseOffsetNs, |
| earlyGlAppOffsetNs != -1 ? earlyGlAppOffsetNs : vsyncPhaseOffsetNs}; |
| mVsyncModulator.setPhaseOffsets(earlyOffsets, earlyGlOffsets, |
| {sfVsyncPhaseOffsetNs, vsyncPhaseOffsetNs}); |
| |
| // We should be reading 'persist.sys.sf.color_saturation' here |
| // but since /data may be encrypted, we need to wait until after vold |
| // comes online to attempt to read the property. The property is |
| // instead read after the boot animation |
| |
| if (useTrebleTestingOverride()) { |
| // Without the override SurfaceFlinger cannot connect to HIDL |
| // services that are not listed in the manifests. Considered |
| // deriving the setting from the set service name, but it |
| // would be brittle if the name that's not 'default' is used |
| // for production purposes later on. |
| setenv("TREBLE_TESTING_OVERRIDE", "true", true); |
| } |
| } |
| |
| void SurfaceFlinger::onFirstRef() |
| { |
| mEventQueue->init(this); |
| } |
| |
| SurfaceFlinger::~SurfaceFlinger() |
| { |
| } |
| |
| void SurfaceFlinger::binderDied(const wp<IBinder>& /* who */) |
| { |
| // the window manager died on us. prepare its eulogy. |
| |
| // restore initial conditions (default device unblank, etc) |
| initializeDisplays(); |
| |
| // restart the boot-animation |
| startBootAnim(); |
| } |
| |
| static sp<ISurfaceComposerClient> initClient(const sp<Client>& client) { |
| status_t err = client->initCheck(); |
| if (err == NO_ERROR) { |
| return client; |
| } |
| return nullptr; |
| } |
| |
| sp<ISurfaceComposerClient> SurfaceFlinger::createConnection() { |
| return initClient(new Client(this)); |
| } |
| |
| sp<ISurfaceComposerClient> SurfaceFlinger::createScopedConnection( |
| const sp<IGraphicBufferProducer>& gbp) { |
| if (authenticateSurfaceTexture(gbp) == false) { |
| return nullptr; |
| } |
| const auto& layer = (static_cast<MonitoredProducer*>(gbp.get()))->getLayer(); |
| if (layer == nullptr) { |
| return nullptr; |
| } |
| |
| return initClient(new Client(this, layer)); |
| } |
| |
| sp<IBinder> SurfaceFlinger::createDisplay(const String8& displayName, |
| bool secure) |
| { |
| class DisplayToken : public BBinder { |
| sp<SurfaceFlinger> flinger; |
| virtual ~DisplayToken() { |
| // no more references, this display must be terminated |
| Mutex::Autolock _l(flinger->mStateLock); |
| flinger->mCurrentState.displays.removeItem(this); |
| flinger->setTransactionFlags(eDisplayTransactionNeeded); |
| } |
| public: |
| explicit DisplayToken(const sp<SurfaceFlinger>& flinger) |
| : flinger(flinger) { |
| } |
| }; |
| |
| sp<BBinder> token = new DisplayToken(this); |
| |
| Mutex::Autolock _l(mStateLock); |
| DisplayDeviceState info; |
| info.type = DisplayDevice::DISPLAY_VIRTUAL; |
| info.displayName = displayName; |
| info.isSecure = secure; |
| mCurrentState.displays.add(token, info); |
| mInterceptor->saveDisplayCreation(info); |
| return token; |
| } |
| |
| void SurfaceFlinger::destroyDisplay(const sp<IBinder>& displayToken) { |
| Mutex::Autolock _l(mStateLock); |
| |
| ssize_t idx = mCurrentState.displays.indexOfKey(displayToken); |
| if (idx < 0) { |
| ALOGE("destroyDisplay: Invalid display token %p", displayToken.get()); |
| return; |
| } |
| |
| const DisplayDeviceState& info(mCurrentState.displays.valueAt(idx)); |
| if (!info.isVirtual()) { |
| ALOGE("destroyDisplay called for non-virtual display"); |
| return; |
| } |
| mInterceptor->saveDisplayDeletion(info.sequenceId); |
| mCurrentState.displays.removeItemsAt(idx); |
| setTransactionFlags(eDisplayTransactionNeeded); |
| } |
| |
| sp<IBinder> SurfaceFlinger::getBuiltInDisplay(int32_t id) { |
| if (uint32_t(id) >= DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES) { |
| ALOGE("getDefaultDisplay: id=%d is not a valid default display id", id); |
| return nullptr; |
| } |
| return mDisplayTokens[id]; |
| } |
| |
| void SurfaceFlinger::bootFinished() |
| { |
| if (mStartPropertySetThread->join() != NO_ERROR) { |
| ALOGE("Join StartPropertySetThread failed!"); |
| } |
| const nsecs_t now = systemTime(); |
| const nsecs_t duration = now - mBootTime; |
| ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) ); |
| |
| // wait patiently for the window manager death |
| const String16 name("window"); |
| sp<IBinder> window(defaultServiceManager()->getService(name)); |
| if (window != 0) { |
| window->linkToDeath(static_cast<IBinder::DeathRecipient*>(this)); |
| } |
| |
| if (mVrFlinger) { |
| mVrFlinger->OnBootFinished(); |
| } |
| |
| // stop boot animation |
| // formerly we would just kill the process, but we now ask it to exit so it |
| // can choose where to stop the animation. |
| property_set("service.bootanim.exit", "1"); |
| |
| const int LOGTAG_SF_STOP_BOOTANIM = 60110; |
| LOG_EVENT_LONG(LOGTAG_SF_STOP_BOOTANIM, |
| ns2ms(systemTime(SYSTEM_TIME_MONOTONIC))); |
| |
| postMessageAsync(new LambdaMessage([this] { |
| readPersistentProperties(); |
| mBootStage = BootStage::FINISHED; |
| })); |
| } |
| |
| uint32_t SurfaceFlinger::getNewTexture() { |
| { |
| std::lock_guard lock(mTexturePoolMutex); |
| if (!mTexturePool.empty()) { |
| uint32_t name = mTexturePool.back(); |
| mTexturePool.pop_back(); |
| ATRACE_INT("TexturePoolSize", mTexturePool.size()); |
| return name; |
| } |
| |
| // The pool was too small, so increase it for the future |
| ++mTexturePoolSize; |
| } |
| |
| // The pool was empty, so we need to get a new texture name directly using a |
| // blocking call to the main thread |
| uint32_t name = 0; |
| postMessageSync(new LambdaMessage([&]() { getRenderEngine().genTextures(1, &name); })); |
| return name; |
| } |
| |
| void SurfaceFlinger::deleteTextureAsync(uint32_t texture) { |
| postMessageAsync(new LambdaMessage([=] { getRenderEngine().deleteTextures(1, &texture); })); |
| } |
| |
| // Do not call property_set on main thread which will be blocked by init |
| // Use StartPropertySetThread instead. |
| void SurfaceFlinger::init() { |
| ALOGI( "SurfaceFlinger's main thread ready to run. " |
| "Initializing graphics H/W..."); |
| |
| ALOGI("Phase offest NS: %" PRId64 "", vsyncPhaseOffsetNs); |
| |
| Mutex::Autolock _l(mStateLock); |
| |
| // start the EventThread |
| if (mUseScheduler) { |
| mScheduler = std::make_unique<Scheduler>( |
| [this](bool enabled) { setVsyncEnabled(HWC_DISPLAY_PRIMARY, enabled); }); |
| mAppConnectionHandle = |
| mScheduler->createConnection("appConnection", SurfaceFlinger::vsyncPhaseOffsetNs, |
| [this] { resyncWithRateLimit(); }, |
| impl::EventThread::InterceptVSyncsCallback()); |
| mSfConnectionHandle = |
| mScheduler->createConnection("sfConnection", SurfaceFlinger::sfVsyncPhaseOffsetNs, |
| [this] { resyncWithRateLimit(); }, |
| [this](nsecs_t timestamp) { |
| mInterceptor->saveVSyncEvent(timestamp); |
| }); |
| |
| mEventQueue->setEventConnection(mScheduler->getEventConnection(mSfConnectionHandle)); |
| mVsyncModulator.setSchedulerAndHandles(mScheduler.get(), mAppConnectionHandle.get(), |
| mSfConnectionHandle.get()); |
| } else { |
| mEventThreadSource = |
| std::make_unique<DispSyncSource>(mPrimaryDispSync.get(), |
| SurfaceFlinger::vsyncPhaseOffsetNs, true, "app"); |
| mEventThread = |
| std::make_unique<impl::EventThread>(mEventThreadSource.get(), |
| [this] { resyncWithRateLimit(); }, |
| impl::EventThread::InterceptVSyncsCallback(), |
| "appEventThread"); |
| mSfEventThreadSource = |
| std::make_unique<DispSyncSource>(mPrimaryDispSync.get(), |
| SurfaceFlinger::sfVsyncPhaseOffsetNs, true, "sf"); |
| |
| mSFEventThread = |
| std::make_unique<impl::EventThread>(mSfEventThreadSource.get(), |
| [this] { resyncWithRateLimit(); }, |
| [this](nsecs_t timestamp) { |
| mInterceptor->saveVSyncEvent(timestamp); |
| }, |
| "sfEventThread"); |
| mEventQueue->setEventThread(mSFEventThread.get()); |
| mVsyncModulator.setEventThreads(mSFEventThread.get(), mEventThread.get()); |
| } |
| |
| // Get a RenderEngine for the given display / config (can't fail) |
| int32_t renderEngineFeature = 0; |
| renderEngineFeature |= (useColorManagement ? |
| renderengine::RenderEngine::USE_COLOR_MANAGEMENT : 0); |
| renderEngineFeature |= (useContextPriority ? |
| renderengine::RenderEngine::USE_HIGH_PRIORITY_CONTEXT : 0); |
| |
| // TODO(b/77156734): We need to stop casting and use HAL types when possible. |
| getBE().mRenderEngine = |
| renderengine::RenderEngine::create(static_cast<int32_t>(compositionPixelFormat), |
| renderEngineFeature); |
| LOG_ALWAYS_FATAL_IF(getBE().mRenderEngine == nullptr, "couldn't create RenderEngine"); |
| |
| LOG_ALWAYS_FATAL_IF(mVrFlingerRequestsDisplay, |
| "Starting with vr flinger active is not currently supported."); |
| getBE().mHwc.reset( |
| new HWComposer(std::make_unique<Hwc2::impl::Composer>(getBE().mHwcServiceName))); |
| getBE().mHwc->registerCallback(this, getBE().mComposerSequenceId); |
| // Process any initial hotplug and resulting display changes. |
| processDisplayHotplugEventsLocked(); |
| const auto display = getDefaultDisplayDeviceLocked(); |
| LOG_ALWAYS_FATAL_IF(!display, "Missing internal display after registering composer callback."); |
| LOG_ALWAYS_FATAL_IF(!getHwComposer().isConnected(display->getId()), |
| "Internal display is disconnected."); |
| |
| // make the default display GLContext current so that we can create textures |
| // when creating Layers (which may happens before we render something) |
| display->makeCurrent(); |
| |
| if (useVrFlinger) { |
| auto vrFlingerRequestDisplayCallback = [this](bool requestDisplay) { |
| // This callback is called from the vr flinger dispatch thread. We |
| // need to call signalTransaction(), which requires holding |
| // mStateLock when we're not on the main thread. Acquiring |
| // mStateLock from the vr flinger dispatch thread might trigger a |
| // deadlock in surface flinger (see b/66916578), so post a message |
| // to be handled on the main thread instead. |
| postMessageAsync(new LambdaMessage([=] { |
| ALOGI("VR request display mode: requestDisplay=%d", requestDisplay); |
| mVrFlingerRequestsDisplay = requestDisplay; |
| signalTransaction(); |
| })); |
| }; |
| mVrFlinger = dvr::VrFlinger::Create(getHwComposer().getComposer(), |
| getHwComposer() |
| .getHwcDisplayId(display->getId()) |
| .value_or(0), |
| vrFlingerRequestDisplayCallback); |
| if (!mVrFlinger) { |
| ALOGE("Failed to start vrflinger"); |
| } |
| } |
| |
| mEventControlThread = std::make_unique<impl::EventControlThread>( |
| [this](bool enabled) { setVsyncEnabled(HWC_DISPLAY_PRIMARY, enabled); }); |
| |
| // initialize our drawing state |
| mDrawingState = mCurrentState; |
| |
| // set initial conditions (e.g. unblank default device) |
| initializeDisplays(); |
| |
| getBE().mRenderEngine->primeCache(); |
| |
| // Inform native graphics APIs whether the present timestamp is supported: |
| if (getHwComposer().hasCapability( |
| HWC2::Capability::PresentFenceIsNotReliable)) { |
| mStartPropertySetThread = new StartPropertySetThread(false); |
| } else { |
| mStartPropertySetThread = new StartPropertySetThread(true); |
| } |
| |
| if (mStartPropertySetThread->Start() != NO_ERROR) { |
| ALOGE("Run StartPropertySetThread failed!"); |
| } |
| |
| // This is a hack. Per definition of getDataspaceSaturationMatrix, the returned matrix |
| // is used to saturate legacy sRGB content. However, to make sure the same color under |
| // Display P3 will be saturated to the same color, we intentionally break the API spec |
| // and apply this saturation matrix on Display P3 content. Unless the risk of applying |
| // such saturation matrix on Display P3 is understood fully, the API should always return |
| // identify matrix. |
| mEnhancedSaturationMatrix = getBE().mHwc->getDataspaceSaturationMatrix(display->getId(), |
| Dataspace::SRGB_LINEAR); |
| |
| // we will apply this on Display P3. |
| if (mEnhancedSaturationMatrix != mat4()) { |
| ColorSpace srgb(ColorSpace::sRGB()); |
| ColorSpace displayP3(ColorSpace::DisplayP3()); |
| mat4 srgbToP3 = mat4(ColorSpaceConnector(srgb, displayP3).getTransform()); |
| mat4 p3ToSrgb = mat4(ColorSpaceConnector(displayP3, srgb).getTransform()); |
| mEnhancedSaturationMatrix = srgbToP3 * mEnhancedSaturationMatrix * p3ToSrgb; |
| } |
| |
| ALOGV("Done initializing"); |
| } |
| |
| void SurfaceFlinger::readPersistentProperties() { |
| Mutex::Autolock _l(mStateLock); |
| |
| char value[PROPERTY_VALUE_MAX]; |
| |
| property_get("persist.sys.sf.color_saturation", value, "1.0"); |
| mGlobalSaturationFactor = atof(value); |
| updateColorMatrixLocked(); |
| ALOGV("Saturation is set to %.2f", mGlobalSaturationFactor); |
| |
| property_get("persist.sys.sf.native_mode", value, "0"); |
| mDisplayColorSetting = static_cast<DisplayColorSetting>(atoi(value)); |
| } |
| |
| void SurfaceFlinger::startBootAnim() { |
| // Start boot animation service by setting a property mailbox |
| // if property setting thread is already running, Start() will be just a NOP |
| mStartPropertySetThread->Start(); |
| // Wait until property was set |
| if (mStartPropertySetThread->join() != NO_ERROR) { |
| ALOGE("Join StartPropertySetThread failed!"); |
| } |
| } |
| |
| size_t SurfaceFlinger::getMaxTextureSize() const { |
| return getBE().mRenderEngine->getMaxTextureSize(); |
| } |
| |
| size_t SurfaceFlinger::getMaxViewportDims() const { |
| return getBE().mRenderEngine->getMaxViewportDims(); |
| } |
| |
| // ---------------------------------------------------------------------------- |
| |
| bool SurfaceFlinger::authenticateSurfaceTexture( |
| const sp<IGraphicBufferProducer>& bufferProducer) const { |
| Mutex::Autolock _l(mStateLock); |
| return authenticateSurfaceTextureLocked(bufferProducer); |
| } |
| |
| bool SurfaceFlinger::authenticateSurfaceTextureLocked( |
| const sp<IGraphicBufferProducer>& bufferProducer) const { |
| sp<IBinder> surfaceTextureBinder(IInterface::asBinder(bufferProducer)); |
| return mGraphicBufferProducerList.count(surfaceTextureBinder.get()) > 0; |
| } |
| |
| status_t SurfaceFlinger::getSupportedFrameTimestamps( |
| std::vector<FrameEvent>* outSupported) const { |
| *outSupported = { |
| FrameEvent::REQUESTED_PRESENT, |
| FrameEvent::ACQUIRE, |
| FrameEvent::LATCH, |
| FrameEvent::FIRST_REFRESH_START, |
| FrameEvent::LAST_REFRESH_START, |
| FrameEvent::GPU_COMPOSITION_DONE, |
| FrameEvent::DEQUEUE_READY, |
| FrameEvent::RELEASE, |
| }; |
| ConditionalLock _l(mStateLock, |
| std::this_thread::get_id() != mMainThreadId); |
| if (!getHwComposer().hasCapability( |
| HWC2::Capability::PresentFenceIsNotReliable)) { |
| outSupported->push_back(FrameEvent::DISPLAY_PRESENT); |
| } |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::getDisplayConfigs(const sp<IBinder>& displayToken, |
| Vector<DisplayInfo>* configs) { |
| if (!displayToken || !configs) { |
| return BAD_VALUE; |
| } |
| |
| int32_t type = NAME_NOT_FOUND; |
| for (int i = 0; i < DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES; ++i) { |
| if (displayToken == mDisplayTokens[i]) { |
| type = i; |
| break; |
| } |
| } |
| |
| if (type < 0) { |
| return type; |
| } |
| |
| // TODO: Not sure if display density should handled by SF any longer |
| class Density { |
| static float getDensityFromProperty(char const* propName) { |
| char property[PROPERTY_VALUE_MAX]; |
| float density = 0.0f; |
| if (property_get(propName, property, nullptr) > 0) { |
| density = strtof(property, nullptr); |
| } |
| return density; |
| } |
| public: |
| static float getEmuDensity() { |
| return getDensityFromProperty("qemu.sf.lcd_density"); } |
| static float getBuildDensity() { |
| return getDensityFromProperty("ro.sf.lcd_density"); } |
| }; |
| |
| configs->clear(); |
| |
| ConditionalLock _l(mStateLock, |
| std::this_thread::get_id() != mMainThreadId); |
| for (const auto& hwConfig : getHwComposer().getConfigs(type)) { |
| DisplayInfo info = DisplayInfo(); |
| |
| float xdpi = hwConfig->getDpiX(); |
| float ydpi = hwConfig->getDpiY(); |
| |
| info.w = hwConfig->getWidth(); |
| info.h = hwConfig->getHeight(); |
| // Default display viewport to display width and height |
| info.viewportW = info.w; |
| info.viewportH = info.h; |
| |
| if (type == DisplayDevice::DISPLAY_PRIMARY) { |
| // The density of the device is provided by a build property |
| float density = Density::getBuildDensity() / 160.0f; |
| if (density == 0) { |
| // the build doesn't provide a density -- this is wrong! |
| // use xdpi instead |
| ALOGE("ro.sf.lcd_density must be defined as a build property"); |
| density = xdpi / 160.0f; |
| } |
| if (Density::getEmuDensity()) { |
| // if "qemu.sf.lcd_density" is specified, it overrides everything |
| xdpi = ydpi = density = Density::getEmuDensity(); |
| density /= 160.0f; |
| } |
| info.density = density; |
| |
| // TODO: this needs to go away (currently needed only by webkit) |
| const auto display = getDefaultDisplayDeviceLocked(); |
| info.orientation = display ? display->getOrientation() : 0; |
| |
| // This is for screenrecord |
| const Rect viewport = display->getViewport(); |
| if (viewport.isValid()) { |
| info.viewportW = uint32_t(viewport.getWidth()); |
| info.viewportH = uint32_t(viewport.getHeight()); |
| } |
| } else { |
| // TODO: where should this value come from? |
| static const int TV_DENSITY = 213; |
| info.density = TV_DENSITY / 160.0f; |
| info.orientation = 0; |
| } |
| |
| info.xdpi = xdpi; |
| info.ydpi = ydpi; |
| info.fps = 1e9 / hwConfig->getVsyncPeriod(); |
| info.appVsyncOffset = vsyncPhaseOffsetNs; |
| |
| // This is how far in advance a buffer must be queued for |
| // presentation at a given time. If you want a buffer to appear |
| // on the screen at time N, you must submit the buffer before |
| // (N - presentationDeadline). |
| // |
| // Normally it's one full refresh period (to give SF a chance to |
| // latch the buffer), but this can be reduced by configuring a |
| // DispSync offset. Any additional delays introduced by the hardware |
| // composer or panel must be accounted for here. |
| // |
| // We add an additional 1ms to allow for processing time and |
| // differences between the ideal and actual refresh rate. |
| info.presentationDeadline = hwConfig->getVsyncPeriod() - |
| sfVsyncPhaseOffsetNs + 1000000; |
| |
| // All non-virtual displays are currently considered secure. |
| info.secure = true; |
| |
| if (type == DisplayDevice::DISPLAY_PRIMARY && |
| primaryDisplayOrientation & DisplayState::eOrientationSwapMask) { |
| std::swap(info.w, info.h); |
| } |
| |
| configs->push_back(info); |
| } |
| |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::getDisplayStats(const sp<IBinder>&, DisplayStatInfo* stats) { |
| if (!stats) { |
| return BAD_VALUE; |
| } |
| |
| // FIXME for now we always return stats for the primary display. |
| if (mUseScheduler) { |
| mScheduler->getDisplayStatInfo(stats); |
| } else { |
| stats->vsyncTime = mPrimaryDispSync->computeNextRefresh(0); |
| stats->vsyncPeriod = mPrimaryDispSync->getPeriod(); |
| } |
| return NO_ERROR; |
| } |
| |
| int SurfaceFlinger::getActiveConfig(const sp<IBinder>& displayToken) { |
| const auto display = getDisplayDevice(displayToken); |
| if (!display) { |
| ALOGE("getActiveConfig: Invalid display token %p", displayToken.get()); |
| return BAD_VALUE; |
| } |
| |
| return display->getActiveConfig(); |
| } |
| |
| void SurfaceFlinger::setActiveConfigInternal(const sp<DisplayDevice>& display, int mode) { |
| int currentMode = display->getActiveConfig(); |
| if (mode == currentMode) { |
| return; |
| } |
| |
| if (display->isVirtual()) { |
| ALOGW("Trying to set config for virtual display"); |
| return; |
| } |
| |
| display->setActiveConfig(mode); |
| getHwComposer().setActiveConfig(display->getDisplayType(), mode); |
| } |
| |
| status_t SurfaceFlinger::setActiveConfig(const sp<IBinder>& displayToken, int mode) { |
| postMessageSync(new LambdaMessage([&] { |
| Vector<DisplayInfo> configs; |
| getDisplayConfigs(displayToken, &configs); |
| if (mode < 0 || mode >= static_cast<int>(configs.size())) { |
| ALOGE("Attempt to set active config %d for display with %zu configs", mode, |
| configs.size()); |
| return; |
| } |
| const auto display = getDisplayDevice(displayToken); |
| if (!display) { |
| ALOGE("Attempt to set active config %d for invalid display token %p", mode, |
| displayToken.get()); |
| } else if (display->isVirtual()) { |
| ALOGW("Attempt to set active config %d for virtual display", mode); |
| } else { |
| setActiveConfigInternal(display, mode); |
| } |
| })); |
| |
| return NO_ERROR; |
| } |
| status_t SurfaceFlinger::getDisplayColorModes(const sp<IBinder>& displayToken, |
| Vector<ColorMode>* outColorModes) { |
| if (!displayToken || !outColorModes) { |
| return BAD_VALUE; |
| } |
| |
| int32_t type = NAME_NOT_FOUND; |
| for (int i = 0; i < DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES; ++i) { |
| if (displayToken == mDisplayTokens[i]) { |
| type = i; |
| break; |
| } |
| } |
| |
| if (type < 0) { |
| return type; |
| } |
| |
| std::vector<ColorMode> modes; |
| { |
| ConditionalLock _l(mStateLock, |
| std::this_thread::get_id() != mMainThreadId); |
| modes = getHwComposer().getColorModes(type); |
| } |
| outColorModes->clear(); |
| std::copy(modes.cbegin(), modes.cend(), std::back_inserter(*outColorModes)); |
| |
| return NO_ERROR; |
| } |
| |
| ColorMode SurfaceFlinger::getActiveColorMode(const sp<IBinder>& displayToken) { |
| if (const auto display = getDisplayDevice(displayToken)) { |
| return display->getActiveColorMode(); |
| } |
| return static_cast<ColorMode>(BAD_VALUE); |
| } |
| |
| void SurfaceFlinger::setActiveColorModeInternal(const sp<DisplayDevice>& display, ColorMode mode, |
| Dataspace dataSpace, RenderIntent renderIntent) { |
| ColorMode currentMode = display->getActiveColorMode(); |
| Dataspace currentDataSpace = display->getCompositionDataSpace(); |
| RenderIntent currentRenderIntent = display->getActiveRenderIntent(); |
| |
| if (mode == currentMode && dataSpace == currentDataSpace && |
| renderIntent == currentRenderIntent) { |
| return; |
| } |
| |
| if (display->isVirtual()) { |
| ALOGW("Trying to set config for virtual display"); |
| return; |
| } |
| |
| display->setActiveColorMode(mode); |
| display->setCompositionDataSpace(dataSpace); |
| display->setActiveRenderIntent(renderIntent); |
| getHwComposer().setActiveColorMode(display->getDisplayType(), mode, renderIntent); |
| |
| ALOGV("Set active color mode: %s (%d), active render intent: %s (%d), type=%d", |
| decodeColorMode(mode).c_str(), mode, decodeRenderIntent(renderIntent).c_str(), |
| renderIntent, display->getDisplayType()); |
| } |
| |
| status_t SurfaceFlinger::setActiveColorMode(const sp<IBinder>& displayToken, ColorMode mode) { |
| postMessageSync(new LambdaMessage([&] { |
| Vector<ColorMode> modes; |
| getDisplayColorModes(displayToken, &modes); |
| bool exists = std::find(std::begin(modes), std::end(modes), mode) != std::end(modes); |
| if (mode < ColorMode::NATIVE || !exists) { |
| ALOGE("Attempt to set invalid active color mode %s (%d) for display token %p", |
| decodeColorMode(mode).c_str(), mode, displayToken.get()); |
| return; |
| } |
| const auto display = getDisplayDevice(displayToken); |
| if (!display) { |
| ALOGE("Attempt to set active color mode %s (%d) for invalid display token %p", |
| decodeColorMode(mode).c_str(), mode, displayToken.get()); |
| } else if (display->isVirtual()) { |
| ALOGW("Attempt to set active color mode %s (%d) for virtual display", |
| decodeColorMode(mode).c_str(), mode); |
| } else { |
| setActiveColorModeInternal(display, mode, Dataspace::UNKNOWN, |
| RenderIntent::COLORIMETRIC); |
| } |
| })); |
| |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::clearAnimationFrameStats() { |
| Mutex::Autolock _l(mStateLock); |
| mAnimFrameTracker.clearStats(); |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::getAnimationFrameStats(FrameStats* outStats) const { |
| Mutex::Autolock _l(mStateLock); |
| mAnimFrameTracker.getStats(outStats); |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::getHdrCapabilities(const sp<IBinder>& displayToken, |
| HdrCapabilities* outCapabilities) const { |
| Mutex::Autolock _l(mStateLock); |
| |
| const auto display = getDisplayDeviceLocked(displayToken); |
| if (!display) { |
| ALOGE("getHdrCapabilities: Invalid display token %p", displayToken.get()); |
| return BAD_VALUE; |
| } |
| |
| // At this point the DisplayDeivce should already be set up, |
| // meaning the luminance information is already queried from |
| // hardware composer and stored properly. |
| const HdrCapabilities& capabilities = display->getHdrCapabilities(); |
| *outCapabilities = HdrCapabilities(capabilities.getSupportedHdrTypes(), |
| capabilities.getDesiredMaxLuminance(), |
| capabilities.getDesiredMaxAverageLuminance(), |
| capabilities.getDesiredMinLuminance()); |
| |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::enableVSyncInjections(bool enable) { |
| postMessageSync(new LambdaMessage([&] { |
| Mutex::Autolock _l(mStateLock); |
| |
| if (mInjectVSyncs == enable) { |
| return; |
| } |
| |
| // TODO(akrulec): Part of the Injector should be refactored, so that it |
| // can be passed to Scheduler. |
| if (enable) { |
| ALOGV("VSync Injections enabled"); |
| if (mVSyncInjector.get() == nullptr) { |
| mVSyncInjector = std::make_unique<InjectVSyncSource>(); |
| mInjectorEventThread = std::make_unique< |
| impl::EventThread>(mVSyncInjector.get(), [this] { resyncWithRateLimit(); }, |
| impl::EventThread::InterceptVSyncsCallback(), |
| "injEventThread"); |
| } |
| mEventQueue->setEventThread(mInjectorEventThread.get()); |
| } else { |
| ALOGV("VSync Injections disabled"); |
| mEventQueue->setEventThread(mSFEventThread.get()); |
| } |
| |
| mInjectVSyncs = enable; |
| })); |
| |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::injectVSync(nsecs_t when) { |
| Mutex::Autolock _l(mStateLock); |
| |
| if (!mInjectVSyncs) { |
| ALOGE("VSync Injections not enabled"); |
| return BAD_VALUE; |
| } |
| if (mInjectVSyncs && mInjectorEventThread.get() != nullptr) { |
| ALOGV("Injecting VSync inside SurfaceFlinger"); |
| mVSyncInjector->onInjectSyncEvent(when); |
| } |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::getLayerDebugInfo(std::vector<LayerDebugInfo>* outLayers) const |
| NO_THREAD_SAFETY_ANALYSIS { |
| // Try to acquire a lock for 1s, fail gracefully |
| const status_t err = mStateLock.timedLock(s2ns(1)); |
| const bool locked = (err == NO_ERROR); |
| if (!locked) { |
| ALOGE("LayerDebugInfo: SurfaceFlinger unresponsive (%s [%d]) - exit", strerror(-err), err); |
| return TIMED_OUT; |
| } |
| |
| outLayers->clear(); |
| mCurrentState.traverseInZOrder([&](Layer* layer) { |
| outLayers->push_back(layer->getLayerDebugInfo()); |
| }); |
| |
| mStateLock.unlock(); |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::getCompositionPreference(Dataspace* outDataSpace, |
| ui::PixelFormat* outPixelFormat) const { |
| *outDataSpace = compositionDataSpace; |
| *outPixelFormat = compositionPixelFormat; |
| return NO_ERROR; |
| } |
| |
| // ---------------------------------------------------------------------------- |
| |
| sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection( |
| ISurfaceComposer::VsyncSource vsyncSource) { |
| if (mUseScheduler) { |
| if (vsyncSource == eVsyncSourceSurfaceFlinger) { |
| return mScheduler->createDisplayEventConnection(mSfConnectionHandle); |
| } else { |
| return mScheduler->createDisplayEventConnection(mAppConnectionHandle); |
| } |
| } else { |
| if (vsyncSource == eVsyncSourceSurfaceFlinger) { |
| return mSFEventThread->createEventConnection(); |
| } else { |
| return mEventThread->createEventConnection(); |
| } |
| } |
| } |
| |
| // ---------------------------------------------------------------------------- |
| |
| void SurfaceFlinger::waitForEvent() { |
| mEventQueue->waitMessage(); |
| } |
| |
| void SurfaceFlinger::signalTransaction() { |
| mEventQueue->invalidate(); |
| } |
| |
| void SurfaceFlinger::signalLayerUpdate() { |
| mEventQueue->invalidate(); |
| } |
| |
| void SurfaceFlinger::signalRefresh() { |
| mRefreshPending = true; |
| mEventQueue->refresh(); |
| } |
| |
| status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg, |
| nsecs_t reltime, uint32_t /* flags */) { |
| return mEventQueue->postMessage(msg, reltime); |
| } |
| |
| status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg, |
| nsecs_t reltime, uint32_t /* flags */) { |
| status_t res = mEventQueue->postMessage(msg, reltime); |
| if (res == NO_ERROR) { |
| msg->wait(); |
| } |
| return res; |
| } |
| |
| void SurfaceFlinger::run() { |
| do { |
| waitForEvent(); |
| } while (true); |
| } |
| |
| void SurfaceFlinger::enableHardwareVsync() { |
| Mutex::Autolock _l(mHWVsyncLock); |
| if (!mPrimaryHWVsyncEnabled && mHWVsyncAvailable) { |
| mPrimaryDispSync->beginResync(); |
| mEventControlThread->setVsyncEnabled(true); |
| mPrimaryHWVsyncEnabled = true; |
| } |
| } |
| |
| void SurfaceFlinger::resyncToHardwareVsync(bool makeAvailable) { |
| Mutex::Autolock _l(mHWVsyncLock); |
| |
| if (makeAvailable) { |
| mHWVsyncAvailable = true; |
| } else if (!mHWVsyncAvailable) { |
| // Hardware vsync is not currently available, so abort the resync |
| // attempt for now |
| return; |
| } |
| |
| const auto displayId = DisplayDevice::DISPLAY_PRIMARY; |
| if (!getHwComposer().isConnected(displayId)) { |
| return; |
| } |
| |
| const auto activeConfig = getHwComposer().getActiveConfig(displayId); |
| const nsecs_t period = activeConfig->getVsyncPeriod(); |
| |
| if (mUseScheduler) { |
| mScheduler->setVsyncPeriod(period); |
| } else { |
| mPrimaryDispSync->reset(); |
| mPrimaryDispSync->setPeriod(period); |
| |
| if (!mPrimaryHWVsyncEnabled) { |
| mPrimaryDispSync->beginResync(); |
| mEventControlThread->setVsyncEnabled(true); |
| mPrimaryHWVsyncEnabled = true; |
| } |
| } |
| } |
| |
| void SurfaceFlinger::disableHardwareVsync(bool makeUnavailable) { |
| Mutex::Autolock _l(mHWVsyncLock); |
| if (mPrimaryHWVsyncEnabled) { |
| mEventControlThread->setVsyncEnabled(false); |
| mPrimaryDispSync->endResync(); |
| mPrimaryHWVsyncEnabled = false; |
| } |
| if (makeUnavailable) { |
| mHWVsyncAvailable = false; |
| } |
| } |
| |
| void SurfaceFlinger::resyncWithRateLimit() { |
| static constexpr nsecs_t kIgnoreDelay = ms2ns(500); |
| |
| // No explicit locking is needed here since EventThread holds a lock while calling this method |
| static nsecs_t sLastResyncAttempted = 0; |
| const nsecs_t now = systemTime(); |
| if (now - sLastResyncAttempted > kIgnoreDelay) { |
| resyncToHardwareVsync(false); |
| } |
| sLastResyncAttempted = now; |
| } |
| |
| void SurfaceFlinger::onVsyncReceived(int32_t sequenceId, hwc2_display_t hwcDisplayId, |
| int64_t timestamp) { |
| ATRACE_NAME("SF onVsync"); |
| |
| Mutex::Autolock lock(mStateLock); |
| // Ignore any vsyncs from a previous hardware composer. |
| if (sequenceId != getBE().mComposerSequenceId) { |
| return; |
| } |
| |
| int32_t type; |
| if (!getBE().mHwc->onVsync(hwcDisplayId, timestamp, &type)) { |
| return; |
| } |
| |
| if (type != DisplayDevice::DISPLAY_PRIMARY) { |
| // For now, we don't do anything with external display vsyncs. |
| return; |
| } |
| |
| if (mUseScheduler) { |
| mScheduler->addResyncSample(timestamp); |
| } else { |
| bool needsHwVsync = false; |
| { // Scope for the lock |
| Mutex::Autolock _l(mHWVsyncLock); |
| if (mPrimaryHWVsyncEnabled) { |
| needsHwVsync = mPrimaryDispSync->addResyncSample(timestamp); |
| } |
| } |
| |
| if (needsHwVsync) { |
| enableHardwareVsync(); |
| } else { |
| disableHardwareVsync(false); |
| } |
| } |
| } |
| |
| void SurfaceFlinger::getCompositorTiming(CompositorTiming* compositorTiming) { |
| std::lock_guard<std::mutex> lock(getBE().mCompositorTimingLock); |
| *compositorTiming = getBE().mCompositorTiming; |
| } |
| |
| void SurfaceFlinger::onHotplugReceived(int32_t sequenceId, hwc2_display_t hwcDisplayId, |
| HWC2::Connection connection) { |
| ALOGV("%s(%d, %" PRIu64 ", %s)", __FUNCTION__, sequenceId, hwcDisplayId, |
| connection == HWC2::Connection::Connected ? "connected" : "disconnected"); |
| |
| // Ignore events that do not have the right sequenceId. |
| if (sequenceId != getBE().mComposerSequenceId) { |
| return; |
| } |
| |
| // Only lock if we're not on the main thread. This function is normally |
| // called on a hwbinder thread, but for the primary display it's called on |
| // the main thread with the state lock already held, so don't attempt to |
| // acquire it here. |
| ConditionalLock lock(mStateLock, std::this_thread::get_id() != mMainThreadId); |
| |
| mPendingHotplugEvents.emplace_back(HotplugEvent{hwcDisplayId, connection}); |
| |
| if (std::this_thread::get_id() == mMainThreadId) { |
| // Process all pending hot plug events immediately if we are on the main thread. |
| processDisplayHotplugEventsLocked(); |
| } |
| |
| setTransactionFlags(eDisplayTransactionNeeded); |
| } |
| |
| void SurfaceFlinger::onRefreshReceived(int sequenceId, hwc2_display_t /*hwcDisplayId*/) { |
| Mutex::Autolock lock(mStateLock); |
| if (sequenceId != getBE().mComposerSequenceId) { |
| return; |
| } |
| repaintEverything(); |
| } |
| |
| void SurfaceFlinger::setVsyncEnabled(int disp, int enabled) { |
| ATRACE_CALL(); |
| Mutex::Autolock lock(mStateLock); |
| getHwComposer().setVsyncEnabled(disp, |
| enabled ? HWC2::Vsync::Enable : HWC2::Vsync::Disable); |
| } |
| |
| // Note: it is assumed the caller holds |mStateLock| when this is called |
| void SurfaceFlinger::resetDisplayState() { |
| if (mUseScheduler) { |
| mScheduler->disableHardwareVsync(true); |
| } else { |
| disableHardwareVsync(true); |
| } |
| // Clear the drawing state so that the logic inside of |
| // handleTransactionLocked will fire. It will determine the delta between |
| // mCurrentState and mDrawingState and re-apply all changes when we make the |
| // transition. |
| mDrawingState.displays.clear(); |
| getRenderEngine().resetCurrentSurface(); |
| mDisplays.clear(); |
| } |
| |
| void SurfaceFlinger::updateVrFlinger() { |
| if (!mVrFlinger) |
| return; |
| bool vrFlingerRequestsDisplay = mVrFlingerRequestsDisplay; |
| if (vrFlingerRequestsDisplay == getBE().mHwc->isUsingVrComposer()) { |
| return; |
| } |
| |
| if (vrFlingerRequestsDisplay && !getBE().mHwc->getComposer()->isRemote()) { |
| ALOGE("Vr flinger is only supported for remote hardware composer" |
| " service connections. Ignoring request to transition to vr" |
| " flinger."); |
| mVrFlingerRequestsDisplay = false; |
| return; |
| } |
| |
| Mutex::Autolock _l(mStateLock); |
| |
| sp<DisplayDevice> display = getDefaultDisplayDeviceLocked(); |
| LOG_ALWAYS_FATAL_IF(!display); |
| const int currentDisplayPowerMode = display->getPowerMode(); |
| // This DisplayDevice will no longer be relevant once resetDisplayState() is |
| // called below. Clear the reference now so we don't accidentally use it |
| // later. |
| display.clear(); |
| |
| if (!vrFlingerRequestsDisplay) { |
| mVrFlinger->SeizeDisplayOwnership(); |
| } |
| |
| resetDisplayState(); |
| getBE().mHwc.reset(); // Delete the current instance before creating the new one |
| getBE().mHwc.reset(new HWComposer(std::make_unique<Hwc2::impl::Composer>( |
| vrFlingerRequestsDisplay ? "vr" : getBE().mHwcServiceName))); |
| getBE().mHwc->registerCallback(this, ++getBE().mComposerSequenceId); |
| |
| LOG_ALWAYS_FATAL_IF(!getBE().mHwc->getComposer()->isRemote(), |
| "Switched to non-remote hardware composer"); |
| |
| if (vrFlingerRequestsDisplay) { |
| mVrFlinger->GrantDisplayOwnership(); |
| } |
| |
| mVisibleRegionsDirty = true; |
| invalidateHwcGeometry(); |
| |
| // Re-enable default display. |
| display = getDefaultDisplayDeviceLocked(); |
| LOG_ALWAYS_FATAL_IF(!display); |
| setPowerModeInternal(display, currentDisplayPowerMode, /*stateLockHeld*/ true); |
| |
| // Reset the timing values to account for the period of the swapped in HWC |
| const auto activeConfig = getHwComposer().getActiveConfig(display->getId()); |
| const nsecs_t period = activeConfig->getVsyncPeriod(); |
| mAnimFrameTracker.setDisplayRefreshPeriod(period); |
| |
| // The present fences returned from vr_hwc are not an accurate |
| // representation of vsync times. |
| if (mUseScheduler) { |
| mScheduler->setIgnorePresentFences(getBE().mHwc->isUsingVrComposer() || !hasSyncFramework); |
| } else { |
| mPrimaryDispSync->setIgnorePresentFences(getBE().mHwc->isUsingVrComposer() || |
| !hasSyncFramework); |
| } |
| |
| // Use phase of 0 since phase is not known. |
| // Use latency of 0, which will snap to the ideal latency. |
| DisplayStatInfo stats{0 /* vsyncTime */, period /* vsyncPeriod */}; |
| setCompositorTimingSnapped(stats, 0); |
| |
| resyncToHardwareVsync(false); |
| |
| mRepaintEverything = true; |
| setTransactionFlags(eDisplayTransactionNeeded); |
| } |
| |
| void SurfaceFlinger::onMessageReceived(int32_t what) { |
| ATRACE_CALL(); |
| switch (what) { |
| case MessageQueue::INVALIDATE: { |
| bool frameMissed = !mHadClientComposition && |
| mPreviousPresentFence != Fence::NO_FENCE && |
| (mPreviousPresentFence->getSignalTime() == |
| Fence::SIGNAL_TIME_PENDING); |
| mFrameMissedCount += frameMissed; |
| ATRACE_INT("FrameMissed", static_cast<int>(frameMissed)); |
| if (frameMissed) { |
| mTimeStats.incrementMissedFrames(); |
| if (mPropagateBackpressure) { |
| signalLayerUpdate(); |
| break; |
| } |
| } |
| |
| // Now that we're going to make it to the handleMessageTransaction() |
| // call below it's safe to call updateVrFlinger(), which will |
| // potentially trigger a display handoff. |
| updateVrFlinger(); |
| |
| bool refreshNeeded = handleMessageTransaction(); |
| refreshNeeded |= handleMessageInvalidate(); |
| refreshNeeded |= mRepaintEverything; |
| if (refreshNeeded && CC_LIKELY(mBootStage != BootStage::BOOTLOADER)) { |
| // Signal a refresh if a transaction modified the window state, |
| // a new buffer was latched, or if HWC has requested a full |
| // repaint |
| signalRefresh(); |
| } |
| break; |
| } |
| case MessageQueue::REFRESH: { |
| handleMessageRefresh(); |
| break; |
| } |
| } |
| } |
| |
| bool SurfaceFlinger::handleMessageTransaction() { |
| uint32_t transactionFlags = peekTransactionFlags(); |
| if (transactionFlags) { |
| handleTransaction(transactionFlags); |
| return true; |
| } |
| return false; |
| } |
| |
| void SurfaceFlinger::handleMessageRefresh() { |
| ATRACE_CALL(); |
| |
| mRefreshPending = false; |
| |
| const bool repaintEverything = mRepaintEverything.exchange(false); |
| preComposition(); |
| rebuildLayerStacks(); |
| calculateWorkingSet(); |
| |
| for (const auto& [token, display] : mDisplays) { |
| const auto displayId = display->getId(); |
| beginFrame(display); |
| for (auto& compositionInfo : getBE().mCompositionInfo[displayId]) { |
| setUpHWComposer(compositionInfo); |
| } |
| prepareFrame(display); |
| doDebugFlashRegions(display, repaintEverything); |
| doComposition(display, repaintEverything); |
| } |
| |
| doTracing("handleRefresh"); |
| logLayerStats(); |
| |
| postFrame(); |
| postComposition(); |
| |
| mHadClientComposition = false; |
| for (const auto& [token, display] : mDisplays) { |
| mHadClientComposition = mHadClientComposition || |
| getBE().mHwc->hasClientComposition(display->getId()); |
| } |
| |
| // Setup RenderEngine sync fences if native sync is supported. |
| if (getBE().mRenderEngine->useNativeFenceSync()) { |
| if (mHadClientComposition) { |
| base::unique_fd flushFence(getRenderEngine().flush()); |
| ALOGE_IF(flushFence < 0, "Failed to flush RenderEngine!"); |
| getBE().flushFence = new Fence(std::move(flushFence)); |
| } else { |
| // Cleanup for hygiene. |
| getBE().flushFence = Fence::NO_FENCE; |
| } |
| } |
| |
| mVsyncModulator.onRefreshed(mHadClientComposition); |
| |
| getBE().mEndOfFrameCompositionInfo = std::move(getBE().mCompositionInfo); |
| for (const auto& [token, display] : mDisplays) { |
| const auto displayId = display->getId(); |
| for (auto& compositionInfo : getBE().mEndOfFrameCompositionInfo[displayId]) { |
| compositionInfo.hwc.hwcLayer = nullptr; |
| } |
| } |
| |
| mLayersWithQueuedFrames.clear(); |
| } |
| |
| |
| bool SurfaceFlinger::handleMessageInvalidate() { |
| ATRACE_CALL(); |
| return handlePageFlip(); |
| } |
| |
| void SurfaceFlinger::calculateWorkingSet() { |
| ATRACE_CALL(); |
| ALOGV(__FUNCTION__); |
| |
| // build the h/w work list |
| if (CC_UNLIKELY(mGeometryInvalid)) { |
| mGeometryInvalid = false; |
| for (const auto& [token, display] : mDisplays) { |
| const auto displayId = display->getId(); |
| if (displayId >= 0) { |
| const Vector<sp<Layer>>& currentLayers( |
| display->getVisibleLayersSortedByZ()); |
| for (size_t i = 0; i < currentLayers.size(); i++) { |
| const auto& layer = currentLayers[i]; |
| |
| if (!layer->hasHwcLayer(displayId)) { |
| if (!layer->createHwcLayer(getBE().mHwc.get(), displayId)) { |
| layer->forceClientComposition(displayId); |
| continue; |
| } |
| } |
| |
| layer->setGeometry(display, i); |
| if (mDebugDisableHWC || mDebugRegion) { |
| layer->forceClientComposition(displayId); |
| } |
| } |
| } |
| } |
| } |
| |
| // Set the per-frame data |
| for (const auto& [token, display] : mDisplays) { |
| const auto displayId = display->getId(); |
| if (displayId < 0) { |
| continue; |
| } |
| |
| if (mDrawingState.colorMatrixChanged) { |
| display->setColorTransform(mDrawingState.colorMatrix); |
| status_t result = getBE().mHwc->setColorTransform(displayId, mDrawingState.colorMatrix); |
| ALOGE_IF(result != NO_ERROR, "Failed to set color transform on " |
| "display %d: %d", displayId, result); |
| } |
| for (auto& layer : display->getVisibleLayersSortedByZ()) { |
| if (layer->isHdrY410()) { |
| layer->forceClientComposition(displayId); |
| } else if ((layer->getDataSpace() == Dataspace::BT2020_PQ || |
| layer->getDataSpace() == Dataspace::BT2020_ITU_PQ) && |
| !display->hasHDR10Support()) { |
| layer->forceClientComposition(displayId); |
| } else if ((layer->getDataSpace() == Dataspace::BT2020_HLG || |
| layer->getDataSpace() == Dataspace::BT2020_ITU_HLG) && |
| !display->hasHLGSupport()) { |
| layer->forceClientComposition(displayId); |
| } |
| |
| // TODO(b/111562338) remove when composer 2.3 is shipped. |
| if (layer->hasColorTransform()) { |
| layer->forceClientComposition(displayId); |
| } |
| |
| if (layer->getForceClientComposition(displayId)) { |
| ALOGV("[%s] Requesting Client composition", layer->getName().string()); |
| layer->setCompositionType(displayId, HWC2::Composition::Client); |
| continue; |
| } |
| |
| layer->setPerFrameData(display); |
| } |
| |
| if (useColorManagement) { |
| ColorMode colorMode; |
| Dataspace dataSpace; |
| RenderIntent renderIntent; |
| pickColorMode(display, &colorMode, &dataSpace, &renderIntent); |
| setActiveColorModeInternal(display, colorMode, dataSpace, renderIntent); |
| } |
| } |
| |
| mDrawingState.colorMatrixChanged = false; |
| |
| for (const auto& [token, display] : mDisplays) { |
| const auto displayId = display->getId(); |
| getBE().mCompositionInfo[displayId].clear(); |
| for (auto& layer : display->getVisibleLayersSortedByZ()) { |
| auto displayId = display->getId(); |
| layer->getBE().compositionInfo.compositionType = layer->getCompositionType(displayId); |
| if (!layer->setHwcLayer(displayId)) { |
| ALOGV("Need to create HWCLayer for %s", layer->getName().string()); |
| } |
| layer->getBE().compositionInfo.hwc.displayId = displayId; |
| getBE().mCompositionInfo[displayId].push_back(layer->getBE().compositionInfo); |
| layer->getBE().compositionInfo.hwc.hwcLayer = nullptr; |
| } |
| } |
| } |
| |
| void SurfaceFlinger::doDebugFlashRegions(const sp<DisplayDevice>& display, bool repaintEverything) |
| { |
| const auto displayId = display->getId(); |
| // is debugging enabled |
| if (CC_LIKELY(!mDebugRegion)) |
| return; |
| |
| if (display->isPoweredOn()) { |
| // transform the dirty region into this screen's coordinate space |
| const Region dirtyRegion(display->getDirtyRegion(repaintEverything)); |
| if (!dirtyRegion.isEmpty()) { |
| // redraw the whole screen |
| doComposeSurfaces(display); |
| |
| // and draw the dirty region |
| auto& engine(getRenderEngine()); |
| engine.fillRegionWithColor(dirtyRegion, 1, 0, 1, 1); |
| |
| display->swapBuffers(getHwComposer()); |
| } |
| } |
| |
| postFramebuffer(display); |
| |
| if (mDebugRegion > 1) { |
| usleep(mDebugRegion * 1000); |
| } |
| |
| if (display->isPoweredOn()) { |
| status_t result = display->prepareFrame( |
| *getBE().mHwc, getBE().mCompositionInfo[displayId]); |
| ALOGE_IF(result != NO_ERROR, |
| "prepareFrame for display %d failed:" |
| " %d (%s)", |
| display->getId(), result, strerror(-result)); |
| } |
| } |
| |
| void SurfaceFlinger::doTracing(const char* where) { |
| ATRACE_CALL(); |
| ATRACE_NAME(where); |
| if (CC_UNLIKELY(mTracing.isEnabled())) { |
| mTracing.traceLayers(where, dumpProtoInfo(LayerVector::StateSet::Drawing)); |
| } |
| } |
| |
| void SurfaceFlinger::logLayerStats() { |
| ATRACE_CALL(); |
| if (CC_UNLIKELY(mLayerStats.isEnabled())) { |
| for (const auto& [token, display] : mDisplays) { |
| if (display->isPrimary()) { |
| mLayerStats.logLayerStats(dumpVisibleLayersProtoInfo(*display)); |
| return; |
| } |
| } |
| |
| ALOGE("logLayerStats: no primary display"); |
| } |
| } |
| |
| void SurfaceFlinger::preComposition() |
| { |
| ATRACE_CALL(); |
| ALOGV("preComposition"); |
| |
| mRefreshStartTime = systemTime(SYSTEM_TIME_MONOTONIC); |
| |
| bool needExtraInvalidate = false; |
| mDrawingState.traverseInZOrder([&](Layer* layer) { |
| if (layer->onPreComposition(mRefreshStartTime)) { |
| needExtraInvalidate = true; |
| } |
| }); |
| |
| if (needExtraInvalidate) { |
| signalLayerUpdate(); |
| } |
| } |
| |
| void SurfaceFlinger::updateCompositorTiming(const DisplayStatInfo& stats, nsecs_t compositeTime, |
| std::shared_ptr<FenceTime>& presentFenceTime) { |
| // Update queue of past composite+present times and determine the |
| // most recently known composite to present latency. |
| getBE().mCompositePresentTimes.push({compositeTime, presentFenceTime}); |
| nsecs_t compositeToPresentLatency = -1; |
| while (!getBE().mCompositePresentTimes.empty()) { |
| SurfaceFlingerBE::CompositePresentTime& cpt = getBE().mCompositePresentTimes.front(); |
| // Cached values should have been updated before calling this method, |
| // which helps avoid duplicate syscalls. |
| nsecs_t displayTime = cpt.display->getCachedSignalTime(); |
| if (displayTime == Fence::SIGNAL_TIME_PENDING) { |
| break; |
| } |
| compositeToPresentLatency = displayTime - cpt.composite; |
| getBE().mCompositePresentTimes.pop(); |
| } |
| |
| // Don't let mCompositePresentTimes grow unbounded, just in case. |
| while (getBE().mCompositePresentTimes.size() > 16) { |
| getBE().mCompositePresentTimes.pop(); |
| } |
| |
| setCompositorTimingSnapped(stats, compositeToPresentLatency); |
| } |
| |
| void SurfaceFlinger::setCompositorTimingSnapped(const DisplayStatInfo& stats, |
| nsecs_t compositeToPresentLatency) { |
| // Integer division and modulo round toward 0 not -inf, so we need to |
| // treat negative and positive offsets differently. |
| nsecs_t idealLatency = (sfVsyncPhaseOffsetNs > 0) |
| ? (stats.vsyncPeriod - (sfVsyncPhaseOffsetNs % stats.vsyncPeriod)) |
| : ((-sfVsyncPhaseOffsetNs) % stats.vsyncPeriod); |
| |
| // Just in case sfVsyncPhaseOffsetNs == -vsyncInterval. |
| if (idealLatency <= 0) { |
| idealLatency = stats.vsyncPeriod; |
| } |
| |
| // Snap the latency to a value that removes scheduling jitter from the |
| // composition and present times, which often have >1ms of jitter. |
| // Reducing jitter is important if an app attempts to extrapolate |
| // something (such as user input) to an accurate diasplay time. |
| // Snapping also allows an app to precisely calculate sfVsyncPhaseOffsetNs |
| // with (presentLatency % interval). |
| nsecs_t bias = stats.vsyncPeriod / 2; |
| int64_t extraVsyncs = (compositeToPresentLatency - idealLatency + bias) / stats.vsyncPeriod; |
| nsecs_t snappedCompositeToPresentLatency = |
| (extraVsyncs > 0) ? idealLatency + (extraVsyncs * stats.vsyncPeriod) : idealLatency; |
| |
| std::lock_guard<std::mutex> lock(getBE().mCompositorTimingLock); |
| getBE().mCompositorTiming.deadline = stats.vsyncTime - idealLatency; |
| getBE().mCompositorTiming.interval = stats.vsyncPeriod; |
| getBE().mCompositorTiming.presentLatency = snappedCompositeToPresentLatency; |
| } |
| |
| void SurfaceFlinger::postComposition() |
| { |
| ATRACE_CALL(); |
| ALOGV("postComposition"); |
| |
| // Release any buffers which were replaced this frame |
| nsecs_t dequeueReadyTime = systemTime(); |
| for (auto& layer : mLayersWithQueuedFrames) { |
| layer->releasePendingBuffer(dequeueReadyTime); |
| } |
| |
| // |mStateLock| not needed as we are on the main thread |
| const auto display = getDefaultDisplayDeviceLocked(); |
| |
| getBE().mGlCompositionDoneTimeline.updateSignalTimes(); |
| std::shared_ptr<FenceTime> glCompositionDoneFenceTime; |
| if (display && getHwComposer().hasClientComposition(display->getId())) { |
| glCompositionDoneFenceTime = |
| std::make_shared<FenceTime>(display->getClientTargetAcquireFence()); |
| getBE().mGlCompositionDoneTimeline.push(glCompositionDoneFenceTime); |
| } else { |
| glCompositionDoneFenceTime = FenceTime::NO_FENCE; |
| } |
| |
| getBE().mDisplayTimeline.updateSignalTimes(); |
| mPreviousPresentFence = |
| display ? getHwComposer().getPresentFence(display->getId()) : Fence::NO_FENCE; |
| auto presentFenceTime = std::make_shared<FenceTime>(mPreviousPresentFence); |
| getBE().mDisplayTimeline.push(presentFenceTime); |
| |
| DisplayStatInfo stats; |
| if (mUseScheduler) { |
| mScheduler->getDisplayStatInfo(&stats); |
| } else { |
| stats.vsyncTime = mPrimaryDispSync->computeNextRefresh(0); |
| stats.vsyncPeriod = mPrimaryDispSync->getPeriod(); |
| } |
| |
| // We use the mRefreshStartTime which might be sampled a little later than |
| // when we started doing work for this frame, but that should be okay |
| // since updateCompositorTiming has snapping logic. |
| updateCompositorTiming(stats, mRefreshStartTime, presentFenceTime); |
| CompositorTiming compositorTiming; |
| { |
| std::lock_guard<std::mutex> lock(getBE().mCompositorTimingLock); |
| compositorTiming = getBE().mCompositorTiming; |
| } |
| |
| mDrawingState.traverseInZOrder([&](Layer* layer) { |
| bool frameLatched = layer->onPostComposition(glCompositionDoneFenceTime, |
| presentFenceTime, compositorTiming); |
| if (frameLatched) { |
| recordBufferingStats(layer->getName().string(), |
| layer->getOccupancyHistory(false)); |
| } |
| }); |
| |
| if (presentFenceTime->isValid()) { |
| if (mUseScheduler) { |
| mScheduler->addPresentFence(presentFenceTime); |
| } else { |
| if (mPrimaryDispSync->addPresentFence(presentFenceTime)) { |
| enableHardwareVsync(); |
| } else { |
| disableHardwareVsync(false); |
| } |
| } |
| } |
| |
| if (!hasSyncFramework) { |
| if (display && getHwComposer().isConnected(display->getId()) && display->isPoweredOn()) { |
| if (mUseScheduler) { |
| mScheduler->enableHardwareVsync(); |
| } else { |
| enableHardwareVsync(); |
| } |
| } |
| } |
| |
| if (mAnimCompositionPending) { |
| mAnimCompositionPending = false; |
| |
| if (presentFenceTime->isValid()) { |
| mAnimFrameTracker.setActualPresentFence( |
| std::move(presentFenceTime)); |
| } else if (display && getHwComposer().isConnected(display->getId())) { |
| // The HWC doesn't support present fences, so use the refresh |
| // timestamp instead. |
| const nsecs_t presentTime = getHwComposer().getRefreshTimestamp(display->getId()); |
| mAnimFrameTracker.setActualPresentTime(presentTime); |
| } |
| mAnimFrameTracker.advanceFrame(); |
| } |
| |
| mTimeStats.incrementTotalFrames(); |
| if (mHadClientComposition) { |
| mTimeStats.incrementClientCompositionFrames(); |
| } |
| |
| if (display && getHwComposer().isConnected(display->getId()) && |
| display->getPowerMode() == HWC_POWER_MODE_OFF) { |
| return; |
| } |
| |
| nsecs_t currentTime = systemTime(); |
| if (mHasPoweredOff) { |
| mHasPoweredOff = false; |
| } else { |
| nsecs_t elapsedTime = currentTime - getBE().mLastSwapTime; |
| size_t numPeriods = static_cast<size_t>(elapsedTime / stats.vsyncPeriod); |
| if (numPeriods < SurfaceFlingerBE::NUM_BUCKETS - 1) { |
| getBE().mFrameBuckets[numPeriods] += elapsedTime; |
| } else { |
| getBE().mFrameBuckets[SurfaceFlingerBE::NUM_BUCKETS - 1] += elapsedTime; |
| } |
| getBE().mTotalTime += elapsedTime; |
| } |
| getBE().mLastSwapTime = currentTime; |
| |
| { |
| std::lock_guard lock(mTexturePoolMutex); |
| const size_t refillCount = mTexturePoolSize - mTexturePool.size(); |
| if (refillCount > 0) { |
| const size_t offset = mTexturePool.size(); |
| mTexturePool.resize(mTexturePoolSize); |
| getRenderEngine().genTextures(refillCount, mTexturePool.data() + offset); |
| ATRACE_INT("TexturePoolSize", mTexturePool.size()); |
| } |
| } |
| } |
| |
| void SurfaceFlinger::rebuildLayerStacks() { |
| ATRACE_CALL(); |
| ALOGV("rebuildLayerStacks"); |
| |
| // rebuild the visible layer list per screen |
| if (CC_UNLIKELY(mVisibleRegionsDirty)) { |
| ATRACE_NAME("rebuildLayerStacks VR Dirty"); |
| mVisibleRegionsDirty = false; |
| invalidateHwcGeometry(); |
| |
| for (const auto& pair : mDisplays) { |
| const auto& display = pair.second; |
| Region opaqueRegion; |
| Region dirtyRegion; |
| Vector<sp<Layer>> layersSortedByZ; |
| Vector<sp<Layer>> layersNeedingFences; |
| const ui::Transform& tr = display->getTransform(); |
| const Rect bounds = display->getBounds(); |
| if (display->isPoweredOn()) { |
| computeVisibleRegions(display, dirtyRegion, opaqueRegion); |
| |
| mDrawingState.traverseInZOrder([&](Layer* layer) { |
| bool hwcLayerDestroyed = false; |
| if (layer->belongsToDisplay(display->getLayerStack(), display->isPrimary())) { |
| Region drawRegion(tr.transform( |
| layer->visibleNonTransparentRegion)); |
| drawRegion.andSelf(bounds); |
| if (!drawRegion.isEmpty()) { |
| layersSortedByZ.add(layer); |
| } else { |
| // Clear out the HWC layer if this layer was |
| // previously visible, but no longer is |
| hwcLayerDestroyed = layer->destroyHwcLayer(display->getId()); |
| } |
| } else { |
| // WM changes display->layerStack upon sleep/awake. |
| // Here we make sure we delete the HWC layers even if |
| // WM changed their layer stack. |
| hwcLayerDestroyed = layer->destroyHwcLayer(display->getId()); |
| } |
| |
| // If a layer is not going to get a release fence because |
| // it is invisible, but it is also going to release its |
| // old buffer, add it to the list of layers needing |
| // fences. |
| if (hwcLayerDestroyed) { |
| auto found = std::find(mLayersWithQueuedFrames.cbegin(), |
| mLayersWithQueuedFrames.cend(), layer); |
| if (found != mLayersWithQueuedFrames.cend()) { |
| layersNeedingFences.add(layer); |
| } |
| } |
| }); |
| } |
| display->setVisibleLayersSortedByZ(layersSortedByZ); |
| display->setLayersNeedingFences(layersNeedingFences); |
| display->undefinedRegion.set(bounds); |
| display->undefinedRegion.subtractSelf(tr.transform(opaqueRegion)); |
| display->dirtyRegion.orSelf(dirtyRegion); |
| } |
| } |
| } |
| |
| // Returns a data space that fits all visible layers. The returned data space |
| // can only be one of |
| // - Dataspace::SRGB (use legacy dataspace and let HWC saturate when colors are enhanced) |
| // - Dataspace::DISPLAY_P3 |
| // The returned HDR data space is one of |
| // - Dataspace::UNKNOWN |
| // - Dataspace::BT2020_HLG |
| // - Dataspace::BT2020_PQ |
| Dataspace SurfaceFlinger::getBestDataspace(const sp<const DisplayDevice>& display, |
| Dataspace* outHdrDataSpace) const { |
| Dataspace bestDataSpace = Dataspace::SRGB; |
| *outHdrDataSpace = Dataspace::UNKNOWN; |
| |
| for (const auto& layer : display->getVisibleLayersSortedByZ()) { |
| switch (layer->getDataSpace()) { |
| case Dataspace::V0_SCRGB: |
| case Dataspace::V0_SCRGB_LINEAR: |
| case Dataspace::DISPLAY_P3: |
| bestDataSpace = Dataspace::DISPLAY_P3; |
| break; |
| case Dataspace::BT2020_PQ: |
| case Dataspace::BT2020_ITU_PQ: |
| *outHdrDataSpace = Dataspace::BT2020_PQ; |
| break; |
| case Dataspace::BT2020_HLG: |
| case Dataspace::BT2020_ITU_HLG: |
| // When there's mixed PQ content and HLG content, we set the HDR |
| // data space to be BT2020_PQ and convert HLG to PQ. |
| if (*outHdrDataSpace == Dataspace::UNKNOWN) { |
| *outHdrDataSpace = Dataspace::BT2020_HLG; |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| |
| return bestDataSpace; |
| } |
| |
| // Pick the ColorMode / Dataspace for the display device. |
| void SurfaceFlinger::pickColorMode(const sp<DisplayDevice>& display, ColorMode* outMode, |
| Dataspace* outDataSpace, RenderIntent* outRenderIntent) const { |
| if (mDisplayColorSetting == DisplayColorSetting::UNMANAGED) { |
| *outMode = ColorMode::NATIVE; |
| *outDataSpace = Dataspace::UNKNOWN; |
| *outRenderIntent = RenderIntent::COLORIMETRIC; |
| return; |
| } |
| |
| Dataspace hdrDataSpace; |
| Dataspace bestDataSpace = getBestDataspace(display, &hdrDataSpace); |
| |
| // respect hdrDataSpace only when there is no legacy HDR support |
| const bool isHdr = hdrDataSpace != Dataspace::UNKNOWN && |
| !display->hasLegacyHdrSupport(hdrDataSpace); |
| if (isHdr) { |
| bestDataSpace = hdrDataSpace; |
| } |
| |
| RenderIntent intent; |
| switch (mDisplayColorSetting) { |
| case DisplayColorSetting::MANAGED: |
| case DisplayColorSetting::UNMANAGED: |
| intent = isHdr ? RenderIntent::TONE_MAP_COLORIMETRIC : RenderIntent::COLORIMETRIC; |
| break; |
| case DisplayColorSetting::ENHANCED: |
| intent = isHdr ? RenderIntent::TONE_MAP_ENHANCE : RenderIntent::ENHANCE; |
| break; |
| default: // vendor display color setting |
| intent = static_cast<RenderIntent>(mDisplayColorSetting); |
| break; |
| } |
| |
| display->getBestColorMode(bestDataSpace, intent, outDataSpace, outMode, outRenderIntent); |
| } |
| |
| void SurfaceFlinger::configureSidebandComposition(const CompositionInfo& compositionInfo) const |
| { |
| HWC2::Error error; |
| LOG_ALWAYS_FATAL_IF(compositionInfo.hwc.sidebandStream == nullptr, |
| "CompositionType is sideband, but sideband stream is nullptr"); |
| error = (compositionInfo.hwc.hwcLayer) |
| ->setSidebandStream(compositionInfo.hwc.sidebandStream->handle()); |
| if (error != HWC2::Error::None) { |
| ALOGE("[SF] Failed to set sideband stream %p: %s (%d)", |
| compositionInfo.hwc.sidebandStream->handle(), to_string(error).c_str(), |
| static_cast<int32_t>(error)); |
| } |
| } |
| |
| void SurfaceFlinger::configureHwcCommonData(const CompositionInfo& compositionInfo) const |
| { |
| HWC2::Error error; |
| |
| if (!compositionInfo.hwc.skipGeometry) { |
| error = (compositionInfo.hwc.hwcLayer)->setBlendMode(compositionInfo.hwc.blendMode); |
| ALOGE_IF(error != HWC2::Error::None, |
| "[SF] Failed to set blend mode %s:" |
| " %s (%d)", |
| to_string(compositionInfo.hwc.blendMode).c_str(), to_string(error).c_str(), |
| static_cast<int32_t>(error)); |
| |
| error = (compositionInfo.hwc.hwcLayer)->setDisplayFrame(compositionInfo.hwc.displayFrame); |
| ALOGE_IF(error != HWC2::Error::None, |
| "[SF] Failed to set the display frame [%d, %d, %d, %d] %s (%d)", |
| compositionInfo.hwc.displayFrame.left, |
| compositionInfo.hwc.displayFrame.right, |
| compositionInfo.hwc.displayFrame.top, |
| compositionInfo.hwc.displayFrame.bottom, |
| to_string(error).c_str(), static_cast<int32_t>(error)); |
| |
| error = (compositionInfo.hwc.hwcLayer)->setSourceCrop(compositionInfo.hwc.sourceCrop); |
| ALOGE_IF(error != HWC2::Error::None, |
| "[SF] Failed to set source crop [%.3f, %.3f, %.3f, %.3f]: %s (%d)", |
| compositionInfo.hwc.sourceCrop.left, |
| compositionInfo.hwc.sourceCrop.right, |
| compositionInfo.hwc.sourceCrop.top, |
| compositionInfo.hwc.sourceCrop.bottom, |
| to_string(error).c_str(), static_cast<int32_t>(error)); |
| |
| error = (compositionInfo.hwc.hwcLayer)->setPlaneAlpha(compositionInfo.hwc.alpha); |
| ALOGE_IF(error != HWC2::Error::None, |
| "[SF] Failed to set plane alpha %.3f: " |
| "%s (%d)", |
| compositionInfo.hwc.alpha, |
| to_string(error).c_str(), static_cast<int32_t>(error)); |
| |
| |
| error = (compositionInfo.hwc.hwcLayer)->setZOrder(compositionInfo.hwc.z); |
| ALOGE_IF(error != HWC2::Error::None, |
| "[SF] Failed to set Z %u: %s (%d)", |
| compositionInfo.hwc.z, |
| to_string(error).c_str(), static_cast<int32_t>(error)); |
| |
| error = (compositionInfo.hwc.hwcLayer) |
| ->setInfo(compositionInfo.hwc.type, compositionInfo.hwc.appId); |
| ALOGE_IF(error != HWC2::Error::None, |
| "[SF] Failed to set info (%d)", |
| static_cast<int32_t>(error)); |
| |
| error = (compositionInfo.hwc.hwcLayer)->setTransform(compositionInfo.hwc.transform); |
| ALOGE_IF(error != HWC2::Error::None, |
| "[SF] Failed to set transform %s: " |
| "%s (%d)", |
| to_string(compositionInfo.hwc.transform).c_str(), to_string(error).c_str(), |
| static_cast<int32_t>(error)); |
| } |
| |
| error = (compositionInfo.hwc.hwcLayer)->setCompositionType(compositionInfo.compositionType); |
| ALOGE_IF(error != HWC2::Error::None, |
| "[SF] Failed to set composition type: %s (%d)", |
| to_string(error).c_str(), static_cast<int32_t>(error)); |
| |
| error = (compositionInfo.hwc.hwcLayer)->setDataspace(compositionInfo.hwc.dataspace); |
| ALOGE_IF(error != HWC2::Error::None, |
| "[SF] Failed to set dataspace: %s (%d)", |
| to_string(error).c_str(), static_cast<int32_t>(error)); |
| |
| error = (compositionInfo.hwc.hwcLayer)->setPerFrameMetadata( |
| compositionInfo.hwc.supportedPerFrameMetadata, compositionInfo.hwc.hdrMetadata); |
| ALOGE_IF(error != HWC2::Error::None && error != HWC2::Error::Unsupported, |
| "[SF] Failed to set hdrMetadata: %s (%d)", |
| to_string(error).c_str(), static_cast<int32_t>(error)); |
| |
| if (compositionInfo.compositionType == HWC2::Composition::SolidColor) { |
| error = (compositionInfo.hwc.hwcLayer)->setColor(compositionInfo.hwc.color); |
| ALOGE_IF(error != HWC2::Error::None, |
| "[SF] Failed to set color: %s (%d)", |
| to_string(error).c_str(), static_cast<int32_t>(error)); |
| } |
| |
| error = (compositionInfo.hwc.hwcLayer)->setVisibleRegion(compositionInfo.hwc.visibleRegion); |
| ALOGE_IF(error != HWC2::Error::None, |
| "[SF] Failed to set visible region: %s (%d)", |
| to_string(error).c_str(), static_cast<int32_t>(error)); |
| |
| error = (compositionInfo.hwc.hwcLayer)->setSurfaceDamage(compositionInfo.hwc.surfaceDamage); |
| ALOGE_IF(error != HWC2::Error::None, |
| "[SF] Failed to set surface damage: %s (%d)", |
| to_string(error).c_str(), static_cast<int32_t>(error)); |
| |
| error = (compositionInfo.hwc.hwcLayer)->setColorTransform(compositionInfo.hwc.colorTransform); |
| } |
| |
| void SurfaceFlinger::configureDeviceComposition(const CompositionInfo& compositionInfo) const |
| { |
| HWC2::Error error; |
| |
| if (compositionInfo.hwc.fence) { |
| error = (compositionInfo.hwc.hwcLayer)->setBuffer(compositionInfo.mBufferSlot, |
| compositionInfo.mBuffer, compositionInfo.hwc.fence); |
| ALOGE_IF(error != HWC2::Error::None, |
| "[SF] Failed to set buffer: %s (%d)", |
| to_string(error).c_str(), static_cast<int32_t>(error)); |
| } |
| } |
| |
| void SurfaceFlinger::beginFrame(const sp<DisplayDevice>& display) |
| { |
| bool dirty = !display->getDirtyRegion(false).isEmpty(); |
| bool empty = display->getVisibleLayersSortedByZ().size() == 0; |
| bool wasEmpty = !display->lastCompositionHadVisibleLayers; |
| |
| // If nothing has changed (!dirty), don't recompose. |
| // If something changed, but we don't currently have any visible layers, |
| // and didn't when we last did a composition, then skip it this time. |
| // The second rule does two things: |
| // - When all layers are removed from a display, we'll emit one black |
| // frame, then nothing more until we get new layers. |
| // - When a display is created with a private layer stack, we won't |
| // emit any black frames until a layer is added to the layer stack. |
| bool mustRecompose = dirty && !(empty && wasEmpty); |
| |
| ALOGV_IF(display->getDisplayType() == DisplayDevice::DISPLAY_VIRTUAL, |
| "id[%d]: %s composition (%sdirty %sempty %swasEmpty)", display->getId(), |
| mustRecompose ? "doing" : "skipping", |
| dirty ? "+" : "-", |
| empty ? "+" : "-", |
| wasEmpty ? "+" : "-"); |
| |
| display->beginFrame(mustRecompose); |
| |
| if (mustRecompose) { |
| display->lastCompositionHadVisibleLayers = !empty; |
| } |
| } |
| |
| void SurfaceFlinger::prepareFrame(const sp<DisplayDevice>& display) |
| { |
| const auto displayId = display->getId(); |
| if (!display->isPoweredOn()) { |
| return; |
| } |
| |
| status_t result = display->prepareFrame( |
| *getBE().mHwc, getBE().mCompositionInfo[displayId]); |
| ALOGE_IF(result != NO_ERROR, |
| "prepareFrame for display %d failed:" |
| " %d (%s)", |
| display->getId(), result, strerror(-result)); |
| } |
| |
| void SurfaceFlinger::setUpHWComposer(const CompositionInfo& compositionInfo) { |
| ATRACE_CALL(); |
| ALOGV("setUpHWComposer"); |
| |
| switch (compositionInfo.compositionType) |
| { |
| case HWC2::Composition::Invalid: |
| break; |
| |
| case HWC2::Composition::Client: |
| if (compositionInfo.hwc.hwcLayer) { |
| auto error = (compositionInfo.hwc.hwcLayer)-> |
| setCompositionType(compositionInfo.compositionType); |
| ALOGE_IF(error != HWC2::Error::None, |
| "[SF] Failed to set composition type: %s (%d)", |
| to_string(error).c_str(), static_cast<int32_t>(error)); |
| } |
| break; |
| |
| case HWC2::Composition::Sideband: |
| configureHwcCommonData(compositionInfo); |
| configureSidebandComposition(compositionInfo); |
| break; |
| |
| case HWC2::Composition::SolidColor: |
| configureHwcCommonData(compositionInfo); |
| break; |
| |
| case HWC2::Composition::Device: |
| case HWC2::Composition::Cursor: |
| configureHwcCommonData(compositionInfo); |
| configureDeviceComposition(compositionInfo); |
| break; |
| } |
| } |
| |
| void SurfaceFlinger::doComposition(const sp<DisplayDevice>& display, bool repaintEverything) { |
| ATRACE_CALL(); |
| ALOGV("doComposition"); |
| |
| if (display->isPoweredOn()) { |
| // transform the dirty region into this screen's coordinate space |
| const Region dirtyRegion(display->getDirtyRegion(repaintEverything)); |
| |
| // repaint the framebuffer (if needed) |
| doDisplayComposition(display, dirtyRegion); |
| |
| display->dirtyRegion.clear(); |
| display->flip(); |
| } |
| postFramebuffer(display); |
| } |
| |
| void SurfaceFlinger::postFrame() |
| { |
| // |mStateLock| not needed as we are on the main thread |
| if (getBE().mHwc->isConnected(HWC_DISPLAY_PRIMARY)) { |
| uint32_t flipCount = getDefaultDisplayDeviceLocked()->getPageFlipCount(); |
| if (flipCount % LOG_FRAME_STATS_PERIOD == 0) { |
| logFrameStats(); |
| } |
| } |
| } |
| |
| void SurfaceFlinger::postFramebuffer(const sp<DisplayDevice>& display) |
| { |
| ATRACE_CALL(); |
| ALOGV("postFramebuffer"); |
| |
| mPostFramebufferTime = systemTime(); |
| |
| if (display->isPoweredOn()) { |
| const auto displayId = display->getId(); |
| if (displayId >= 0) { |
| getBE().mHwc->presentAndGetReleaseFences(displayId); |
| } |
| display->onSwapBuffersCompleted(); |
| display->makeCurrent(); |
| for (auto& compositionInfo : getBE().mCompositionInfo[displayId]) { |
| sp<Fence> releaseFence = Fence::NO_FENCE; |
| // The layer buffer from the previous frame (if any) is released |
| // by HWC only when the release fence from this frame (if any) is |
| // signaled. Always get the release fence from HWC first. |
| auto hwcLayer = compositionInfo.hwc.hwcLayer; |
| if ((displayId >= 0) && hwcLayer) { |
| releaseFence = getBE().mHwc->getLayerReleaseFence(displayId, hwcLayer.get()); |
| } |
| |
| // If the layer was client composited in the previous frame, we |
| // need to merge with the previous client target acquire fence. |
| // Since we do not track that, always merge with the current |
| // client target acquire fence when it is available, even though |
| // this is suboptimal. |
| if (compositionInfo.compositionType == HWC2::Composition::Client) { |
| releaseFence = Fence::merge("LayerRelease", releaseFence, |
| display->getClientTargetAcquireFence()); |
| } |
| |
| if (compositionInfo.layer) { |
| compositionInfo.layer->onLayerDisplayed(releaseFence); |
| } |
| } |
| |
| // We've got a list of layers needing fences, that are disjoint with |
| // display->getVisibleLayersSortedByZ. The best we can do is to |
| // supply them with the present fence. |
| if (!display->getLayersNeedingFences().isEmpty()) { |
| sp<Fence> presentFence = getBE().mHwc->getPresentFence(displayId); |
| for (auto& layer : display->getLayersNeedingFences()) { |
| layer->getBE().onLayerDisplayed(presentFence); |
| } |
| } |
| |
| if (displayId >= 0) { |
| getBE().mHwc->clearReleaseFences(displayId); |
| } |
| } |
| } |
| |
| void SurfaceFlinger::handleTransaction(uint32_t transactionFlags) |
| { |
| ATRACE_CALL(); |
| |
| // here we keep a copy of the drawing state (that is the state that's |
| // going to be overwritten by handleTransactionLocked()) outside of |
| // mStateLock so that the side-effects of the State assignment |
| // don't happen with mStateLock held (which can cause deadlocks). |
| State drawingState(mDrawingState); |
| |
| Mutex::Autolock _l(mStateLock); |
| const nsecs_t now = systemTime(); |
| mDebugInTransaction = now; |
| |
| // Here we're guaranteed that some transaction flags are set |
| // so we can call handleTransactionLocked() unconditionally. |
| // We call getTransactionFlags(), which will also clear the flags, |
| // with mStateLock held to guarantee that mCurrentState won't change |
| // until the transaction is committed. |
| |
| mVsyncModulator.onTransactionHandled(); |
| transactionFlags = getTransactionFlags(eTransactionMask); |
| handleTransactionLocked(transactionFlags); |
| |
| mLastTransactionTime = systemTime() - now; |
| mDebugInTransaction = 0; |
| invalidateHwcGeometry(); |
| // here the transaction has been committed |
| } |
| |
| DisplayDevice::DisplayType SurfaceFlinger::determineDisplayType(hwc2_display_t hwcDisplayId, |
| HWC2::Connection connection) const { |
| // Figure out whether the event is for the primary display or an |
| // external display by matching the Hwc display id against one for a |
| // connected display. If we did not find a match, we then check what |
| // displays are not already connected to determine the type. If we don't |
| // have a connected primary display, we assume the new display is meant to |
| // be the primary display, and then if we don't have an external display, |
| // we assume it is that. |
| const auto primaryHwcDisplayId = getBE().mHwc->getHwcDisplayId(DisplayDevice::DISPLAY_PRIMARY); |
| const auto externalHwcDisplayId = |
| getBE().mHwc->getHwcDisplayId(DisplayDevice::DISPLAY_EXTERNAL); |
| if (primaryHwcDisplayId && primaryHwcDisplayId == hwcDisplayId) { |
| return DisplayDevice::DISPLAY_PRIMARY; |
| } else if (externalHwcDisplayId && externalHwcDisplayId == hwcDisplayId) { |
| return DisplayDevice::DISPLAY_EXTERNAL; |
| } else if (connection == HWC2::Connection::Connected && !primaryHwcDisplayId) { |
| return DisplayDevice::DISPLAY_PRIMARY; |
| } else if (connection == HWC2::Connection::Connected && !externalHwcDisplayId) { |
| return DisplayDevice::DISPLAY_EXTERNAL; |
| } |
| |
| return DisplayDevice::DISPLAY_ID_INVALID; |
| } |
| |
| void SurfaceFlinger::processDisplayHotplugEventsLocked() { |
| for (const auto& event : mPendingHotplugEvents) { |
| auto displayType = determineDisplayType(event.hwcDisplayId, event.connection); |
| if (displayType == DisplayDevice::DISPLAY_ID_INVALID) { |
| ALOGW("Unable to determine the display type for display %" PRIu64, event.hwcDisplayId); |
| continue; |
| } |
| |
| if (getBE().mHwc->isUsingVrComposer() && displayType == DisplayDevice::DISPLAY_EXTERNAL) { |
| ALOGE("External displays are not supported by the vr hardware composer."); |
| continue; |
| } |
| |
| const auto displayId = |
| getBE().mHwc->onHotplug(event.hwcDisplayId, displayType, event.connection); |
| if (displayId) { |
| ALOGV("Display %" PRIu64 " has stable ID %" PRIu64, event.hwcDisplayId, *displayId); |
| } |
| |
| if (event.connection == HWC2::Connection::Connected) { |
| if (!mDisplayTokens[displayType].get()) { |
| ALOGV("Creating built in display %d", displayType); |
| mDisplayTokens[displayType] = new BBinder(); |
| DisplayDeviceState info; |
| info.type = displayType; |
| info.displayName = displayType == DisplayDevice::DISPLAY_PRIMARY ? |
| "Built-in Screen" : "External Screen"; |
| info.isSecure = true; // All physical displays are currently considered secure. |
| mCurrentState.displays.add(mDisplayTokens[displayType], info); |
| mInterceptor->saveDisplayCreation(info); |
| } |
| } else { |
| ALOGV("Removing built in display %d", displayType); |
| |
| ssize_t idx = mCurrentState.displays.indexOfKey(mDisplayTokens[displayType]); |
| if (idx >= 0) { |
| const DisplayDeviceState& info(mCurrentState.displays.valueAt(idx)); |
| mInterceptor->saveDisplayDeletion(info.sequenceId); |
| mCurrentState.displays.removeItemsAt(idx); |
| } |
| mDisplayTokens[displayType].clear(); |
| } |
| |
| processDisplayChangesLocked(); |
| } |
| |
| mPendingHotplugEvents.clear(); |
| } |
| |
| sp<DisplayDevice> SurfaceFlinger::setupNewDisplayDeviceInternal( |
| const wp<IBinder>& displayToken, int32_t displayId, const DisplayDeviceState& state, |
| const sp<DisplaySurface>& dispSurface, const sp<IGraphicBufferProducer>& producer) { |
| DisplayDeviceCreationArgs creationArgs(this, displayToken, state.type, displayId); |
| creationArgs.isSecure = state.isSecure; |
| creationArgs.displaySurface = dispSurface; |
| creationArgs.hasWideColorGamut = false; |
| creationArgs.supportedPerFrameMetadata = 0; |
| |
| if (useColorManagement && displayId >= 0) { |
| std::vector<ColorMode> modes = getHwComposer().getColorModes(displayId); |
| for (ColorMode colorMode : modes) { |
| if (isWideColorMode(colorMode)) { |
| creationArgs.hasWideColorGamut = true; |
| } |
| |
| std::vector<RenderIntent> renderIntents = |
| getHwComposer().getRenderIntents(displayId, colorMode); |
| creationArgs.hwcColorModes.emplace(colorMode, renderIntents); |
| } |
| } |
| |
| if (displayId >= 0) { |
| getHwComposer().getHdrCapabilities(displayId, &creationArgs.hdrCapabilities); |
| creationArgs.supportedPerFrameMetadata = |
| getHwComposer().getSupportedPerFrameMetadata(displayId); |
| } |
| |
| auto nativeWindowSurface = mCreateNativeWindowSurface(producer); |
| auto nativeWindow = nativeWindowSurface->getNativeWindow(); |
| creationArgs.nativeWindow = nativeWindow; |
| |
| /* |
| * Create our display's surface |
| */ |
| std::unique_ptr<renderengine::Surface> renderSurface = getRenderEngine().createSurface(); |
| renderSurface->setCritical(state.type == DisplayDevice::DISPLAY_PRIMARY); |
| renderSurface->setAsync(state.isVirtual()); |
| renderSurface->setNativeWindow(nativeWindow.get()); |
| creationArgs.displayWidth = renderSurface->getWidth(); |
| creationArgs.displayHeight = renderSurface->getHeight(); |
| creationArgs.renderSurface = std::move(renderSurface); |
| |
| // Make sure that composition can never be stalled by a virtual display |
| // consumer that isn't processing buffers fast enough. We have to do this |
| // in two places: |
| // * Here, in case the display is composed entirely by HWC. |
| // * In makeCurrent(), using eglSwapInterval. Some EGL drivers set the |
| // window's swap interval in eglMakeCurrent, so they'll override the |
| // interval we set here. |
| if (state.isVirtual()) { |
| nativeWindow->setSwapInterval(nativeWindow.get(), 0); |
| } |
| |
| creationArgs.displayInstallOrientation = state.type == DisplayDevice::DISPLAY_PRIMARY |
| ? primaryDisplayOrientation |
| : DisplayState::eOrientationDefault; |
| |
| // virtual displays are always considered enabled |
| creationArgs.initialPowerMode = state.isVirtual() ? HWC_POWER_MODE_NORMAL : HWC_POWER_MODE_OFF; |
| |
| sp<DisplayDevice> display = new DisplayDevice(std::move(creationArgs)); |
| |
| if (maxFrameBufferAcquiredBuffers >= 3) { |
| nativeWindowSurface->preallocateBuffers(); |
| } |
| |
| ColorMode defaultColorMode = ColorMode::NATIVE; |
| Dataspace defaultDataSpace = Dataspace::UNKNOWN; |
| if (display->hasWideColorGamut()) { |
| defaultColorMode = ColorMode::SRGB; |
| defaultDataSpace = Dataspace::SRGB; |
| } |
| setActiveColorModeInternal(display, defaultColorMode, defaultDataSpace, |
| RenderIntent::COLORIMETRIC); |
| if (state.type < DisplayDevice::DISPLAY_VIRTUAL) { |
| display->setActiveConfig(getHwComposer().getActiveConfigIndex(state.type)); |
| } |
| display->setLayerStack(state.layerStack); |
| display->setProjection(state.orientation, state.viewport, state.frame); |
| display->setDisplayName(state.displayName); |
| |
| return display; |
| } |
| |
| void SurfaceFlinger::processDisplayChangesLocked() { |
| // here we take advantage of Vector's copy-on-write semantics to |
| // improve performance by skipping the transaction entirely when |
| // know that the lists are identical |
| const KeyedVector<wp<IBinder>, DisplayDeviceState>& curr(mCurrentState.displays); |
| const KeyedVector<wp<IBinder>, DisplayDeviceState>& draw(mDrawingState.displays); |
| if (!curr.isIdenticalTo(draw)) { |
| mVisibleRegionsDirty = true; |
| const size_t cc = curr.size(); |
| size_t dc = draw.size(); |
| |
| // find the displays that were removed |
| // (ie: in drawing state but not in current state) |
| // also handle displays that changed |
| // (ie: displays that are in both lists) |
| for (size_t i = 0; i < dc;) { |
| const ssize_t j = curr.indexOfKey(draw.keyAt(i)); |
| if (j < 0) { |
| // in drawing state but not in current state |
| // Call makeCurrent() on the primary display so we can |
| // be sure that nothing associated with this display |
| // is current. |
| if (const auto defaultDisplay = getDefaultDisplayDeviceLocked()) { |
| defaultDisplay->makeCurrent(); |
| } |
| if (const auto display = getDisplayDeviceLocked(draw.keyAt(i))) { |
| display->disconnect(getHwComposer()); |
| } |
| if (draw[i].type == DisplayDevice::DISPLAY_PRIMARY) { |
| if (mUseScheduler) { |
| mScheduler->hotplugReceived(mAppConnectionHandle, |
| EventThread::DisplayType::Primary, false); |
| } else { |
| mEventThread->onHotplugReceived(EventThread::DisplayType::Primary, false); |
| } |
| } else if (draw[i].type == DisplayDevice::DISPLAY_EXTERNAL) { |
| if (mUseScheduler) { |
| mScheduler->hotplugReceived(mAppConnectionHandle, |
| EventThread::DisplayType::External, false); |
| } else { |
| mEventThread->onHotplugReceived(EventThread::DisplayType::External, false); |
| } |
| } |
| mDisplays.erase(draw.keyAt(i)); |
| } else { |
| // this display is in both lists. see if something changed. |
| const DisplayDeviceState& state(curr[j]); |
| const wp<IBinder>& displayToken = curr.keyAt(j); |
| const sp<IBinder> state_binder = IInterface::asBinder(state.surface); |
| const sp<IBinder> draw_binder = IInterface::asBinder(draw[i].surface); |
| if (state_binder != draw_binder) { |
| // changing the surface is like destroying and |
| // recreating the DisplayDevice, so we just remove it |
| // from the drawing state, so that it get re-added |
| // below. |
| if (const auto display = getDisplayDeviceLocked(displayToken)) { |
| display->disconnect(getHwComposer()); |
| } |
| mDisplays.erase(displayToken); |
| mDrawingState.displays.removeItemsAt(i); |
| dc--; |
| // at this point we must loop to the next item |
| continue; |
| } |
| |
| if (const auto display = getDisplayDeviceLocked(displayToken)) { |
| if (state.layerStack != draw[i].layerStack) { |
| display->setLayerStack(state.layerStack); |
| } |
| if ((state.orientation != draw[i].orientation) || |
| (state.viewport != draw[i].viewport) || (state.frame != draw[i].frame)) { |
| display->setProjection(state.orientation, state.viewport, state.frame); |
| } |
| if (state.width != draw[i].width || state.height != draw[i].height) { |
| display->setDisplaySize(state.width, state.height); |
| } |
| } |
| } |
| ++i; |
| } |
| |
| // find displays that were added |
| // (ie: in current state but not in drawing state) |
| for (size_t i = 0; i < cc; i++) { |
| if (draw.indexOfKey(curr.keyAt(i)) < 0) { |
| const DisplayDeviceState& state(curr[i]); |
| |
| sp<DisplaySurface> dispSurface; |
| sp<IGraphicBufferProducer> producer; |
| sp<IGraphicBufferProducer> bqProducer; |
| sp<IGraphicBufferConsumer> bqConsumer; |
| mCreateBufferQueue(&bqProducer, &bqConsumer, false); |
| |
| int32_t displayId = -1; |
| if (state.isVirtual()) { |
| // Virtual displays without a surface are dormant: |
| // they have external state (layer stack, projection, |
| // etc.) but no internal state (i.e. a DisplayDevice). |
| if (state.surface != nullptr) { |
| // Allow VR composer to use virtual displays. |
| if (mUseHwcVirtualDisplays || getBE().mHwc->isUsingVrComposer()) { |
| int width = 0; |
| int status = state.surface->query(NATIVE_WINDOW_WIDTH, &width); |
| ALOGE_IF(status != NO_ERROR, "Unable to query width (%d)", status); |
| int height = 0; |
| status = state.surface->query(NATIVE_WINDOW_HEIGHT, &height); |
| ALOGE_IF(status != NO_ERROR, "Unable to query height (%d)", status); |
| int intFormat = 0; |
| status = state.surface->query(NATIVE_WINDOW_FORMAT, &intFormat); |
| ALOGE_IF(status != NO_ERROR, "Unable to query format (%d)", status); |
| auto format = static_cast<ui::PixelFormat>(intFormat); |
| |
| getBE().mHwc->allocateVirtualDisplay(width, height, &format, |
| &displayId); |
| } |
| |
| // TODO: Plumb requested format back up to consumer |
| |
| sp<VirtualDisplaySurface> vds = |
| new VirtualDisplaySurface(*getBE().mHwc, displayId, state.surface, |
| bqProducer, bqConsumer, |
| state.displayName); |
| |
| dispSurface = vds; |
| producer = vds; |
| } |
| } else { |
| ALOGE_IF(state.surface != nullptr, |
| "adding a supported display, but rendering " |
| "surface is provided (%p), ignoring it", |
| state.surface.get()); |
| |
| displayId = state.type; |
| dispSurface = new FramebufferSurface(*getBE().mHwc, displayId, bqConsumer); |
| producer = bqProducer; |
| } |
| |
| const wp<IBinder>& displayToken = curr.keyAt(i); |
| if (dispSurface != nullptr) { |
| mDisplays.emplace(displayToken, |
| setupNewDisplayDeviceInternal(displayToken, displayId, state, |
| dispSurface, producer)); |
| if (!state.isVirtual()) { |
| if (state.type == DisplayDevice::DISPLAY_PRIMARY) { |
| if (mUseScheduler) { |
| mScheduler->hotplugReceived(mAppConnectionHandle, |
| EventThread::DisplayType::Primary, |
| true); |
| } else { |
| mEventThread->onHotplugReceived(EventThread::DisplayType::Primary, |
| true); |
| } |
| } else if (state.type == DisplayDevice::DISPLAY_EXTERNAL) { |
| if (mUseScheduler) { |
| mScheduler->hotplugReceived(mAppConnectionHandle, |
| EventThread::DisplayType::External, |
| true); |
| } else { |
| mEventThread->onHotplugReceived(EventThread::DisplayType::External, |
| true); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| mDrawingState.displays = mCurrentState.displays; |
| } |
| |
| void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags) |
| { |
| // Notify all layers of available frames |
| mCurrentState.traverseInZOrder([](Layer* layer) { |
| layer->notifyAvailableFrames(); |
| }); |
| |
| /* |
| * Traversal of the children |
| * (perform the transaction for each of them if needed) |
| */ |
| |
| if (transactionFlags & eTraversalNeeded) { |
| mCurrentState.traverseInZOrder([&](Layer* layer) { |
| uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded); |
| if (!trFlags) return; |
| |
| const uint32_t flags = layer->doTransaction(0); |
| if (flags & Layer::eVisibleRegion) |
| mVisibleRegionsDirty = true; |
| }); |
| } |
| |
| /* |
| * Perform display own transactions if needed |
| */ |
| |
| if (transactionFlags & eDisplayTransactionNeeded) { |
| processDisplayChangesLocked(); |
| processDisplayHotplugEventsLocked(); |
| } |
| |
| if (transactionFlags & (eDisplayLayerStackChanged|eDisplayTransactionNeeded)) { |
| // The transform hint might have changed for some layers |
| // (either because a display has changed, or because a layer |
| // as changed). |
| // |
| // Walk through all the layers in currentLayers, |
| // and update their transform hint. |
| // |
| // If a layer is visible only on a single display, then that |
| // display is used to calculate the hint, otherwise we use the |
| // default display. |
| // |
| // NOTE: we do this here, rather than in rebuildLayerStacks() so that |
| // the hint is set before we acquire a buffer from the surface texture. |
| // |
| // NOTE: layer transactions have taken place already, so we use their |
| // drawing state. However, SurfaceFlinger's own transaction has not |
| // happened yet, so we must use the current state layer list |
| // (soon to become the drawing state list). |
| // |
| sp<const DisplayDevice> hintDisplay; |
| uint32_t currentlayerStack = 0; |
| bool first = true; |
| mCurrentState.traverseInZOrder([&](Layer* layer) { |
| // NOTE: we rely on the fact that layers are sorted by |
| // layerStack first (so we don't have to traverse the list |
| // of displays for every layer). |
| uint32_t layerStack = layer->getLayerStack(); |
| if (first || currentlayerStack != layerStack) { |
| currentlayerStack = layerStack; |
| // figure out if this layerstack is mirrored |
| // (more than one display) if so, pick the default display, |
| // if not, pick the only display it's on. |
| hintDisplay = nullptr; |
| for (const auto& [token, display] : mDisplays) { |
| if (layer->belongsToDisplay(display->getLayerStack(), display->isPrimary())) { |
| if (hintDisplay) { |
| hintDisplay = nullptr; |
| break; |
| } else { |
| hintDisplay = display; |
| } |
| } |
| } |
| } |
| |
| if (!hintDisplay) { |
| // NOTE: TEMPORARY FIX ONLY. Real fix should cause layers to |
| // redraw after transform hint changes. See bug 8508397. |
| |
| // could be null when this layer is using a layerStack |
| // that is not visible on any display. Also can occur at |
| // screen off/on times. |
| hintDisplay = getDefaultDisplayDeviceLocked(); |
| } |
| |
| // could be null if there is no display available at all to get |
| // the transform hint from. |
| if (hintDisplay) { |
| layer->updateTransformHint(hintDisplay); |
| } |
| |
| first = false; |
| }); |
| } |
| |
| |
| /* |
| * Perform our own transaction if needed |
| */ |
| |
| if (mLayersAdded) { |
| mLayersAdded = false; |
| // Layers have been added. |
| mVisibleRegionsDirty = true; |
| } |
| |
| // some layers might have been removed, so |
| // we need to update the regions they're exposing. |
| if (mLayersRemoved) { |
| mLayersRemoved = false; |
| mVisibleRegionsDirty = true; |
| mDrawingState.traverseInZOrder([&](Layer* layer) { |
| if (mLayersPendingRemoval.indexOf(layer) >= 0) { |
| // this layer is not visible anymore |
| // TODO: we could traverse the tree from front to back and |
| // compute the actual visible region |
| // TODO: we could cache the transformed region |
| Region visibleReg; |
| visibleReg.set(layer->computeScreenBounds()); |
| invalidateLayerStack(layer, visibleReg); |
| } |
| }); |
| } |
| |
| commitTransaction(); |
| |
| updateCursorAsync(); |
| } |
| |
| void SurfaceFlinger::updateCursorAsync() |
| { |
| for (const auto& [token, display] : mDisplays) { |
| if (display->getId() < 0) { |
| continue; |
| } |
| |
| for (auto& layer : display->getVisibleLayersSortedByZ()) { |
| layer->updateCursorPosition(display); |
| } |
| } |
| } |
| |
| void SurfaceFlinger::commitTransaction() |
| { |
| if (!mLayersPendingRemoval.isEmpty()) { |
| // Notify removed layers now that they can't be drawn from |
| for (const auto& l : mLayersPendingRemoval) { |
| recordBufferingStats(l->getName().string(), |
| l->getOccupancyHistory(true)); |
| l->onRemoved(); |
| } |
| mLayersPendingRemoval.clear(); |
| } |
| |
| // If this transaction is part of a window animation then the next frame |
| // we composite should be considered an animation as well. |
| mAnimCompositionPending = mAnimTransactionPending; |
| |
| mDrawingState = mCurrentState; |
| // clear the "changed" flags in current state |
| mCurrentState.colorMatrixChanged = false; |
| |
| mDrawingState.traverseInZOrder([](Layer* layer) { |
| layer->commitChildList(); |
| }); |
| mTransactionPending = false; |
| mAnimTransactionPending = false; |
| mTransactionCV.broadcast(); |
| } |
| |
| void SurfaceFlinger::computeVisibleRegions(const sp<const DisplayDevice>& display, |
| Region& outDirtyRegion, Region& outOpaqueRegion) { |
| ATRACE_CALL(); |
| ALOGV("computeVisibleRegions"); |
| |
| Region aboveOpaqueLayers; |
| Region aboveCoveredLayers; |
| Region dirty; |
| |
| outDirtyRegion.clear(); |
| |
| mDrawingState.traverseInReverseZOrder([&](Layer* layer) { |
| // start with the whole surface at its current location |
| const Layer::State& s(layer->getDrawingState()); |
| |
| // only consider the layers on the given layer stack |
| if (!layer->belongsToDisplay(display->getLayerStack(), display->isPrimary())) { |
| return; |
| } |
| |
| /* |
| * opaqueRegion: area of a surface that is fully opaque. |
| */ |
| Region opaqueRegion; |
| |
| /* |
| * visibleRegion: area of a surface that is visible on screen |
| * and not fully transparent. This is essentially the layer's |
| * footprint minus the opaque regions above it. |
| * Areas covered by a translucent surface are considered visible. |
| */ |
| Region visibleRegion; |
| |
| /* |
| * coveredRegion: area of a surface that is covered by all |
| * visible regions above it (which includes the translucent areas). |
| */ |
| Region coveredRegion; |
| |
| /* |
| * transparentRegion: area of a surface that is hinted to be completely |
| * transparent. This is only used to tell when the layer has no visible |
| * non-transparent regions and can be removed from the layer list. It |
| * does not affect the visibleRegion of this layer or any layers |
| * beneath it. The hint may not be correct if apps don't respect the |
| * SurfaceView restrictions (which, sadly, some don't). |
| */ |
| Region transparentRegion; |
| |
| |
| // handle hidden surfaces by setting the visible region to empty |
| if (CC_LIKELY(layer->isVisible())) { |
| const bool translucent = !layer->isOpaque(s); |
| Rect bounds(layer->computeScreenBounds()); |
| visibleRegion.set(bounds); |
| ui::Transform tr = layer->getTransform(); |
| if (!visibleRegion.isEmpty()) { |
| // Remove the transparent area from the visible region |
| if (translucent) { |
| if (tr.preserveRects()) { |
| // transform the transparent region |
| transparentRegion = tr.transform(layer->getActiveTransparentRegion(s)); |
| } else { |
| // transformation too complex, can't do the |
| // transparent region optimization. |
| transparentRegion.clear(); |
| } |
| } |
| |
| // compute the opaque region |
| const int32_t layerOrientation = tr.getOrientation(); |
| if (layer->getAlpha() == 1.0f && !translucent && |
| ((layerOrientation & ui::Transform::ROT_INVALID) == false)) { |
| // the opaque region is the layer's footprint |
| opaqueRegion = visibleRegion; |
| } |
| } |
| } |
| |
| if (visibleRegion.isEmpty()) { |
| layer->clearVisibilityRegions(); |
| return; |
| } |
| |
| // Clip the covered region to the visible region |
| coveredRegion = aboveCoveredLayers.intersect(visibleRegion); |
| |
| // Update aboveCoveredLayers for next (lower) layer |
| aboveCoveredLayers.orSelf(visibleRegion); |
| |
| // subtract the opaque region covered by the layers above us |
| visibleRegion.subtractSelf(aboveOpaqueLayers); |
| |
| // compute this layer's dirty region |
| if (layer->contentDirty) { |
| // we need to invalidate the whole region |
| dirty = visibleRegion; |
| // as well, as the old visible region |
| dirty.orSelf(layer->visibleRegion); |
| layer->contentDirty = false; |
| } else { |
| /* compute the exposed region: |
| * the exposed region consists of two components: |
| * 1) what's VISIBLE now and was COVERED before |
| * 2) what's EXPOSED now less what was EXPOSED before |
| * |
| * note that (1) is conservative, we start with the whole |
| * visible region but only keep what used to be covered by |
| * something -- which mean it may have been exposed. |
| * |
| * (2) handles areas that were not covered by anything but got |
| * exposed because of a resize. |
| */ |
| const Region newExposed = visibleRegion - coveredRegion; |
| const Region oldVisibleRegion = layer->visibleRegion; |
| const Region oldCoveredRegion = layer->coveredRegion; |
| const Region oldExposed = oldVisibleRegion - oldCoveredRegion; |
| dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed); |
| } |
| dirty.subtractSelf(aboveOpaqueLayers); |
| |
| // accumulate to the screen dirty region |
| outDirtyRegion.orSelf(dirty); |
| |
| // Update aboveOpaqueLayers for next (lower) layer |
| aboveOpaqueLayers.orSelf(opaqueRegion); |
| |
| // Store the visible region in screen space |
| layer->setVisibleRegion(visibleRegion); |
| layer->setCoveredRegion(coveredRegion); |
| layer->setVisibleNonTransparentRegion( |
| visibleRegion.subtract(transparentRegion)); |
| }); |
| |
| outOpaqueRegion = aboveOpaqueLayers; |
| } |
| |
| void SurfaceFlinger::invalidateLayerStack(const sp<const Layer>& layer, const Region& dirty) { |
| for (const auto& [token, display] : mDisplays) { |
| if (layer->belongsToDisplay(display->getLayerStack(), display->isPrimary())) { |
| display->dirtyRegion.orSelf(dirty); |
| } |
| } |
| } |
| |
| bool SurfaceFlinger::handlePageFlip() |
| { |
| ALOGV("handlePageFlip"); |
| |
| nsecs_t latchTime = systemTime(); |
| |
| bool visibleRegions = false; |
| bool frameQueued = false; |
| bool newDataLatched = false; |
| |
| // Store the set of layers that need updates. This set must not change as |
| // buffers are being latched, as this could result in a deadlock. |
| // Example: Two producers share the same command stream and: |
| // 1.) Layer 0 is latched |
| // 2.) Layer 0 gets a new frame |
| // 2.) Layer 1 gets a new frame |
| // 3.) Layer 1 is latched. |
| // Display is now waiting on Layer 1's frame, which is behind layer 0's |
| // second frame. But layer 0's second frame could be waiting on display. |
| mDrawingState.traverseInZOrder([&](Layer* layer) { |
| if (layer->hasReadyFrame()) { |
| frameQueued = true; |
| const nsecs_t expectedPresentTime = mPrimaryDispSync->expectedPresentTime(); |
| if (layer->shouldPresentNow(expectedPresentTime)) { |
| mLayersWithQueuedFrames.push_back(layer); |
| } else { |
| layer->useEmptyDamage(); |
| } |
| } else { |
| layer->useEmptyDamage(); |
| } |
| }); |
| |
| for (auto& layer : mLayersWithQueuedFrames) { |
| const Region dirty(layer->latchBuffer(visibleRegions, latchTime, getBE().flushFence)); |
| layer->useSurfaceDamage(); |
| invalidateLayerStack(layer, dirty); |
| if (layer->isBufferLatched()) { |
| newDataLatched = true; |
| } |
| } |
| |
| // Clear the renderengine fence here... |
| // downstream code assumes that a cleared fence == NO_FENCE, so reassign to |
| // clear instead of sp::clear. |
| getBE().flushFence = Fence::NO_FENCE; |
| |
| mVisibleRegionsDirty |= visibleRegions; |
| |
| // If we will need to wake up at some time in the future to deal with a |
| // queued frame that shouldn't be displayed during this vsync period, wake |
| // up during the next vsync period to check again. |
| if (frameQueued && (mLayersWithQueuedFrames.empty() || !newDataLatched)) { |
| signalLayerUpdate(); |
| } |
| |
| // enter boot animation on first buffer latch |
| if (CC_UNLIKELY(mBootStage == BootStage::BOOTLOADER && newDataLatched)) { |
| ALOGI("Enter boot animation"); |
| mBootStage = BootStage::BOOTANIMATION; |
| } |
| |
| // Only continue with the refresh if there is actually new work to do |
| return !mLayersWithQueuedFrames.empty() && newDataLatched; |
| } |
| |
| void SurfaceFlinger::invalidateHwcGeometry() |
| { |
| mGeometryInvalid = true; |
| } |
| |
| void SurfaceFlinger::doDisplayComposition(const sp<const DisplayDevice>& display, |
| const Region& inDirtyRegion) { |
| // We only need to actually compose the display if: |
| // 1) It is being handled by hardware composer, which may need this to |
| // keep its virtual display state machine in sync, or |
| // 2) There is work to be done (the dirty region isn't empty) |
| bool isHwcDisplay = display->getId() >= 0; |
| if (!isHwcDisplay && inDirtyRegion.isEmpty()) { |
| ALOGV("Skipping display composition"); |
| return; |
| } |
| |
| ALOGV("doDisplayComposition"); |
| if (!doComposeSurfaces(display)) return; |
| |
| // swap buffers (presentation) |
| display->swapBuffers(getHwComposer()); |
| } |
| |
| bool SurfaceFlinger::doComposeSurfaces(const sp<const DisplayDevice>& display) { |
| ALOGV("doComposeSurfaces"); |
| |
| const Region bounds(display->bounds()); |
| const DisplayRenderArea renderArea(display); |
| const auto displayId = display->getId(); |
| const bool hasClientComposition = getBE().mHwc->hasClientComposition(displayId); |
| ATRACE_INT("hasClientComposition", hasClientComposition); |
| |
| mat4 colorMatrix; |
| bool applyColorMatrix = false; |
| bool needsEnhancedColorMatrix = false; |
| |
| if (hasClientComposition) { |
| ALOGV("hasClientComposition"); |
| |
| Dataspace outputDataspace = Dataspace::UNKNOWN; |
| if (display->hasWideColorGamut()) { |
| outputDataspace = display->getCompositionDataSpace(); |
| } |
| getBE().mRenderEngine->setOutputDataSpace(outputDataspace); |
| getBE().mRenderEngine->setDisplayMaxLuminance( |
| display->getHdrCapabilities().getDesiredMaxLuminance()); |
| |
| const bool hasDeviceComposition = getBE().mHwc->hasDeviceComposition(displayId); |
| const bool skipClientColorTransform = getBE().mHwc->hasCapability( |
| HWC2::Capability::SkipClientColorTransform); |
| |
| // Compute the global color transform matrix. |
| applyColorMatrix = !hasDeviceComposition && !skipClientColorTransform; |
| if (applyColorMatrix) { |
| colorMatrix = mDrawingState.colorMatrix; |
| } |
| |
| // The current enhanced saturation matrix is designed to enhance Display P3, |
| // thus we only apply this matrix when the render intent is not colorimetric |
| // and the output color space is Display P3. |
| needsEnhancedColorMatrix = |
| (display->getActiveRenderIntent() >= RenderIntent::ENHANCE && |
| outputDataspace == Dataspace::DISPLAY_P3); |
| if (needsEnhancedColorMatrix) { |
| colorMatrix *= mEnhancedSaturationMatrix; |
| } |
| |
| if (!display->makeCurrent()) { |
| ALOGW("DisplayDevice::makeCurrent failed. Aborting surface composition for display %s", |
| display->getDisplayName().c_str()); |
| getRenderEngine().resetCurrentSurface(); |
| |
| // |mStateLock| not needed as we are on the main thread |
| const auto defaultDisplay = getDefaultDisplayDeviceLocked(); |
| if (!defaultDisplay || !defaultDisplay->makeCurrent()) { |
| ALOGE("DisplayDevice::makeCurrent on default display failed. Aborting."); |
| } |
| return false; |
| } |
| |
| // Never touch the framebuffer if we don't have any framebuffer layers |
| if (hasDeviceComposition) { |
| // when using overlays, we assume a fully transparent framebuffer |
| // NOTE: we could reduce how much we need to clear, for instance |
| // remove where there are opaque FB layers. however, on some |
| // GPUs doing a "clean slate" clear might be more efficient. |
| // We'll revisit later if needed. |
| getBE().mRenderEngine->clearWithColor(0, 0, 0, 0); |
| } else { |
| // we start with the whole screen area and remove the scissor part |
| // we're left with the letterbox region |
| // (common case is that letterbox ends-up being empty) |
| const Region letterbox = bounds.subtract(display->getScissor()); |
| |
| // compute the area to clear |
| const Region region = display->undefinedRegion.merge(letterbox); |
| |
| // screen is already cleared here |
| if (!region.isEmpty()) { |
| // can happen with SurfaceView |
| drawWormhole(region); |
| } |
| } |
| |
| const Rect& bounds = display->getBounds(); |
| const Rect& scissor = display->getScissor(); |
| if (scissor != bounds) { |
| // scissor doesn't match the screen's dimensions, so we |
| // need to clear everything outside of it and enable |
| // the GL scissor so we don't draw anything where we shouldn't |
| |
| // enable scissor for this frame |
| getBE().mRenderEngine->setScissor(scissor); |
| } |
| } |
| |
| /* |
| * and then, render the layers targeted at the framebuffer |
| */ |
| |
| ALOGV("Rendering client layers"); |
| const ui::Transform& displayTransform = display->getTransform(); |
| bool firstLayer = true; |
| for (auto& layer : display->getVisibleLayersSortedByZ()) { |
| const Region clip(bounds.intersect( |
| displayTransform.transform(layer->visibleRegion))); |
| ALOGV("Layer: %s", layer->getName().string()); |
| ALOGV(" Composition type: %s", to_string(layer->getCompositionType(displayId)).c_str()); |
| if (!clip.isEmpty()) { |
| switch (layer->getCompositionType(displayId)) { |
| case HWC2::Composition::Cursor: |
| case HWC2::Composition::Device: |
| case HWC2::Composition::Sideband: |
| case HWC2::Composition::SolidColor: { |
| const Layer::State& state(layer->getDrawingState()); |
| if (layer->getClearClientTarget(displayId) && !firstLayer && |
| layer->isOpaque(state) && (layer->getAlpha() == 1.0f) && |
| hasClientComposition) { |
| // never clear the very first layer since we're |
| // guaranteed the FB is already cleared |
| layer->clearWithOpenGL(renderArea); |
| } |
| break; |
| } |
| case HWC2::Composition::Client: { |
| if (layer->hasColorTransform()) { |
| mat4 tmpMatrix; |
| if (applyColorMatrix) { |
| tmpMatrix = mDrawingState.colorMatrix; |
| } |
| tmpMatrix *= layer->getColorTransform(); |
| if (needsEnhancedColorMatrix) { |
| tmpMatrix *= mEnhancedSaturationMatrix; |
| } |
| getRenderEngine().setColorTransform(tmpMatrix); |
| } else { |
| getRenderEngine().setColorTransform(colorMatrix); |
| } |
| layer->draw(renderArea, clip); |
| break; |
| } |
| default: |
| break; |
| } |
| } else { |
| ALOGV(" Skipping for empty clip"); |
| } |
| firstLayer = false; |
| } |
| |
| // Clear color transform matrix at the end of the frame. |
| getRenderEngine().setColorTransform(mat4()); |
| |
| // disable scissor at the end of the frame |
| getBE().mRenderEngine->disableScissor(); |
| return true; |
| } |
| |
| void SurfaceFlinger::drawWormhole(const Region& region) const { |
| auto& engine(getRenderEngine()); |
| engine.fillRegionWithColor(region, 0, 0, 0, 0); |
| } |
| |
| status_t SurfaceFlinger::addClientLayer(const sp<Client>& client, |
| const sp<IBinder>& handle, |
| const sp<IGraphicBufferProducer>& gbc, |
| const sp<Layer>& lbc, |
| const sp<Layer>& parent) |
| { |
| // add this layer to the current state list |
| { |
| Mutex::Autolock _l(mStateLock); |
| if (mNumLayers >= MAX_LAYERS) { |
| ALOGE("AddClientLayer failed, mNumLayers (%zu) >= MAX_LAYERS (%zu)", mNumLayers, |
| MAX_LAYERS); |
| return NO_MEMORY; |
| } |
| if (parent == nullptr) { |
| mCurrentState.layersSortedByZ.add(lbc); |
| } else { |
| if (parent->isPendingRemoval()) { |
| ALOGE("addClientLayer called with a removed parent"); |
| return NAME_NOT_FOUND; |
| } |
| parent->addChild(lbc); |
| } |
| |
| if (gbc != nullptr) { |
| mGraphicBufferProducerList.insert(IInterface::asBinder(gbc).get()); |
| LOG_ALWAYS_FATAL_IF(mGraphicBufferProducerList.size() > |
| mMaxGraphicBufferProducerListSize, |
| "Suspected IGBP leak: %zu IGBPs (%zu max), %zu Layers", |
| mGraphicBufferProducerList.size(), |
| mMaxGraphicBufferProducerListSize, mNumLayers); |
| } |
| mLayersAdded = true; |
| mNumLayers++; |
| } |
| |
| // attach this layer to the client |
| client->attachLayer(handle, lbc); |
| |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::removeLayer(const sp<Layer>& layer, bool topLevelOnly) { |
| Mutex::Autolock _l(mStateLock); |
| return removeLayerLocked(mStateLock, layer, topLevelOnly); |
| } |
| |
| status_t SurfaceFlinger::removeLayerLocked(const Mutex&, const sp<Layer>& layer, |
| bool topLevelOnly) { |
| if (layer->isPendingRemoval()) { |
| return NO_ERROR; |
| } |
| |
| const auto& p = layer->getParent(); |
| ssize_t index; |
| if (p != nullptr) { |
| if (topLevelOnly) { |
| return NO_ERROR; |
| } |
| |
| sp<Layer> ancestor = p; |
| while (ancestor->getParent() != nullptr) { |
| ancestor = ancestor->getParent(); |
| } |
| if (mCurrentState.layersSortedByZ.indexOf(ancestor) < 0) { |
| ALOGE("removeLayer called with a layer whose parent has been removed"); |
| return NAME_NOT_FOUND; |
| } |
| |
| index = p->removeChild(layer); |
| } else { |
| index = mCurrentState.layersSortedByZ.remove(layer); |
| } |
| |
| // As a matter of normal operation, the LayerCleaner will produce a second |
| // attempt to remove the surface. The Layer will be kept alive in mDrawingState |
| // so we will succeed in promoting it, but it's already been removed |
| // from mCurrentState. As long as we can find it in mDrawingState we have no problem |
| // otherwise something has gone wrong and we are leaking the layer. |
| if (index < 0 && mDrawingState.layersSortedByZ.indexOf(layer) < 0) { |
| ALOGE("Failed to find layer (%s) in layer parent (%s).", |
| layer->getName().string(), |
| (p != nullptr) ? p->getName().string() : "no-parent"); |
| return BAD_VALUE; |
| } else if (index < 0) { |
| return NO_ERROR; |
| } |
| |
| layer->onRemovedFromCurrentState(); |
| mLayersPendingRemoval.add(layer); |
| mLayersRemoved = true; |
| mNumLayers -= 1 + layer->getChildrenCount(); |
| setTransactionFlags(eTransactionNeeded); |
| return NO_ERROR; |
| } |
| |
| uint32_t SurfaceFlinger::peekTransactionFlags() { |
| return mTransactionFlags; |
| } |
| |
| uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags) { |
| return mTransactionFlags.fetch_and(~flags) & flags; |
| } |
| |
| uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags) { |
| return setTransactionFlags(flags, Scheduler::TransactionStart::NORMAL); |
| } |
| |
| uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags, |
| Scheduler::TransactionStart transactionStart) { |
| uint32_t old = mTransactionFlags.fetch_or(flags); |
| mVsyncModulator.setTransactionStart(transactionStart); |
| if ((old & flags)==0) { // wake the server up |
| signalTransaction(); |
| } |
| return old; |
| } |
| |
| bool SurfaceFlinger::containsAnyInvalidClientState(const Vector<ComposerState>& states) { |
| for (const ComposerState& state : states) { |
| // Here we need to check that the interface we're given is indeed |
| // one of our own. A malicious client could give us a nullptr |
| // IInterface, or one of its own or even one of our own but a |
| // different type. All these situations would cause us to crash. |
| if (state.client == nullptr) { |
| return true; |
| } |
| |
| sp<IBinder> binder = IInterface::asBinder(state.client); |
| if (binder == nullptr) { |
| return true; |
| } |
| |
| if (binder->queryLocalInterface(ISurfaceComposerClient::descriptor) == nullptr) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| void SurfaceFlinger::setTransactionState( |
| const Vector<ComposerState>& states, |
| const Vector<DisplayState>& displays, |
| uint32_t flags) |
| { |
| ATRACE_CALL(); |
| Mutex::Autolock _l(mStateLock); |
| uint32_t transactionFlags = 0; |
| |
| if (containsAnyInvalidClientState(states)) { |
| return; |
| } |
| |
| if (flags & eAnimation) { |
| // For window updates that are part of an animation we must wait for |
| // previous animation "frames" to be handled. |
| while (mAnimTransactionPending) { |
| status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5)); |
| if (CC_UNLIKELY(err != NO_ERROR)) { |
| // just in case something goes wrong in SF, return to the |
| // caller after a few seconds. |
| ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out " |
| "waiting for previous animation frame"); |
| mAnimTransactionPending = false; |
| break; |
| } |
| } |
| } |
| |
| for (const DisplayState& display : displays) { |
| transactionFlags |= setDisplayStateLocked(display); |
| } |
| |
| for (const ComposerState& state : states) { |
| transactionFlags |= setClientStateLocked(state); |
| } |
| |
| // Iterate through all layers again to determine if any need to be destroyed. Marking layers |
| // as destroyed should only occur after setting all other states. This is to allow for a |
| // child re-parent to happen before marking its original parent as destroyed (which would |
| // then mark the child as destroyed). |
| for (const ComposerState& state : states) { |
| setDestroyStateLocked(state); |
| } |
| |
| // If a synchronous transaction is explicitly requested without any changes, force a transaction |
| // anyway. This can be used as a flush mechanism for previous async transactions. |
| // Empty animation transaction can be used to simulate back-pressure, so also force a |
| // transaction for empty animation transactions. |
| if (transactionFlags == 0 && |
| ((flags & eSynchronous) || (flags & eAnimation))) { |
| transactionFlags = eTransactionNeeded; |
| } |
| |
| if (transactionFlags) { |
| if (mInterceptor->isEnabled()) { |
| mInterceptor->saveTransaction(states, mCurrentState.displays, displays, flags); |
| } |
| |
| // this triggers the transaction |
| const auto start = (flags & eEarlyWakeup) ? Scheduler::TransactionStart::EARLY |
| : Scheduler::TransactionStart::NORMAL; |
| setTransactionFlags(transactionFlags, start); |
| |
| // if this is a synchronous transaction, wait for it to take effect |
| // before returning. |
| if (flags & eSynchronous) { |
| mTransactionPending = true; |
| } |
| if (flags & eAnimation) { |
| mAnimTransactionPending = true; |
| } |
| while (mTransactionPending) { |
| status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5)); |
| if (CC_UNLIKELY(err != NO_ERROR)) { |
| // just in case something goes wrong in SF, return to the |
| // called after a few seconds. |
| ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out!"); |
| mTransactionPending = false; |
| break; |
| } |
| } |
| } |
| } |
| |
| uint32_t SurfaceFlinger::setDisplayStateLocked(const DisplayState& s) { |
| const ssize_t index = mCurrentState.displays.indexOfKey(s.token); |
| if (index < 0) return 0; |
| |
| uint32_t flags = 0; |
| DisplayDeviceState& state = mCurrentState.displays.editValueAt(index); |
| |
| const uint32_t what = s.what; |
| if (what & DisplayState::eSurfaceChanged) { |
| if (IInterface::asBinder(state.surface) != IInterface::asBinder(s.surface)) { |
| state.surface = s.surface; |
| flags |= eDisplayTransactionNeeded; |
| } |
| } |
| if (what & DisplayState::eLayerStackChanged) { |
| if (state.layerStack != s.layerStack) { |
| state.layerStack = s.layerStack; |
| flags |= eDisplayTransactionNeeded; |
| } |
| } |
| if (what & DisplayState::eDisplayProjectionChanged) { |
| if (state.orientation != s.orientation) { |
| state.orientation = s.orientation; |
| flags |= eDisplayTransactionNeeded; |
| } |
| if (state.frame != s.frame) { |
| state.frame = s.frame; |
| flags |= eDisplayTransactionNeeded; |
| } |
| if (state.viewport != s.viewport) { |
| state.viewport = s.viewport; |
| flags |= eDisplayTransactionNeeded; |
| } |
| } |
| if (what & DisplayState::eDisplaySizeChanged) { |
| if (state.width != s.width) { |
| state.width = s.width; |
| flags |= eDisplayTransactionNeeded; |
| } |
| if (state.height != s.height) { |
| state.height = s.height; |
| flags |= eDisplayTransactionNeeded; |
| } |
| } |
| |
| return flags; |
| } |
| |
| bool callingThreadHasUnscopedSurfaceFlingerAccess() { |
| IPCThreadState* ipc = IPCThreadState::self(); |
| const int pid = ipc->getCallingPid(); |
| const int uid = ipc->getCallingUid(); |
| if ((uid != AID_GRAPHICS && uid != AID_SYSTEM) && |
| !PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)) { |
| return false; |
| } |
| return true; |
| } |
| |
| uint32_t SurfaceFlinger::setClientStateLocked(const ComposerState& composerState) { |
| const layer_state_t& s = composerState.state; |
| sp<Client> client(static_cast<Client*>(composerState.client.get())); |
| |
| sp<Layer> layer(client->getLayerUser(s.surface)); |
| if (layer == nullptr) { |
| return 0; |
| } |
| |
| if (layer->isPendingRemoval()) { |
| ALOGW("Attempting to set client state on removed layer: %s", layer->getName().string()); |
| return 0; |
| } |
| |
| uint32_t flags = 0; |
| |
| const uint32_t what = s.what; |
| bool geometryAppliesWithResize = |
| what & layer_state_t::eGeometryAppliesWithResize; |
| |
| // If we are deferring transaction, make sure to push the pending state, as otherwise the |
| // pending state will also be deferred. |
| if (what & layer_state_t::eDeferTransaction_legacy) { |
| layer->pushPendingState(); |
| } |
| |
| if (what & layer_state_t::ePositionChanged) { |
| if (layer->setPosition(s.x, s.y, !geometryAppliesWithResize)) { |
| flags |= eTraversalNeeded; |
| } |
| } |
| if (what & layer_state_t::eLayerChanged) { |
| // NOTE: index needs to be calculated before we update the state |
| const auto& p = layer->getParent(); |
| if (p == nullptr) { |
| ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer); |
| if (layer->setLayer(s.z) && idx >= 0) { |
| mCurrentState.layersSortedByZ.removeAt(idx); |
| mCurrentState.layersSortedByZ.add(layer); |
| // we need traversal (state changed) |
| // AND transaction (list changed) |
| flags |= eTransactionNeeded|eTraversalNeeded; |
| } |
| } else { |
| if (p->setChildLayer(layer, s.z)) { |
| flags |= eTransactionNeeded|eTraversalNeeded; |
| } |
| } |
| } |
| if (what & layer_state_t::eRelativeLayerChanged) { |
| // NOTE: index needs to be calculated before we update the state |
| const auto& p = layer->getParent(); |
| if (p == nullptr) { |
| ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer); |
| if (layer->setRelativeLayer(s.relativeLayerHandle, s.z) && idx >= 0) { |
| mCurrentState.layersSortedByZ.removeAt(idx); |
| mCurrentState.layersSortedByZ.add(layer); |
| // we need traversal (state changed) |
| // AND transaction (list changed) |
| flags |= eTransactionNeeded|eTraversalNeeded; |
| } |
| } else { |
| if (p->setChildRelativeLayer(layer, s.relativeLayerHandle, s.z)) { |
| flags |= eTransactionNeeded|eTraversalNeeded; |
| } |
| } |
| } |
| if (what & layer_state_t::eSizeChanged) { |
| if (layer->setSize(s.w, s.h)) { |
| flags |= eTraversalNeeded; |
| } |
| } |
| if (what & layer_state_t::eAlphaChanged) { |
| if (layer->setAlpha(s.alpha)) |
| flags |= eTraversalNeeded; |
| } |
| if (what & layer_state_t::eColorChanged) { |
| if (layer->setColor(s.color)) |
| flags |= eTraversalNeeded; |
| } |
| if (what & layer_state_t::eColorTransformChanged) { |
| if (layer->setColorTransform(s.colorTransform)) { |
| flags |= eTraversalNeeded; |
| } |
| } |
| if (what & layer_state_t::eMatrixChanged) { |
| // TODO: b/109894387 |
| // |
| // SurfaceFlinger's renderer is not prepared to handle cropping in the face of arbitrary |
| // rotation. To see the problem observe that if we have a square parent, and a child |
| // of the same size, then we rotate the child 45 degrees around it's center, the child |
| // must now be cropped to a non rectangular 8 sided region. |
| // |
| // Of course we can fix this in the future. For now, we are lucky, SurfaceControl is |
| // private API, and the WindowManager only uses rotation in one case, which is on a top |
| // level layer in which cropping is not an issue. |
| // |
| // However given that abuse of rotation matrices could lead to surfaces extending outside |
| // of cropped areas, we need to prevent non-root clients without permission ACCESS_SURFACE_FLINGER |
| // (a.k.a. everyone except WindowManager and tests) from setting non rectangle preserving |
| // transformations. |
| if (layer->setMatrix(s.matrix, callingThreadHasUnscopedSurfaceFlingerAccess())) |
| flags |= eTraversalNeeded; |
| } |
| if (what & layer_state_t::eTransparentRegionChanged) { |
| if (layer->setTransparentRegionHint(s.transparentRegion)) |
| flags |= eTraversalNeeded; |
| } |
| if (what & layer_state_t::eFlagsChanged) { |
| if (layer->setFlags(s.flags, s.mask)) |
| flags |= eTraversalNeeded; |
| } |
| if (what & layer_state_t::eCropChanged_legacy) { |
| if (layer->setCrop_legacy(s.crop_legacy, !geometryAppliesWithResize)) |
| flags |= eTraversalNeeded; |
| } |
| if (what & layer_state_t::eLayerStackChanged) { |
| ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer); |
| // We only allow setting layer stacks for top level layers, |
| // everything else inherits layer stack from its parent. |
| if (layer->hasParent()) { |
| ALOGE("Attempt to set layer stack on layer with parent (%s) is invalid", |
| layer->getName().string()); |
| } else if (idx < 0) { |
| ALOGE("Attempt to set layer stack on layer without parent (%s) that " |
| "that also does not appear in the top level layer list. Something" |
| " has gone wrong.", layer->getName().string()); |
| } else if (layer->setLayerStack(s.layerStack)) { |
| mCurrentState.layersSortedByZ.removeAt(idx); |
| mCurrentState.layersSortedByZ.add(layer); |
| // we need traversal (state changed) |
| // AND transaction (list changed) |
| flags |= eTransactionNeeded|eTraversalNeeded|eDisplayLayerStackChanged; |
| } |
| } |
| if (what & layer_state_t::eDeferTransaction_legacy) { |
| if (s.barrierHandle_legacy != nullptr) { |
| layer->deferTransactionUntil_legacy(s.barrierHandle_legacy, s.frameNumber_legacy); |
| } else if (s.barrierGbp_legacy != nullptr) { |
| const sp<IGraphicBufferProducer>& gbp = s.barrierGbp_legacy; |
| if (authenticateSurfaceTextureLocked(gbp)) { |
| const auto& otherLayer = |
| (static_cast<MonitoredProducer*>(gbp.get()))->getLayer(); |
| layer->deferTransactionUntil_legacy(otherLayer, s.frameNumber_legacy); |
| } else { |
| ALOGE("Attempt to defer transaction to to an" |
| " unrecognized GraphicBufferProducer"); |
| } |
| } |
| // We don't trigger a traversal here because if no other state is |
| // changed, we don't want this to cause any more work |
| } |
| if (what & layer_state_t::eReparent) { |
| bool hadParent = layer->hasParent(); |
| if (layer->reparent(s.parentHandleForChild)) { |
| if (!hadParent) { |
| mCurrentState.layersSortedByZ.remove(layer); |
| } |
| flags |= eTransactionNeeded|eTraversalNeeded; |
| } |
| } |
| if (what & layer_state_t::eReparentChildren) { |
| if (layer->reparentChildren(s.reparentHandle)) { |
| flags |= eTransactionNeeded|eTraversalNeeded; |
| } |
| } |
| if (what & layer_state_t::eDetachChildren) { |
| layer->detachChildren(); |
| } |
| if (what & layer_state_t::eOverrideScalingModeChanged) { |
| layer->setOverrideScalingMode(s.overrideScalingMode); |
| // We don't trigger a traversal here because if no other state is |
| // changed, we don't want this to cause any more work |
| } |
| if (what & layer_state_t::eTransformChanged) { |
| if (layer->setTransform(s.transform)) flags |= eTraversalNeeded; |
| } |
| if (what & layer_state_t::eTransformToDisplayInverseChanged) { |
| if (layer->setTransformToDisplayInverse(s.transformToDisplayInverse)) |
| flags |= eTraversalNeeded; |
| } |
| if (what & layer_state_t::eCropChanged) { |
| if (layer->setCrop(s.crop)) flags |= eTraversalNeeded; |
| } |
| if (what & layer_state_t::eBufferChanged) { |
| if (layer->setBuffer(s.buffer)) flags |= eTraversalNeeded; |
| } |
| if (what & layer_state_t::eAcquireFenceChanged) { |
| if (layer->setAcquireFence(s.acquireFence)) flags |= eTraversalNeeded; |
| } |
| if (what & layer_state_t::eDataspaceChanged) { |
| if (layer->setDataspace(s.dataspace)) flags |= eTraversalNeeded; |
| } |
| if (what & layer_state_t::eHdrMetadataChanged) { |
| if (layer->setHdrMetadata(s.hdrMetadata)) flags |= eTraversalNeeded; |
| } |
| if (what & layer_state_t::eSurfaceDamageRegionChanged) { |
| if (layer->setSurfaceDamageRegion(s.surfaceDamageRegion)) flags |= eTraversalNeeded; |
| } |
| if (what & layer_state_t::eApiChanged) { |
| if (layer->setApi(s.api)) flags |= eTraversalNeeded; |
| } |
| if (what & layer_state_t::eSidebandStreamChanged) { |
| if (layer->setSidebandStream(s.sidebandStream)) flags |= eTraversalNeeded; |
| } |
| return flags; |
| } |
| |
| void SurfaceFlinger::setDestroyStateLocked(const ComposerState& composerState) { |
| const layer_state_t& state = composerState.state; |
| sp<Client> client(static_cast<Client*>(composerState.client.get())); |
| |
| sp<Layer> layer(client->getLayerUser(state.surface)); |
| if (layer == nullptr) { |
| return; |
| } |
| |
| if (layer->isPendingRemoval()) { |
| ALOGW("Attempting to destroy on removed layer: %s", layer->getName().string()); |
| return; |
| } |
| |
| if (state.what & layer_state_t::eDestroySurface) { |
| removeLayerLocked(mStateLock, layer); |
| } |
| } |
| |
| status_t SurfaceFlinger::createLayer( |
| const String8& name, |
| const sp<Client>& client, |
| uint32_t w, uint32_t h, PixelFormat format, uint32_t flags, |
| int32_t windowType, int32_t ownerUid, sp<IBinder>* handle, |
| sp<IGraphicBufferProducer>* gbp, sp<Layer>* parent) |
| { |
| if (int32_t(w|h) < 0) { |
| ALOGE("createLayer() failed, w or h is negative (w=%d, h=%d)", |
| int(w), int(h)); |
| return BAD_VALUE; |
| } |
| |
| status_t result = NO_ERROR; |
| |
| sp<Layer> layer; |
| |
| String8 uniqueName = getUniqueLayerName(name); |
| |
| switch (flags & ISurfaceComposerClient::eFXSurfaceMask) { |
| case ISurfaceComposerClient::eFXSurfaceBufferQueue: |
| result = createBufferQueueLayer(client, uniqueName, w, h, flags, format, handle, gbp, |
| &layer); |
| |
| break; |
| case ISurfaceComposerClient::eFXSurfaceBufferState: |
| result = createBufferStateLayer(client, uniqueName, w, h, flags, handle, &layer); |
| break; |
| case ISurfaceComposerClient::eFXSurfaceColor: |
| result = createColorLayer(client, |
| uniqueName, w, h, flags, |
| handle, &layer); |
| break; |
| case ISurfaceComposerClient::eFXSurfaceContainer: |
| result = createContainerLayer(client, |
| uniqueName, w, h, flags, |
| handle, &layer); |
| break; |
| default: |
| result = BAD_VALUE; |
| break; |
| } |
| |
| if (result != NO_ERROR) { |
| return result; |
| } |
| |
| // window type is WINDOW_TYPE_DONT_SCREENSHOT from SurfaceControl.java |
| // TODO b/64227542 |
| if (windowType == 441731) { |
| windowType = 2024; // TYPE_NAVIGATION_BAR_PANEL |
| layer->setPrimaryDisplayOnly(); |
| } |
| |
| layer->setInfo(windowType, ownerUid); |
| |
| result = addClientLayer(client, *handle, *gbp, layer, *parent); |
| if (result != NO_ERROR) { |
| return result; |
| } |
| mInterceptor->saveSurfaceCreation(layer); |
| |
| setTransactionFlags(eTransactionNeeded); |
| return result; |
| } |
| |
| String8 SurfaceFlinger::getUniqueLayerName(const String8& name) |
| { |
| bool matchFound = true; |
| uint32_t dupeCounter = 0; |
| |
| // Tack on our counter whether there is a hit or not, so everyone gets a tag |
| String8 uniqueName = name + "#" + String8(std::to_string(dupeCounter).c_str()); |
| |
| // Grab the state lock since we're accessing mCurrentState |
| Mutex::Autolock lock(mStateLock); |
| |
| // Loop over layers until we're sure there is no matching name |
| while (matchFound) { |
| matchFound = false; |
| mCurrentState.traverseInZOrder([&](Layer* layer) { |
| if (layer->getName() == uniqueName) { |
| matchFound = true; |
| uniqueName = name + "#" + String8(std::to_string(++dupeCounter).c_str()); |
| } |
| }); |
| } |
| |
| ALOGV_IF(dupeCounter > 0, "duplicate layer name: changing %s to %s", name.c_str(), |
| uniqueName.c_str()); |
| |
| return uniqueName; |
| } |
| |
| status_t SurfaceFlinger::createBufferQueueLayer(const sp<Client>& client, const String8& name, |
| uint32_t w, uint32_t h, uint32_t flags, |
| PixelFormat& format, sp<IBinder>* handle, |
| sp<IGraphicBufferProducer>* gbp, |
| sp<Layer>* outLayer) { |
| // initialize the surfaces |
| switch (format) { |
| case PIXEL_FORMAT_TRANSPARENT: |
| case PIXEL_FORMAT_TRANSLUCENT: |
| format = PIXEL_FORMAT_RGBA_8888; |
| break; |
| case PIXEL_FORMAT_OPAQUE: |
| format = PIXEL_FORMAT_RGBX_8888; |
| break; |
| } |
| |
| sp<BufferQueueLayer> layer = |
| new BufferQueueLayer(LayerCreationArgs(this, client, name, w, h, flags)); |
| status_t err = layer->setDefaultBufferProperties(w, h, format); |
| if (err == NO_ERROR) { |
| *handle = layer->getHandle(); |
| *gbp = layer->getProducer(); |
| *outLayer = layer; |
| } |
| |
| ALOGE_IF(err, "createBufferQueueLayer() failed (%s)", strerror(-err)); |
| return err; |
| } |
| |
| status_t SurfaceFlinger::createBufferStateLayer(const sp<Client>& client, const String8& name, |
| uint32_t w, uint32_t h, uint32_t flags, |
| sp<IBinder>* handle, sp<Layer>* outLayer) { |
| sp<BufferStateLayer> layer = |
| new BufferStateLayer(LayerCreationArgs(this, client, name, w, h, flags)); |
| *handle = layer->getHandle(); |
| *outLayer = layer; |
| |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::createColorLayer(const sp<Client>& client, |
| const String8& name, uint32_t w, uint32_t h, uint32_t flags, |
| sp<IBinder>* handle, sp<Layer>* outLayer) |
| { |
| *outLayer = new ColorLayer(LayerCreationArgs(this, client, name, w, h, flags)); |
| *handle = (*outLayer)->getHandle(); |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::createContainerLayer(const sp<Client>& client, |
| const String8& name, uint32_t w, uint32_t h, uint32_t flags, |
| sp<IBinder>* handle, sp<Layer>* outLayer) |
| { |
| *outLayer = new ContainerLayer(LayerCreationArgs(this, client, name, w, h, flags)); |
| *handle = (*outLayer)->getHandle(); |
| return NO_ERROR; |
| } |
| |
| |
| status_t SurfaceFlinger::onLayerRemoved(const sp<Client>& client, const sp<IBinder>& handle) |
| { |
| // called by a client when it wants to remove a Layer |
| status_t err = NO_ERROR; |
| sp<Layer> l(client->getLayerUser(handle)); |
| if (l != nullptr) { |
| mInterceptor->saveSurfaceDeletion(l); |
| err = removeLayer(l); |
| ALOGE_IF(err<0 && err != NAME_NOT_FOUND, |
| "error removing layer=%p (%s)", l.get(), strerror(-err)); |
| } |
| return err; |
| } |
| |
| status_t SurfaceFlinger::onLayerDestroyed(const wp<Layer>& layer) |
| { |
| // called by ~LayerCleaner() when all references to the IBinder (handle) |
| // are gone |
| sp<Layer> l = layer.promote(); |
| if (l == nullptr) { |
| // The layer has already been removed, carry on |
| return NO_ERROR; |
| } |
| // If we have a parent, then we can continue to live as long as it does. |
| return removeLayer(l, true); |
| } |
| |
| // --------------------------------------------------------------------------- |
| |
| void SurfaceFlinger::onInitializeDisplays() { |
| const auto displayToken = mDisplayTokens[DisplayDevice::DISPLAY_PRIMARY]; |
| if (!displayToken) return; |
| |
| // reset screen orientation and use primary layer stack |
| Vector<ComposerState> state; |
| Vector<DisplayState> displays; |
| DisplayState d; |
| d.what = DisplayState::eDisplayProjectionChanged | |
| DisplayState::eLayerStackChanged; |
| d.token = displayToken; |
| d.layerStack = 0; |
| d.orientation = DisplayState::eOrientationDefault; |
| d.frame.makeInvalid(); |
| d.viewport.makeInvalid(); |
| d.width = 0; |
| d.height = 0; |
| displays.add(d); |
| setTransactionState(state, displays, 0); |
| |
| const auto display = getDisplayDevice(displayToken); |
| if (!display) return; |
| |
| setPowerModeInternal(display, HWC_POWER_MODE_NORMAL, /*stateLockHeld*/ false); |
| |
| const auto activeConfig = getHwComposer().getActiveConfig(display->getId()); |
| const nsecs_t period = activeConfig->getVsyncPeriod(); |
| mAnimFrameTracker.setDisplayRefreshPeriod(period); |
| |
| // Use phase of 0 since phase is not known. |
| // Use latency of 0, which will snap to the ideal latency. |
| DisplayStatInfo stats{0 /* vsyncTime */, period /* vsyncPeriod */}; |
| setCompositorTimingSnapped(stats, 0); |
| } |
| |
| void SurfaceFlinger::initializeDisplays() { |
| // Async since we may be called from the main thread. |
| postMessageAsync(new LambdaMessage([this] { onInitializeDisplays(); })); |
| } |
| |
| void SurfaceFlinger::setPowerModeInternal(const sp<DisplayDevice>& display, int mode, |
| bool stateLockHeld) { |
| const int32_t displayId = display->getId(); |
| ALOGD("Setting power mode %d on display %d", mode, displayId); |
| |
| int currentMode = display->getPowerMode(); |
| if (mode == currentMode) { |
| return; |
| } |
| |
| if (display->isVirtual()) { |
| ALOGW("Trying to set power mode for virtual display"); |
| return; |
| } |
| |
| display->setPowerMode(mode); |
| |
| if (mInterceptor->isEnabled()) { |
| ConditionalLock lock(mStateLock, !stateLockHeld); |
| ssize_t idx = mCurrentState.displays.indexOfKey(display->getDisplayToken()); |
| if (idx < 0) { |
| ALOGW("Surface Interceptor SavePowerMode: invalid display token"); |
| return; |
| } |
| mInterceptor->savePowerModeUpdate(mCurrentState.displays.valueAt(idx).sequenceId, mode); |
| } |
| |
| int32_t type = display->getDisplayType(); |
| if (currentMode == HWC_POWER_MODE_OFF) { |
| // Turn on the display |
| getHwComposer().setPowerMode(type, mode); |
| if (display->isPrimary() && mode != HWC_POWER_MODE_DOZE_SUSPEND) { |
| // FIXME: eventthread only knows about the main display right now |
| if (mUseScheduler) { |
| mScheduler->onScreenAcquired(mAppConnectionHandle); |
| } else { |
| mEventThread->onScreenAcquired(); |
| } |
| resyncToHardwareVsync(true); |
| } |
| |
| mVisibleRegionsDirty = true; |
| mHasPoweredOff = true; |
| repaintEverything(); |
| |
| struct sched_param param = {0}; |
| param.sched_priority = 1; |
| if (sched_setscheduler(0, SCHED_FIFO, ¶m) != 0) { |
| ALOGW("Couldn't set SCHED_FIFO on display on"); |
| } |
| } else if (mode == HWC_POWER_MODE_OFF) { |
| // Turn off the display |
| struct sched_param param = {0}; |
| if (sched_setscheduler(0, SCHED_OTHER, ¶m) != 0) { |
| ALOGW("Couldn't set SCHED_OTHER on display off"); |
| } |
| |
| if (display->isPrimary() && currentMode != HWC_POWER_MODE_DOZE_SUSPEND) { |
| if (mUseScheduler) { |
| mScheduler->disableHardwareVsync(true); |
| } else { |
| disableHardwareVsync(true); // also cancels any in-progress resync |
| } |
| // FIXME: eventthread only knows about the main display right now |
| if (mUseScheduler) { |
| mScheduler->onScreenReleased(mAppConnectionHandle); |
| } else { |
| mEventThread->onScreenReleased(); |
| } |
| } |
| |
| getHwComposer().setPowerMode(type, mode); |
| mVisibleRegionsDirty = true; |
| // from this point on, SF will stop drawing on this display |
| } else if (mode == HWC_POWER_MODE_DOZE || |
| mode == HWC_POWER_MODE_NORMAL) { |
| // Update display while dozing |
| getHwComposer().setPowerMode(type, mode); |
| if (display->isPrimary() && currentMode == HWC_POWER_MODE_DOZE_SUSPEND) { |
| // FIXME: eventthread only knows about the main display right now |
| if (mUseScheduler) { |
| mScheduler->onScreenAcquired(mAppConnectionHandle); |
| } else { |
| mEventThread->onScreenAcquired(); |
| } |
| resyncToHardwareVsync(true); |
| } |
| } else if (mode == HWC_POWER_MODE_DOZE_SUSPEND) { |
| // Leave display going to doze |
| if (display->isPrimary()) { |
| if (mUseScheduler) { |
| mScheduler->disableHardwareVsync(true); |
| } else { |
| disableHardwareVsync(true); // also cancels any in-progress resync |
| } |
| // FIXME: eventthread only knows about the main display right now |
| if (mUseScheduler) { |
| mScheduler->onScreenReleased(mAppConnectionHandle); |
| } else { |
| mEventThread->onScreenReleased(); |
| } |
| } |
| getHwComposer().setPowerMode(type, mode); |
| } else { |
| ALOGE("Attempting to set unknown power mode: %d\n", mode); |
| getHwComposer().setPowerMode(type, mode); |
| } |
| |
| ALOGD("Finished setting power mode %d on display %d", mode, displayId); |
| } |
| |
| void SurfaceFlinger::setPowerMode(const sp<IBinder>& displayToken, int mode) { |
| postMessageSync(new LambdaMessage([&] { |
| const auto display = getDisplayDevice(displayToken); |
| if (!display) { |
| ALOGE("Attempt to set power mode %d for invalid display token %p", mode, |
| displayToken.get()); |
| } else if (display->isVirtual()) { |
| ALOGW("Attempt to set power mode %d for virtual display", mode); |
| } else { |
| setPowerModeInternal(display, mode, /*stateLockHeld*/ false); |
| } |
| })); |
| } |
| |
| // --------------------------------------------------------------------------- |
| |
| status_t SurfaceFlinger::doDump(int fd, const Vector<String16>& args, bool asProto) |
| NO_THREAD_SAFETY_ANALYSIS { |
| String8 result; |
| |
| IPCThreadState* ipc = IPCThreadState::self(); |
| const int pid = ipc->getCallingPid(); |
| const int uid = ipc->getCallingUid(); |
| |
| if ((uid != AID_SHELL) && |
| !PermissionCache::checkPermission(sDump, pid, uid)) { |
| result.appendFormat("Permission Denial: " |
| "can't dump SurfaceFlinger from pid=%d, uid=%d\n", pid, uid); |
| } else { |
| // Try to get the main lock, but give up after one second |
| // (this would indicate SF is stuck, but we want to be able to |
| // print something in dumpsys). |
| status_t err = mStateLock.timedLock(s2ns(1)); |
| bool locked = (err == NO_ERROR); |
| if (!locked) { |
| result.appendFormat( |
| "SurfaceFlinger appears to be unresponsive (%s [%d]), " |
| "dumping anyways (no locks held)\n", strerror(-err), err); |
| } |
| |
| bool dumpAll = true; |
| size_t index = 0; |
| size_t numArgs = args.size(); |
| |
| if (numArgs) { |
| if ((index < numArgs) && |
| (args[index] == String16("--list"))) { |
| index++; |
| listLayersLocked(args, index, result); |
| dumpAll = false; |
| } |
| |
| if ((index < numArgs) && |
| (args[index] == String16("--latency"))) { |
| index++; |
| dumpStatsLocked(args, index, result); |
| dumpAll = false; |
| } |
| |
| if ((index < numArgs) && |
| (args[index] == String16("--latency-clear"))) { |
| index++; |
| clearStatsLocked(args, index, result); |
| dumpAll = false; |
| } |
| |
| if ((index < numArgs) && |
| (args[index] == String16("--dispsync"))) { |
| index++; |
| mPrimaryDispSync->dump(result); |
| dumpAll = false; |
| } |
| |
| if ((index < numArgs) && |
| (args[index] == String16("--static-screen"))) { |
| index++; |
| dumpStaticScreenStats(result); |
| dumpAll = false; |
| } |
| |
| if ((index < numArgs) && |
| (args[index] == String16("--frame-events"))) { |
| index++; |
| dumpFrameEventsLocked(result); |
| dumpAll = false; |
| } |
| |
| if ((index < numArgs) && (args[index] == String16("--wide-color"))) { |
| index++; |
| dumpWideColorInfo(result); |
| dumpAll = false; |
| } |
| |
| if ((index < numArgs) && |
| (args[index] == String16("--enable-layer-stats"))) { |
| index++; |
| mLayerStats.enable(); |
| dumpAll = false; |
| } |
| |
| if ((index < numArgs) && |
| (args[index] == String16("--disable-layer-stats"))) { |
| index++; |
| mLayerStats.disable(); |
| dumpAll = false; |
| } |
| |
| if ((index < numArgs) && |
| (args[index] == String16("--clear-layer-stats"))) { |
| index++; |
| mLayerStats.clear(); |
| dumpAll = false; |
| } |
| |
| if ((index < numArgs) && |
| (args[index] == String16("--dump-layer-stats"))) { |
| index++; |
| mLayerStats.dump(result); |
| dumpAll = false; |
| } |
| |
| if ((index < numArgs) && |
| (args[index] == String16("--frame-composition"))) { |
| index++; |
| dumpFrameCompositionInfo(result); |
| dumpAll = false; |
| } |
| |
| if ((index < numArgs) && |
| (args[index] == String16("--display-identification"))) { |
| index++; |
| dumpDisplayIdentificationData(result); |
| dumpAll = false; |
| } |
| |
| if ((index < numArgs) && (args[index] == String16("--timestats"))) { |
| index++; |
| mTimeStats.parseArgs(asProto, args, index, result); |
| dumpAll = false; |
| } |
| } |
| |
| if (dumpAll) { |
| if (asProto) { |
| LayersProto layersProto = dumpProtoInfo(LayerVector::StateSet::Current); |
| result.append(layersProto.SerializeAsString().c_str(), layersProto.ByteSize()); |
| } else { |
| dumpAllLocked(args, index, result); |
| } |
| } |
| |
| if (locked) { |
| mStateLock.unlock(); |
| } |
| } |
| write(fd, result.string(), result.size()); |
| return NO_ERROR; |
| } |
| |
| void SurfaceFlinger::listLayersLocked(const Vector<String16>& /* args */, |
| size_t& /* index */, String8& result) const |
| { |
| mCurrentState.traverseInZOrder([&](Layer* layer) { |
| result.appendFormat("%s\n", layer->getName().string()); |
| }); |
| } |
| |
| void SurfaceFlinger::dumpStatsLocked(const Vector<String16>& args, size_t& index, |
| String8& result) const |
| { |
| String8 name; |
| if (index < args.size()) { |
| name = String8(args[index]); |
| index++; |
| } |
| |
| if (const auto displayId = DisplayDevice::DISPLAY_PRIMARY; |
| getHwComposer().isConnected(displayId)) { |
| const auto activeConfig = getBE().mHwc->getActiveConfig(displayId); |
| const nsecs_t period = activeConfig->getVsyncPeriod(); |
| result.appendFormat("%" PRId64 "\n", period); |
| } |
| |
| if (name.isEmpty()) { |
| mAnimFrameTracker.dumpStats(result); |
| } else { |
| mCurrentState.traverseInZOrder([&](Layer* layer) { |
| if (name == layer->getName()) { |
| layer->dumpFrameStats(result); |
| } |
| }); |
| } |
| } |
| |
| void SurfaceFlinger::clearStatsLocked(const Vector<String16>& args, size_t& index, |
| String8& /* result */) |
| { |
| String8 name; |
| if (index < args.size()) { |
| name = String8(args[index]); |
| index++; |
| } |
| |
| mCurrentState.traverseInZOrder([&](Layer* layer) { |
| if (name.isEmpty() || (name == layer->getName())) { |
| layer->clearFrameStats(); |
| } |
| }); |
| |
| mAnimFrameTracker.clearStats(); |
| } |
| |
| // This should only be called from the main thread. Otherwise it would need |
| // the lock and should use mCurrentState rather than mDrawingState. |
| void SurfaceFlinger::logFrameStats() { |
| mDrawingState.traverseInZOrder([&](Layer* layer) { |
| layer->logFrameStats(); |
| }); |
| |
| mAnimFrameTracker.logAndResetStats(String8("<win-anim>")); |
| } |
| |
| void SurfaceFlinger::appendSfConfigString(String8& result) const |
| { |
| result.append(" [sf"); |
| |
| if (isLayerTripleBufferingDisabled()) |
| result.append(" DISABLE_TRIPLE_BUFFERING"); |
| |
| result.appendFormat(" PRESENT_TIME_OFFSET=%" PRId64 , dispSyncPresentTimeOffset); |
| result.appendFormat(" FORCE_HWC_FOR_RBG_TO_YUV=%d", useHwcForRgbToYuv); |
| result.appendFormat(" MAX_VIRT_DISPLAY_DIM=%" PRIu64, maxVirtualDisplaySize); |
| result.appendFormat(" RUNNING_WITHOUT_SYNC_FRAMEWORK=%d", !hasSyncFramework); |
| result.appendFormat(" NUM_FRAMEBUFFER_SURFACE_BUFFERS=%" PRId64, |
| maxFrameBufferAcquiredBuffers); |
| result.append("]"); |
| } |
| |
| void SurfaceFlinger::dumpStaticScreenStats(String8& result) const |
| { |
| result.appendFormat("Static screen stats:\n"); |
| for (size_t b = 0; b < SurfaceFlingerBE::NUM_BUCKETS - 1; ++b) { |
| float bucketTimeSec = getBE().mFrameBuckets[b] / 1e9; |
| float percent = 100.0f * |
| static_cast<float>(getBE().mFrameBuckets[b]) / getBE().mTotalTime; |
| result.appendFormat(" < %zd frames: %.3f s (%.1f%%)\n", |
| b + 1, bucketTimeSec, percent); |
| } |
| float bucketTimeSec = getBE().mFrameBuckets[SurfaceFlingerBE::NUM_BUCKETS - 1] / 1e9; |
| float percent = 100.0f * |
| static_cast<float>(getBE().mFrameBuckets[SurfaceFlingerBE::NUM_BUCKETS - 1]) / getBE().mTotalTime; |
| result.appendFormat(" %zd+ frames: %.3f s (%.1f%%)\n", |
| SurfaceFlingerBE::NUM_BUCKETS - 1, bucketTimeSec, percent); |
| } |
| |
| void SurfaceFlinger::recordBufferingStats(const char* layerName, |
| std::vector<OccupancyTracker::Segment>&& history) { |
| Mutex::Autolock lock(getBE().mBufferingStatsMutex); |
| auto& stats = getBE().mBufferingStats[layerName]; |
| for (const auto& segment : history) { |
| if (!segment.usedThirdBuffer) { |
| stats.twoBufferTime += segment.totalTime; |
| } |
| if (segment.occupancyAverage < 1.0f) { |
| stats.doubleBufferedTime += segment.totalTime; |
| } else if (segment.occupancyAverage < 2.0f) { |
| stats.tripleBufferedTime += segment.totalTime; |
| } |
| ++stats.numSegments; |
| stats.totalTime += segment.totalTime; |
| } |
| } |
| |
| void SurfaceFlinger::dumpFrameEventsLocked(String8& result) { |
| result.appendFormat("Layer frame timestamps:\n"); |
| |
| const LayerVector& currentLayers = mCurrentState.layersSortedByZ; |
| const size_t count = currentLayers.size(); |
| for (size_t i=0 ; i<count ; i++) { |
| currentLayers[i]->dumpFrameEvents(result); |
| } |
| } |
| |
| void SurfaceFlinger::dumpBufferingStats(String8& result) const { |
| result.append("Buffering stats:\n"); |
| result.append(" [Layer name] <Active time> <Two buffer> " |
| "<Double buffered> <Triple buffered>\n"); |
| Mutex::Autolock lock(getBE().mBufferingStatsMutex); |
| typedef std::tuple<std::string, float, float, float> BufferTuple; |
| std::map<float, BufferTuple, std::greater<float>> sorted; |
| for (const auto& statsPair : getBE().mBufferingStats) { |
| const char* name = statsPair.first.c_str(); |
| const SurfaceFlingerBE::BufferingStats& stats = statsPair.second; |
| if (stats.numSegments == 0) { |
| continue; |
| } |
| float activeTime = ns2ms(stats.totalTime) / 1000.0f; |
| float twoBufferRatio = static_cast<float>(stats.twoBufferTime) / |
| stats.totalTime; |
| float doubleBufferRatio = static_cast<float>( |
| stats.doubleBufferedTime) / stats.totalTime; |
| float tripleBufferRatio = static_cast<float>( |
| stats.tripleBufferedTime) / stats.totalTime; |
| sorted.insert({activeTime, {name, twoBufferRatio, |
| doubleBufferRatio, tripleBufferRatio}}); |
| } |
| for (const auto& sortedPair : sorted) { |
| float activeTime = sortedPair.first; |
| const BufferTuple& values = sortedPair.second; |
| result.appendFormat(" [%s] %.2f %.3f %.3f %.3f\n", |
| std::get<0>(values).c_str(), activeTime, |
| std::get<1>(values), std::get<2>(values), |
| std::get<3>(values)); |
| } |
| result.append("\n"); |
| } |
| |
| void SurfaceFlinger::dumpDisplayIdentificationData(String8& result) const { |
| for (const auto& [token, display] : mDisplays) { |
| const int32_t displayId = display->getId(); |
| const auto hwcDisplayId = getHwComposer().getHwcDisplayId(displayId); |
| if (!hwcDisplayId) { |
| continue; |
| } |
| |
| result.appendFormat("Display %d (HWC display %" PRIu64 "): ", displayId, *hwcDisplayId); |
| uint8_t port; |
| DisplayIdentificationData data; |
| if (!getHwComposer().getDisplayIdentificationData(*hwcDisplayId, &port, &data)) { |
| result.append("no identification data\n"); |
| continue; |
| } |
| |
| if (!isEdid(data)) { |
| result.append("unknown identification data: "); |
| for (uint8_t byte : data) { |
| result.appendFormat("%x ", byte); |
| } |
| result.append("\n"); |
| continue; |
| } |
| |
| const auto edid = parseEdid(data); |
| if (!edid) { |
| result.append("invalid EDID: "); |
| for (uint8_t byte : data) { |
| result.appendFormat("%x ", byte); |
| } |
| result.append("\n"); |
| continue; |
| } |
| |
| result.appendFormat("port=%u pnpId=%s displayName=\"", port, edid->pnpId.data()); |
| result.append(edid->displayName.data(), edid->displayName.length()); |
| result.append("\"\n"); |
| } |
| result.append("\n"); |
| } |
| |
| void SurfaceFlinger::dumpWideColorInfo(String8& result) const { |
| result.appendFormat("Device has wide color display: %d\n", hasWideColorDisplay); |
| result.appendFormat("Device uses color management: %d\n", useColorManagement); |
| result.appendFormat("DisplayColorSetting: %s\n", |
| decodeDisplayColorSetting(mDisplayColorSetting).c_str()); |
| |
| // TODO: print out if wide-color mode is active or not |
| |
| for (const auto& [token, display] : mDisplays) { |
| const int32_t displayId = display->getId(); |
| if (displayId == DisplayDevice::DISPLAY_ID_INVALID) { |
| continue; |
| } |
| |
| result.appendFormat("Display %d color modes:\n", displayId); |
| std::vector<ColorMode> modes = getHwComposer().getColorModes(displayId); |
| for (auto&& mode : modes) { |
| result.appendFormat(" %s (%d)\n", decodeColorMode(mode).c_str(), mode); |
| } |
| |
| ColorMode currentMode = display->getActiveColorMode(); |
| result.appendFormat(" Current color mode: %s (%d)\n", |
| decodeColorMode(currentMode).c_str(), currentMode); |
| } |
| result.append("\n"); |
| } |
| |
| void SurfaceFlinger::dumpFrameCompositionInfo(String8& result) const { |
| std::string stringResult; |
| |
| for (const auto& [token, display] : mDisplays) { |
| const auto displayId = display->getId(); |
| if (displayId == DisplayDevice::DISPLAY_ID_INVALID) { |
| continue; |
| } |
| |
| const auto& compositionInfoIt = getBE().mEndOfFrameCompositionInfo.find(displayId); |
| if (compositionInfoIt == getBE().mEndOfFrameCompositionInfo.end()) { |
| break; |
| } |
| const auto& compositionInfoList = compositionInfoIt->second; |
| stringResult += base::StringPrintf("Display: %d\n", displayId); |
| stringResult += base::StringPrintf("numComponents: %zu\n", compositionInfoList.size()); |
| for (const auto& compositionInfo : compositionInfoList) { |
| compositionInfo.dump(stringResult, nullptr); |
| stringResult += base::StringPrintf("\n"); |
| } |
| } |
| |
| result.append(stringResult.c_str()); |
| } |
| |
| LayersProto SurfaceFlinger::dumpProtoInfo(LayerVector::StateSet stateSet) const { |
| LayersProto layersProto; |
| const bool useDrawing = stateSet == LayerVector::StateSet::Drawing; |
| const State& state = useDrawing ? mDrawingState : mCurrentState; |
| state.traverseInZOrder([&](Layer* layer) { |
| LayerProto* layerProto = layersProto.add_layers(); |
| layer->writeToProto(layerProto, stateSet); |
| }); |
| |
| return layersProto; |
| } |
| |
| LayersProto SurfaceFlinger::dumpVisibleLayersProtoInfo(const DisplayDevice& display) const { |
| LayersProto layersProto; |
| |
| SizeProto* resolution = layersProto.mutable_resolution(); |
| resolution->set_w(display.getWidth()); |
| resolution->set_h(display.getHeight()); |
| |
| layersProto.set_color_mode(decodeColorMode(display.getActiveColorMode())); |
| layersProto.set_color_transform(decodeColorTransform(display.getColorTransform())); |
| layersProto.set_global_transform(static_cast<int32_t>(display.getOrientationTransform())); |
| |
| const int32_t displayId = display.getId(); |
| mDrawingState.traverseInZOrder([&](Layer* layer) { |
| if (!layer->visibleRegion.isEmpty() && layer->getBE().mHwcLayers.count(displayId)) { |
| LayerProto* layerProto = layersProto.add_layers(); |
| layer->writeToProto(layerProto, displayId); |
| } |
| }); |
| |
| return layersProto; |
| } |
| |
| void SurfaceFlinger::dumpAllLocked(const Vector<String16>& args, size_t& index, |
| String8& result) const |
| { |
| bool colorize = false; |
| if (index < args.size() |
| && (args[index] == String16("--color"))) { |
| colorize = true; |
| index++; |
| } |
| |
| Colorizer colorizer(colorize); |
| |
| // figure out if we're stuck somewhere |
| const nsecs_t now = systemTime(); |
| const nsecs_t inTransaction(mDebugInTransaction); |
| nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0; |
| |
| /* |
| * Dump library configuration. |
| */ |
| |
| colorizer.bold(result); |
| result.append("Build configuration:"); |
| colorizer.reset(result); |
| appendSfConfigString(result); |
| appendUiConfigString(result); |
| appendGuiConfigString(result); |
| result.append("\n"); |
| |
| result.append("\nDisplay identification data:\n"); |
| dumpDisplayIdentificationData(result); |
| |
| result.append("\nWide-Color information:\n"); |
| dumpWideColorInfo(result); |
| |
| colorizer.bold(result); |
| result.append("Sync configuration: "); |
| colorizer.reset(result); |
| result.append(SyncFeatures::getInstance().toString()); |
| result.append("\n"); |
| |
| colorizer.bold(result); |
| result.append("DispSync configuration:\n"); |
| colorizer.reset(result); |
| |
| const auto [sfEarlyOffset, appEarlyOffset] = mVsyncModulator.getEarlyOffsets(); |
| const auto [sfEarlyGlOffset, appEarlyGlOffset] = mVsyncModulator.getEarlyGlOffsets(); |
| if (const auto displayId = DisplayDevice::DISPLAY_PRIMARY; |
| getHwComposer().isConnected(displayId)) { |
| const auto activeConfig = getHwComposer().getActiveConfig(displayId); |
| result.appendFormat("Display %d: " |
| "app phase %" PRId64 " ns, " |
| "sf phase %" PRId64 " ns, " |
| "early app phase %" PRId64 " ns, " |
| "early sf phase %" PRId64 " ns, " |
| "early app gl phase %" PRId64 " ns, " |
| "early sf gl phase %" PRId64 " ns, " |
| "present offset %" PRId64 " ns (refresh %" PRId64 " ns)", |
| displayId, |
| vsyncPhaseOffsetNs, |
| sfVsyncPhaseOffsetNs, |
| appEarlyOffset, |
| sfEarlyOffset, |
| appEarlyGlOffset, |
| sfEarlyGlOffset, |
| dispSyncPresentTimeOffset, activeConfig->getVsyncPeriod()); |
| } |
| result.append("\n"); |
| |
| // Dump static screen stats |
| result.append("\n"); |
| dumpStaticScreenStats(result); |
| result.append("\n"); |
| |
| result.appendFormat("Missed frame count: %u\n\n", mFrameMissedCount.load()); |
| |
| dumpBufferingStats(result); |
| |
| /* |
| * Dump the visible layer list |
| */ |
| colorizer.bold(result); |
| result.appendFormat("Visible layers (count = %zu)\n", mNumLayers); |
| result.appendFormat("GraphicBufferProducers: %zu, max %zu\n", |
| mGraphicBufferProducerList.size(), mMaxGraphicBufferProducerListSize); |
| colorizer.reset(result); |
| |
| { |
| LayersProto layersProto = dumpProtoInfo(LayerVector::StateSet::Current); |
| auto layerTree = LayerProtoParser::generateLayerTree(layersProto); |
| result.append(LayerProtoParser::layerTreeToString(layerTree).c_str()); |
| result.append("\n"); |
| } |
| |
| result.append("\nFrame-Composition information:\n"); |
| dumpFrameCompositionInfo(result); |
| result.append("\n"); |
| |
| /* |
| * Dump Display state |
| */ |
| |
| colorizer.bold(result); |
| result.appendFormat("Displays (%zu entries)\n", mDisplays.size()); |
| colorizer.reset(result); |
| for (const auto& [token, display] : mDisplays) { |
| display->dump(result); |
| } |
| result.append("\n"); |
| |
| /* |
| * Dump SurfaceFlinger global state |
| */ |
| |
| colorizer.bold(result); |
| result.append("SurfaceFlinger global state:\n"); |
| colorizer.reset(result); |
| |
| HWComposer& hwc(getHwComposer()); |
| const auto display = getDefaultDisplayDeviceLocked(); |
| |
| getBE().mRenderEngine->dump(result); |
| |
| if (display) { |
| display->undefinedRegion.dump(result, "undefinedRegion"); |
| result.appendFormat(" orientation=%d, isPoweredOn=%d\n", display->getOrientation(), |
| display->isPoweredOn()); |
| } |
| result.appendFormat(" transaction-flags : %08x\n" |
| " gpu_to_cpu_unsupported : %d\n", |
| mTransactionFlags.load(), !mGpuToCpuSupported); |
| |
| if (display) { |
| const auto activeConfig = getHwComposer().getActiveConfig(display->getId()); |
| result.appendFormat(" refresh-rate : %f fps\n" |
| " x-dpi : %f\n" |
| " y-dpi : %f\n", |
| 1e9 / activeConfig->getVsyncPeriod(), activeConfig->getDpiX(), |
| activeConfig->getDpiY()); |
| } |
| |
| result.appendFormat(" transaction time: %f us\n", |
| inTransactionDuration/1000.0); |
| |
| result.appendFormat(" use Scheduler: %s\n", mUseScheduler ? "true" : "false"); |
| /* |
| * VSYNC state |
| */ |
| if (mUseScheduler) { |
| mScheduler->dump(mAppConnectionHandle, result); |
| } else { |
| mEventThread->dump(result); |
| } |
| result.append("\n"); |
| |
| /* |
| * Tracing state |
| */ |
| mTracing.dump(result); |
| result.append("\n"); |
| |
| /* |
| * HWC layer minidump |
| */ |
| for (const auto& [token, display] : mDisplays) { |
| const int32_t displayId = display->getId(); |
| if (displayId == DisplayDevice::DISPLAY_ID_INVALID) { |
| continue; |
| } |
| |
| result.appendFormat("Display %d HWC layers:\n", displayId); |
| Layer::miniDumpHeader(result); |
| mCurrentState.traverseInZOrder([&](Layer* layer) { layer->miniDump(result, displayId); }); |
| result.append("\n"); |
| } |
| |
| /* |
| * Dump HWComposer state |
| */ |
| colorizer.bold(result); |
| result.append("h/w composer state:\n"); |
| colorizer.reset(result); |
| bool hwcDisabled = mDebugDisableHWC || mDebugRegion; |
| result.appendFormat(" h/w composer %s\n", |
| hwcDisabled ? "disabled" : "enabled"); |
| hwc.dump(result); |
| |
| /* |
| * Dump gralloc state |
| */ |
| const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get()); |
| alloc.dump(result); |
| |
| /* |
| * Dump VrFlinger state if in use. |
| */ |
| if (mVrFlingerRequestsDisplay && mVrFlinger) { |
| result.append("VrFlinger state:\n"); |
| result.append(mVrFlinger->Dump().c_str()); |
| result.append("\n"); |
| } |
| } |
| |
| const Vector<sp<Layer>>& SurfaceFlinger::getLayerSortedByZForHwcDisplay(int32_t displayId) { |
| // Note: mStateLock is held here |
| for (const auto& [token, display] : mDisplays) { |
| if (display->getId() == displayId) { |
| return getDisplayDeviceLocked(token)->getVisibleLayersSortedByZ(); |
| } |
| } |
| |
| ALOGE("%s: Invalid display %d", __FUNCTION__, displayId); |
| static const Vector<sp<Layer>> empty; |
| return empty; |
| } |
| |
| bool SurfaceFlinger::startDdmConnection() |
| { |
| void* libddmconnection_dso = |
| dlopen("libsurfaceflinger_ddmconnection.so", RTLD_NOW); |
| if (!libddmconnection_dso) { |
| return false; |
| } |
| void (*DdmConnection_start)(const char* name); |
| DdmConnection_start = |
| (decltype(DdmConnection_start))dlsym(libddmconnection_dso, "DdmConnection_start"); |
| if (!DdmConnection_start) { |
| dlclose(libddmconnection_dso); |
| return false; |
| } |
| (*DdmConnection_start)(getServiceName()); |
| return true; |
| } |
| |
| void SurfaceFlinger::updateColorMatrixLocked() { |
| mat4 colorMatrix; |
| if (mGlobalSaturationFactor != 1.0f) { |
| // Rec.709 luma coefficients |
| float3 luminance{0.213f, 0.715f, 0.072f}; |
| luminance *= 1.0f - mGlobalSaturationFactor; |
| mat4 saturationMatrix = mat4( |
| vec4{luminance.r + mGlobalSaturationFactor, luminance.r, luminance.r, 0.0f}, |
| vec4{luminance.g, luminance.g + mGlobalSaturationFactor, luminance.g, 0.0f}, |
| vec4{luminance.b, luminance.b, luminance.b + mGlobalSaturationFactor, 0.0f}, |
| vec4{0.0f, 0.0f, 0.0f, 1.0f} |
| ); |
| colorMatrix = mClientColorMatrix * saturationMatrix * mDaltonizer(); |
| } else { |
| colorMatrix = mClientColorMatrix * mDaltonizer(); |
| } |
| |
| if (mCurrentState.colorMatrix != colorMatrix) { |
| mCurrentState.colorMatrix = colorMatrix; |
| mCurrentState.colorMatrixChanged = true; |
| setTransactionFlags(eTransactionNeeded); |
| } |
| } |
| |
| status_t SurfaceFlinger::CheckTransactCodeCredentials(uint32_t code) { |
| #pragma clang diagnostic push |
| #pragma clang diagnostic error "-Wswitch-enum" |
| switch (static_cast<ISurfaceComposerTag>(code)) { |
| // These methods should at minimum make sure that the client requested |
| // access to SF. |
| case BOOT_FINISHED: |
| case CLEAR_ANIMATION_FRAME_STATS: |
| case CREATE_CONNECTION: |
| case CREATE_DISPLAY: |
| case DESTROY_DISPLAY: |
| case ENABLE_VSYNC_INJECTIONS: |
| case GET_ACTIVE_COLOR_MODE: |
| case GET_ANIMATION_FRAME_STATS: |
| case GET_HDR_CAPABILITIES: |
| case SET_ACTIVE_CONFIG: |
| case SET_ACTIVE_COLOR_MODE: |
| case INJECT_VSYNC: |
| case SET_POWER_MODE: { |
| if (!callingThreadHasUnscopedSurfaceFlingerAccess()) { |
| IPCThreadState* ipc = IPCThreadState::self(); |
| ALOGE("Permission Denial: can't access SurfaceFlinger pid=%d, uid=%d", |
| ipc->getCallingPid(), ipc->getCallingUid()); |
| return PERMISSION_DENIED; |
| } |
| return OK; |
| } |
| case GET_LAYER_DEBUG_INFO: { |
| IPCThreadState* ipc = IPCThreadState::self(); |
| const int pid = ipc->getCallingPid(); |
| const int uid = ipc->getCallingUid(); |
| if ((uid != AID_SHELL) && !PermissionCache::checkPermission(sDump, pid, uid)) { |
| ALOGE("Layer debug info permission denied for pid=%d, uid=%d", pid, uid); |
| return PERMISSION_DENIED; |
| } |
| return OK; |
| } |
| // Used by apps to hook Choreographer to SurfaceFlinger. |
| case CREATE_DISPLAY_EVENT_CONNECTION: |
| // The following calls are currently used by clients that do not |
| // request necessary permissions. However, they do not expose any secret |
| // information, so it is OK to pass them. |
| case AUTHENTICATE_SURFACE: |
| case GET_ACTIVE_CONFIG: |
| case GET_BUILT_IN_DISPLAY: |
| case GET_DISPLAY_COLOR_MODES: |
| case GET_DISPLAY_CONFIGS: |
| case GET_DISPLAY_STATS: |
| case GET_SUPPORTED_FRAME_TIMESTAMPS: |
| // Calling setTransactionState is safe, because you need to have been |
| // granted a reference to Client* and Handle* to do anything with it. |
| case SET_TRANSACTION_STATE: |
| // Creating a scoped connection is safe, as per discussion in ISurfaceComposer.h |
| case CREATE_SCOPED_CONNECTION: |
| case GET_COMPOSITION_PREFERENCE: { |
| return OK; |
| } |
| case CAPTURE_LAYERS: |
| case CAPTURE_SCREEN: { |
| // codes that require permission check |
| IPCThreadState* ipc = IPCThreadState::self(); |
| const int pid = ipc->getCallingPid(); |
| const int uid = ipc->getCallingUid(); |
| if ((uid != AID_GRAPHICS) && |
| !PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) { |
| ALOGE("Permission Denial: can't read framebuffer pid=%d, uid=%d", pid, uid); |
| return PERMISSION_DENIED; |
| } |
| return OK; |
| } |
| // The following codes are deprecated and should never be allowed to access SF. |
| case CONNECT_DISPLAY_UNUSED: |
| case CREATE_GRAPHIC_BUFFER_ALLOC_UNUSED: { |
| ALOGE("Attempting to access SurfaceFlinger with unused code: %u", code); |
| return PERMISSION_DENIED; |
| } |
| } |
| |
| // These codes are used for the IBinder protocol to either interrogate the recipient |
| // side of the transaction for its canonical interface descriptor or to dump its state. |
| // We let them pass by default. |
| if (code == IBinder::INTERFACE_TRANSACTION || code == IBinder::DUMP_TRANSACTION || |
| code == IBinder::PING_TRANSACTION || code == IBinder::SHELL_COMMAND_TRANSACTION || |
| code == IBinder::SYSPROPS_TRANSACTION) { |
| return OK; |
| } |
| // Numbers from 1000 to 1029 are currently use for backdoors. The code |
| // in onTransact verifies that the user is root, and has access to use SF. |
| if (code >= 1000 && code <= 1029) { |
| ALOGV("Accessing SurfaceFlinger through backdoor code: %u", code); |
| return OK; |
| } |
| ALOGE("Permission Denial: SurfaceFlinger did not recognize request code: %u", code); |
| return PERMISSION_DENIED; |
| #pragma clang diagnostic pop |
| } |
| |
| status_t SurfaceFlinger::onTransact(uint32_t code, const Parcel& data, Parcel* reply, |
| uint32_t flags) { |
| status_t credentialCheck = CheckTransactCodeCredentials(code); |
| if (credentialCheck != OK) { |
| return credentialCheck; |
| } |
| |
| status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags); |
| if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) { |
| CHECK_INTERFACE(ISurfaceComposer, data, reply); |
| IPCThreadState* ipc = IPCThreadState::self(); |
| const int uid = ipc->getCallingUid(); |
| if (CC_UNLIKELY(uid != AID_SYSTEM |
| && !PermissionCache::checkCallingPermission(sHardwareTest))) { |
| const int pid = ipc->getCallingPid(); |
| ALOGE("Permission Denial: " |
| "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid); |
| return PERMISSION_DENIED; |
| } |
| int n; |
| switch (code) { |
| case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE |
| case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE |
| return NO_ERROR; |
| case 1002: // SHOW_UPDATES |
| n = data.readInt32(); |
| mDebugRegion = n ? n : (mDebugRegion ? 0 : 1); |
| invalidateHwcGeometry(); |
| repaintEverything(); |
| return NO_ERROR; |
| case 1004:{ // repaint everything |
| repaintEverything(); |
| return NO_ERROR; |
| } |
| case 1005:{ // force transaction |
| Mutex::Autolock _l(mStateLock); |
| setTransactionFlags( |
| eTransactionNeeded| |
| eDisplayTransactionNeeded| |
| eTraversalNeeded); |
| return NO_ERROR; |
| } |
| case 1006:{ // send empty update |
| signalRefresh(); |
| return NO_ERROR; |
| } |
| case 1008: // toggle use of hw composer |
| n = data.readInt32(); |
| mDebugDisableHWC = n ? 1 : 0; |
| invalidateHwcGeometry(); |
| repaintEverything(); |
| return NO_ERROR; |
| case 1009: // toggle use of transform hint |
| n = data.readInt32(); |
| mDebugDisableTransformHint = n ? 1 : 0; |
| invalidateHwcGeometry(); |
| repaintEverything(); |
| return NO_ERROR; |
| case 1010: // interrogate. |
| reply->writeInt32(0); |
| reply->writeInt32(0); |
| reply->writeInt32(mDebugRegion); |
| reply->writeInt32(0); |
| reply->writeInt32(mDebugDisableHWC); |
| return NO_ERROR; |
| case 1013: { |
| const auto display = getDefaultDisplayDevice(); |
| if (!display) { |
| return NAME_NOT_FOUND; |
| } |
| |
| reply->writeInt32(display->getPageFlipCount()); |
| return NO_ERROR; |
| } |
| case 1014: { |
| Mutex::Autolock _l(mStateLock); |
| // daltonize |
| n = data.readInt32(); |
| switch (n % 10) { |
| case 1: |
| mDaltonizer.setType(ColorBlindnessType::Protanomaly); |
| break; |
| case 2: |
| mDaltonizer.setType(ColorBlindnessType::Deuteranomaly); |
| break; |
| case 3: |
| mDaltonizer.setType(ColorBlindnessType::Tritanomaly); |
| break; |
| default: |
| mDaltonizer.setType(ColorBlindnessType::None); |
| break; |
| } |
| if (n >= 10) { |
| mDaltonizer.setMode(ColorBlindnessMode::Correction); |
| } else { |
| mDaltonizer.setMode(ColorBlindnessMode::Simulation); |
| } |
| |
| updateColorMatrixLocked(); |
| return NO_ERROR; |
| } |
| case 1015: { |
| Mutex::Autolock _l(mStateLock); |
| // apply a color matrix |
| n = data.readInt32(); |
| if (n) { |
| // color matrix is sent as a column-major mat4 matrix |
| for (size_t i = 0 ; i < 4; i++) { |
| for (size_t j = 0; j < 4; j++) { |
| mClientColorMatrix[i][j] = data.readFloat(); |
| } |
| } |
| } else { |
| mClientColorMatrix = mat4(); |
| } |
| |
| // Check that supplied matrix's last row is {0,0,0,1} so we can avoid |
| // the division by w in the fragment shader |
| float4 lastRow(transpose(mClientColorMatrix)[3]); |
| if (any(greaterThan(abs(lastRow - float4{0, 0, 0, 1}), float4{1e-4f}))) { |
| ALOGE("The color transform's last row must be (0, 0, 0, 1)"); |
| } |
| |
| updateColorMatrixLocked(); |
| return NO_ERROR; |
| } |
| // This is an experimental interface |
| // Needs to be shifted to proper binder interface when we productize |
| case 1016: { |
| n = data.readInt32(); |
| // TODO(b/113612090): Evaluate if this can be removed. |
| mPrimaryDispSync->setRefreshSkipCount(n); |
| return NO_ERROR; |
| } |
| case 1017: { |
| n = data.readInt32(); |
| mForceFullDamage = static_cast<bool>(n); |
| return NO_ERROR; |
| } |
| case 1018: { // Modify Choreographer's phase offset |
| n = data.readInt32(); |
| if (mUseScheduler) { |
| mScheduler->setPhaseOffset(mAppConnectionHandle, static_cast<nsecs_t>(n)); |
| } else { |
| mEventThread->setPhaseOffset(static_cast<nsecs_t>(n)); |
| } |
| return NO_ERROR; |
| } |
| case 1019: { // Modify SurfaceFlinger's phase offset |
| n = data.readInt32(); |
| if (mUseScheduler) { |
| mScheduler->setPhaseOffset(mSfConnectionHandle, static_cast<nsecs_t>(n)); |
| } else { |
| mSFEventThread->setPhaseOffset(static_cast<nsecs_t>(n)); |
| } |
| return NO_ERROR; |
| } |
| case 1020: { // Layer updates interceptor |
| n = data.readInt32(); |
| if (n) { |
| ALOGV("Interceptor enabled"); |
| mInterceptor->enable(mDrawingState.layersSortedByZ, mDrawingState.displays); |
| } |
| else{ |
| ALOGV("Interceptor disabled"); |
| mInterceptor->disable(); |
| } |
| return NO_ERROR; |
| } |
| case 1021: { // Disable HWC virtual displays |
| n = data.readInt32(); |
| mUseHwcVirtualDisplays = !n; |
| return NO_ERROR; |
| } |
| case 1022: { // Set saturation boost |
| Mutex::Autolock _l(mStateLock); |
| mGlobalSaturationFactor = std::max(0.0f, std::min(data.readFloat(), 2.0f)); |
| |
| updateColorMatrixLocked(); |
| return NO_ERROR; |
| } |
| case 1023: { // Set native mode |
| mDisplayColorSetting = static_cast<DisplayColorSetting>(data.readInt32()); |
| invalidateHwcGeometry(); |
| repaintEverything(); |
| return NO_ERROR; |
| } |
| // TODO(b/111505327): Find out whether the usage of 1024 can switch to 1030, |
| // deprecate 1024 if they can. |
| case 1024: { // Does device have wide color gamut display? |
| reply->writeBool(hasWideColorDisplay); |
| return NO_ERROR; |
| } |
| case 1025: { // Set layer tracing |
| n = data.readInt32(); |
| if (n) { |
| ALOGD("LayerTracing enabled"); |
| mTracing.enable(); |
| doTracing("tracing.enable"); |
| reply->writeInt32(NO_ERROR); |
| } else { |
| ALOGD("LayerTracing disabled"); |
| status_t err = mTracing.disable(); |
| reply->writeInt32(err); |
| } |
| return NO_ERROR; |
| } |
| case 1026: { // Get layer tracing status |
| reply->writeBool(mTracing.isEnabled()); |
| return NO_ERROR; |
| } |
| // Is a DisplayColorSetting supported? |
| case 1027: { |
| const auto display = getDefaultDisplayDevice(); |
| if (!display) { |
| return NAME_NOT_FOUND; |
| } |
| |
| DisplayColorSetting setting = static_cast<DisplayColorSetting>(data.readInt32()); |
| switch (setting) { |
| case DisplayColorSetting::MANAGED: |
| reply->writeBool(useColorManagement); |
| break; |
| case DisplayColorSetting::UNMANAGED: |
| reply->writeBool(true); |
| break; |
| case DisplayColorSetting::ENHANCED: |
| reply->writeBool(display->hasRenderIntent(RenderIntent::ENHANCE)); |
| break; |
| default: // vendor display color setting |
| reply->writeBool( |
| display->hasRenderIntent(static_cast<RenderIntent>(setting))); |
| break; |
| } |
| return NO_ERROR; |
| } |
| // Is VrFlinger active? |
| case 1028: { |
| Mutex::Autolock _l(mStateLock); |
| reply->writeBool(getBE().mHwc->isUsingVrComposer()); |
| return NO_ERROR; |
| } |
| case 1029: { |
| // Code 1029 is an experimental feature that allows applications to |
| // simulate a high frequency panel by setting a multiplier and divisor |
| // on the VSYNC-sf clock. If either the multiplier or divisor are |
| // 0, then the code simply return the current multiplier and divisor. |
| HWC2::Device::FrequencyScaler frequencyScaler; |
| frequencyScaler.multiplier = data.readInt32(); |
| frequencyScaler.divisor = data.readInt32(); |
| |
| if ((frequencyScaler.multiplier == 0) || (frequencyScaler.divisor == 0)) { |
| frequencyScaler = getBE().mHwc->getDisplayFrequencyScaleParameters(); |
| reply->writeInt32(frequencyScaler.multiplier); |
| reply->writeInt32(frequencyScaler.divisor); |
| return NO_ERROR; |
| } |
| |
| if ((frequencyScaler.multiplier == 1) && (frequencyScaler.divisor == 1)) { |
| if (mUseScheduler) { |
| mScheduler->enableHardwareVsync(); |
| } else { |
| enableHardwareVsync(); |
| } |
| } else { |
| if (mUseScheduler) { |
| mScheduler->disableHardwareVsync(true); |
| } else { |
| disableHardwareVsync(true); |
| } |
| } |
| mPrimaryDispSync->scalePeriod(frequencyScaler); |
| getBE().mHwc->setDisplayFrequencyScaleParameters(frequencyScaler); |
| |
| ATRACE_INT("PeriodMultiplier", frequencyScaler.multiplier); |
| ATRACE_INT("PeriodDivisor", frequencyScaler.divisor); |
| |
| const hwc2_display_t hwcDisplayId = getBE().mHwc->getActiveConfig( |
| DisplayDevice::DISPLAY_PRIMARY)->getDisplayId(); |
| |
| onHotplugReceived(getBE().mComposerSequenceId, |
| hwcDisplayId, HWC2::Connection::Disconnected); |
| onHotplugReceived(getBE().mComposerSequenceId, |
| hwcDisplayId, HWC2::Connection::Connected); |
| frequencyScaler = getBE().mHwc->getDisplayFrequencyScaleParameters(); |
| reply->writeInt32(frequencyScaler.multiplier); |
| reply->writeInt32(frequencyScaler.divisor); |
| |
| return NO_ERROR; |
| } |
| // Is device color managed? |
| case 1030: { |
| reply->writeBool(useColorManagement); |
| return NO_ERROR; |
| } |
| } |
| } |
| return err; |
| } |
| |
| void SurfaceFlinger::repaintEverything() { |
| mRepaintEverything = true; |
| signalTransaction(); |
| } |
| |
| // A simple RAII class to disconnect from an ANativeWindow* when it goes out of scope |
| class WindowDisconnector { |
| public: |
| WindowDisconnector(ANativeWindow* window, int api) : mWindow(window), mApi(api) {} |
| ~WindowDisconnector() { |
| native_window_api_disconnect(mWindow, mApi); |
| } |
| |
| private: |
| ANativeWindow* mWindow; |
| const int mApi; |
| }; |
| |
| status_t SurfaceFlinger::captureScreen(const sp<IBinder>& displayToken, |
| sp<GraphicBuffer>* outBuffer, Rect sourceCrop, |
| uint32_t reqWidth, uint32_t reqHeight, |
| bool useIdentityTransform, |
| ISurfaceComposer::Rotation rotation) { |
| ATRACE_CALL(); |
| |
| if (!displayToken) return BAD_VALUE; |
| |
| auto renderAreaRotation = fromSurfaceComposerRotation(rotation); |
| |
| sp<DisplayDevice> display; |
| { |
| Mutex::Autolock _l(mStateLock); |
| |
| display = getDisplayDeviceLocked(displayToken); |
| if (!display) return BAD_VALUE; |
| |
| // ignore sourceCrop (i.e., use the projected logical display |
| // viewport) until the framework is fixed |
| sourceCrop.clear(); |
| |
| // set the requested width/height to the logical display viewport size |
| // by default |
| if (reqWidth == 0 || reqHeight == 0) { |
| reqWidth = uint32_t(display->getViewport().width()); |
| reqHeight = uint32_t(display->getViewport().height()); |
| } |
| } |
| |
| DisplayRenderArea renderArea(display, sourceCrop, reqWidth, reqHeight, renderAreaRotation); |
| |
| auto traverseLayers = std::bind(std::mem_fn(&SurfaceFlinger::traverseLayersInDisplay), this, |
| display, std::placeholders::_1); |
| return captureScreenCommon(renderArea, traverseLayers, outBuffer, useIdentityTransform); |
| } |
| |
| status_t SurfaceFlinger::captureLayers(const sp<IBinder>& layerHandleBinder, |
| sp<GraphicBuffer>* outBuffer, const Rect& sourceCrop, |
| float frameScale, bool childrenOnly) { |
| ATRACE_CALL(); |
| |
| class LayerRenderArea : public RenderArea { |
| public: |
| LayerRenderArea(SurfaceFlinger* flinger, const sp<Layer>& layer, const Rect crop, |
| int32_t reqWidth, int32_t reqHeight, bool childrenOnly) |
| : RenderArea(reqWidth, reqHeight, CaptureFill::CLEAR), |
| mLayer(layer), |
| mCrop(crop), |
| mNeedsFiltering(false), |
| mFlinger(flinger), |
| mChildrenOnly(childrenOnly) {} |
| const ui::Transform& getTransform() const override { return mTransform; } |
| Rect getBounds() const override { |
| const Layer::State& layerState(mLayer->getDrawingState()); |
| return Rect(mLayer->getActiveWidth(layerState), mLayer->getActiveHeight(layerState)); |
| } |
| int getHeight() const override { |
| return mLayer->getActiveHeight(mLayer->getDrawingState()); |
| } |
| int getWidth() const override { return mLayer->getActiveWidth(mLayer->getDrawingState()); } |
| bool isSecure() const override { return false; } |
| bool needsFiltering() const override { return mNeedsFiltering; } |
| Rect getSourceCrop() const override { |
| if (mCrop.isEmpty()) { |
| return getBounds(); |
| } else { |
| return mCrop; |
| } |
| } |
| class ReparentForDrawing { |
| public: |
| const sp<Layer>& oldParent; |
| const sp<Layer>& newParent; |
| |
| ReparentForDrawing(const sp<Layer>& oldParent, const sp<Layer>& newParent) |
| : oldParent(oldParent), newParent(newParent) { |
| oldParent->setChildrenDrawingParent(newParent); |
| } |
| ~ReparentForDrawing() { oldParent->setChildrenDrawingParent(oldParent); } |
| }; |
| |
| void render(std::function<void()> drawLayers) override { |
| const Rect sourceCrop = getSourceCrop(); |
| // no need to check rotation because there is none |
| mNeedsFiltering = sourceCrop.width() != getReqWidth() || |
| sourceCrop.height() != getReqHeight(); |
| |
| if (!mChildrenOnly) { |
| mTransform = mLayer->getTransform().inverse(); |
| drawLayers(); |
| } else { |
| Rect bounds = getBounds(); |
| screenshotParentLayer = new ContainerLayer( |
| LayerCreationArgs(mFlinger, nullptr, String8("Screenshot Parent"), |
| bounds.getWidth(), bounds.getHeight(), 0)); |
| |
| ReparentForDrawing reparent(mLayer, screenshotParentLayer); |
| drawLayers(); |
| } |
| } |
| |
| private: |
| const sp<Layer> mLayer; |
| const Rect mCrop; |
| |
| // In the "childrenOnly" case we reparent the children to a screenshot |
| // layer which has no properties set and which does not draw. |
| sp<ContainerLayer> screenshotParentLayer; |
| ui::Transform mTransform; |
| bool mNeedsFiltering; |
| |
| SurfaceFlinger* mFlinger; |
| const bool mChildrenOnly; |
| }; |
| |
| auto layerHandle = reinterpret_cast<Layer::Handle*>(layerHandleBinder.get()); |
| auto parent = layerHandle->owner.promote(); |
| |
| if (parent == nullptr || parent->isPendingRemoval()) { |
| ALOGE("captureLayers called with a removed parent"); |
| return NAME_NOT_FOUND; |
| } |
| |
| const int uid = IPCThreadState::self()->getCallingUid(); |
| const bool forSystem = uid == AID_GRAPHICS || uid == AID_SYSTEM; |
| if (!forSystem && parent->getCurrentState().flags & layer_state_t::eLayerSecure) { |
| ALOGW("Attempting to capture secure layer: PERMISSION_DENIED"); |
| return PERMISSION_DENIED; |
| } |
| |
| Rect crop(sourceCrop); |
| if (sourceCrop.width() <= 0) { |
| crop.left = 0; |
| crop.right = parent->getActiveWidth(parent->getCurrentState()); |
| } |
| |
| if (sourceCrop.height() <= 0) { |
| crop.top = 0; |
| crop.bottom = parent->getActiveHeight(parent->getCurrentState()); |
| } |
| |
| int32_t reqWidth = crop.width() * frameScale; |
| int32_t reqHeight = crop.height() * frameScale; |
| |
| // really small crop or frameScale |
| if (reqWidth <= 0) { |
| reqWidth = 1; |
| } |
| if (reqHeight <= 0) { |
| reqHeight = 1; |
| } |
| |
| LayerRenderArea renderArea(this, parent, crop, reqWidth, reqHeight, childrenOnly); |
| |
| auto traverseLayers = [parent, childrenOnly](const LayerVector::Visitor& visitor) { |
| parent->traverseChildrenInZOrder(LayerVector::StateSet::Drawing, [&](Layer* layer) { |
| if (!layer->isVisible()) { |
| return; |
| } else if (childrenOnly && layer == parent.get()) { |
| return; |
| } |
| visitor(layer); |
| }); |
| }; |
| return captureScreenCommon(renderArea, traverseLayers, outBuffer, false); |
| } |
| |
| status_t SurfaceFlinger::captureScreenCommon(RenderArea& renderArea, |
| TraverseLayersFunction traverseLayers, |
| sp<GraphicBuffer>* outBuffer, |
| bool useIdentityTransform) { |
| ATRACE_CALL(); |
| |
| const uint32_t usage = GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_SW_WRITE_OFTEN | |
| GRALLOC_USAGE_HW_RENDER | GRALLOC_USAGE_HW_TEXTURE; |
| *outBuffer = new GraphicBuffer(renderArea.getReqWidth(), renderArea.getReqHeight(), |
| HAL_PIXEL_FORMAT_RGBA_8888, 1, usage, "screenshot"); |
| |
| // This mutex protects syncFd and captureResult for communication of the return values from the |
| // main thread back to this Binder thread |
| std::mutex captureMutex; |
| std::condition_variable captureCondition; |
| std::unique_lock<std::mutex> captureLock(captureMutex); |
| int syncFd = -1; |
| std::optional<status_t> captureResult; |
| |
| const int uid = IPCThreadState::self()->getCallingUid(); |
| const bool forSystem = uid == AID_GRAPHICS || uid == AID_SYSTEM; |
| |
| sp<LambdaMessage> message = new LambdaMessage([&] { |
| // If there is a refresh pending, bug out early and tell the binder thread to try again |
| // after the refresh. |
| if (mRefreshPending) { |
| ATRACE_NAME("Skipping screenshot for now"); |
| std::unique_lock<std::mutex> captureLock(captureMutex); |
| captureResult = std::make_optional<status_t>(EAGAIN); |
| captureCondition.notify_one(); |
| return; |
| } |
| |
| status_t result = NO_ERROR; |
| int fd = -1; |
| { |
| Mutex::Autolock _l(mStateLock); |
| renderArea.render([&] { |
| result = captureScreenImplLocked(renderArea, traverseLayers, (*outBuffer).get(), |
| useIdentityTransform, forSystem, &fd); |
| }); |
| } |
| |
| { |
| std::unique_lock<std::mutex> captureLock(captureMutex); |
| syncFd = fd; |
| captureResult = std::make_optional<status_t>(result); |
| captureCondition.notify_one(); |
| } |
| }); |
| |
| status_t result = postMessageAsync(message); |
| if (result == NO_ERROR) { |
| captureCondition.wait(captureLock, [&] { return captureResult; }); |
| while (*captureResult == EAGAIN) { |
| captureResult.reset(); |
| result = postMessageAsync(message); |
| if (result != NO_ERROR) { |
| return result; |
| } |
| captureCondition.wait(captureLock, [&] { return captureResult; }); |
| } |
| result = *captureResult; |
| } |
| |
| if (result == NO_ERROR) { |
| sync_wait(syncFd, -1); |
| close(syncFd); |
| } |
| |
| return result; |
| } |
| |
| void SurfaceFlinger::renderScreenImplLocked(const RenderArea& renderArea, |
| TraverseLayersFunction traverseLayers, |
| bool useIdentityTransform) { |
| ATRACE_CALL(); |
| |
| auto& engine(getRenderEngine()); |
| |
| const auto reqWidth = renderArea.getReqWidth(); |
| const auto reqHeight = renderArea.getReqHeight(); |
| const auto sourceCrop = renderArea.getSourceCrop(); |
| const auto rotation = renderArea.getRotationFlags(); |
| |
| // assume ColorMode::SRGB / RenderIntent::COLORIMETRIC |
| engine.setOutputDataSpace(Dataspace::SRGB); |
| engine.setDisplayMaxLuminance(DisplayDevice::sDefaultMaxLumiance); |
| |
| // make sure to clear all GL error flags |
| engine.checkErrors(); |
| |
| // set-up our viewport |
| engine.setViewportAndProjection(reqWidth, reqHeight, sourceCrop, rotation); |
| engine.disableTexturing(); |
| |
| const float alpha = RenderArea::getCaptureFillValue(renderArea.getCaptureFill()); |
| // redraw the screen entirely... |
| engine.clearWithColor(0, 0, 0, alpha); |
| |
| traverseLayers([&](Layer* layer) { |
| engine.setColorTransform(layer->getColorTransform()); |
| layer->draw(renderArea, useIdentityTransform); |
| engine.setColorTransform(mat4()); |
| }); |
| } |
| |
| status_t SurfaceFlinger::captureScreenImplLocked(const RenderArea& renderArea, |
| TraverseLayersFunction traverseLayers, |
| ANativeWindowBuffer* buffer, |
| bool useIdentityTransform, |
| bool forSystem, |
| int* outSyncFd) { |
| ATRACE_CALL(); |
| |
| bool secureLayerIsVisible = false; |
| |
| traverseLayers([&](Layer* layer) { |
| secureLayerIsVisible = secureLayerIsVisible || (layer->isVisible() && layer->isSecure()); |
| }); |
| |
| // We allow the system server to take screenshots of secure layers for |
| // use in situations like the Screen-rotation animation and place |
| // the impetus on WindowManager to not persist them. |
| if (secureLayerIsVisible && !forSystem) { |
| ALOGW("FB is protected: PERMISSION_DENIED"); |
| return PERMISSION_DENIED; |
| } |
| |
| // this binds the given EGLImage as a framebuffer for the |
| // duration of this scope. |
| renderengine::BindNativeBufferAsFramebuffer bufferBond(getRenderEngine(), buffer); |
| if (bufferBond.getStatus() != NO_ERROR) { |
| ALOGE("got ANWB binding error while taking screenshot"); |
| return INVALID_OPERATION; |
| } |
| |
| // this will in fact render into our dequeued buffer |
| // via an FBO, which means we didn't have to create |
| // an EGLSurface and therefore we're not |
| // dependent on the context's EGLConfig. |
| renderScreenImplLocked(renderArea, traverseLayers, useIdentityTransform); |
| |
| base::unique_fd syncFd = getRenderEngine().flush(); |
| if (syncFd < 0) { |
| getRenderEngine().finish(); |
| } |
| *outSyncFd = syncFd.release(); |
| |
| return NO_ERROR; |
| } |
| |
| // --------------------------------------------------------------------------- |
| |
| void SurfaceFlinger::State::traverseInZOrder(const LayerVector::Visitor& visitor) const { |
| layersSortedByZ.traverseInZOrder(stateSet, visitor); |
| } |
| |
| void SurfaceFlinger::State::traverseInReverseZOrder(const LayerVector::Visitor& visitor) const { |
| layersSortedByZ.traverseInReverseZOrder(stateSet, visitor); |
| } |
| |
| void SurfaceFlinger::traverseLayersInDisplay(const sp<const DisplayDevice>& display, |
| const LayerVector::Visitor& visitor) { |
| // We loop through the first level of layers without traversing, |
| // as we need to determine which layers belong to the requested display. |
| for (const auto& layer : mDrawingState.layersSortedByZ) { |
| if (!layer->belongsToDisplay(display->getLayerStack(), false)) { |
| continue; |
| } |
| // relative layers are traversed in Layer::traverseInZOrder |
| layer->traverseInZOrder(LayerVector::StateSet::Drawing, [&](Layer* layer) { |
| if (!layer->belongsToDisplay(display->getLayerStack(), false)) { |
| return; |
| } |
| if (!layer->isVisible()) { |
| return; |
| } |
| visitor(layer); |
| }); |
| } |
| } |
| |
| }; // namespace android |
| |
| |
| #if defined(__gl_h_) |
| #error "don't include gl/gl.h in this file" |
| #endif |
| |
| #if defined(__gl2_h_) |
| #error "don't include gl2/gl2.h in this file" |
| #endif |