blob: 3fe76426fd791ae293ff59deb811b5a834da8a43 [file] [log] [blame]
#include "include/private/dvr/buffer_hub_queue_producer.h"
#include <inttypes.h>
#include <log/log.h>
namespace android {
namespace dvr {
BufferHubQueueProducer::BufferHubQueueProducer(
const std::shared_ptr<BufferHubQueueCore>& core)
: core_(core) {}
status_t BufferHubQueueProducer::requestBuffer(int slot,
sp<GraphicBuffer>* buf) {
ALOGD_IF(TRACE, "requestBuffer: slot=%d", slot);
std::unique_lock<std::mutex> lock(core_->mutex_);
if (core_->connected_api_ == BufferHubQueueCore::kNoConnectedApi) {
ALOGE("requestBuffer: BufferHubQueueProducer has no connected producer");
return NO_INIT;
}
if (slot < 0 || slot >= max_buffer_count_) {
ALOGE("requestBuffer: slot index %d out of range [0, %d)", slot,
max_buffer_count_);
return BAD_VALUE;
} else if (!core_->buffers_[slot].mBufferState.isDequeued()) {
ALOGE("requestBuffer: slot %d is not owned by the producer (state = %s)",
slot, core_->buffers_[slot].mBufferState.string());
return BAD_VALUE;
} else if (core_->buffers_[slot].mGraphicBuffer != nullptr) {
ALOGE("requestBuffer: slot %d is not empty.", slot);
return BAD_VALUE;
} else if (core_->buffers_[slot].mBufferProducer == nullptr) {
ALOGE("requestBuffer: slot %d is not dequeued.", slot);
return BAD_VALUE;
}
const auto& buffer_producer = core_->buffers_[slot].mBufferProducer;
// Create new GraphicBuffer based on the newly created |buffer_producer|. Here
// we have to cast |buffer_handle_t| to |native_handle_t|, it's OK because
// internally, GraphicBuffer is still an |ANativeWindowBuffer| and |handle|
// is still type of |buffer_handle_t| and bears const property.
sp<GraphicBuffer> graphic_buffer(new GraphicBuffer(
buffer_producer->width(), buffer_producer->height(),
buffer_producer->format(),
1, /* layer count */
buffer_producer->usage(),
buffer_producer->stride(),
const_cast<native_handle_t*>(buffer_producer->buffer()->handle()),
false));
LOG_ALWAYS_FATAL_IF(NO_ERROR != graphic_buffer->initCheck(),
"Failed to init GraphicBuffer.");
core_->buffers_[slot].mGraphicBuffer = graphic_buffer;
core_->buffers_[slot].mRequestBufferCalled = true;
*buf = graphic_buffer;
return NO_ERROR;
}
status_t BufferHubQueueProducer::setMaxDequeuedBufferCount(
int max_dequeued_buffers) {
ALOGD_IF(TRACE, "setMaxDequeuedBufferCount: max_dequeued_buffers=%d",
max_dequeued_buffers);
std::unique_lock<std::mutex> lock(core_->mutex_);
if (max_dequeued_buffers <= 0 ||
max_dequeued_buffers >
static_cast<int>(BufferHubQueue::kMaxQueueCapacity)) {
ALOGE("setMaxDequeuedBufferCount: %d out of range (0, %zu]",
max_dequeued_buffers, BufferHubQueue::kMaxQueueCapacity);
return BAD_VALUE;
}
// The new dequeued_buffers count should not be violated by the number
// of currently dequeued buffers.
int dequeued_count = 0;
for (const auto& buf : core_->buffers_) {
if (buf.mBufferState.isDequeued()) {
dequeued_count++;
}
}
if (dequeued_count > max_dequeued_buffers) {
ALOGE(
"setMaxDequeuedBufferCount: the requested dequeued_buffers"
"count (%d) exceeds the current dequeued buffer count (%d)",
max_dequeued_buffers, dequeued_count);
return BAD_VALUE;
}
max_dequeued_buffer_count_ = max_dequeued_buffers;
return NO_ERROR;
}
status_t BufferHubQueueProducer::setAsyncMode(bool async) {
if (async) {
// TODO(b/36724099) BufferHubQueue's consumer end always acquires the buffer
// automatically and behaves differently from IGraphicBufferConsumer. Thus,
// android::BufferQueue's async mode (a.k.a. allocating an additional buffer
// to prevent dequeueBuffer from being blocking) technically does not apply
// here.
//
// In Daydream, non-blocking producer side dequeue is guaranteed by careful
// buffer consumer implementations. In another word, BufferHubQueue based
// dequeueBuffer should never block whether setAsyncMode(true) is set or
// not.
//
// See: IGraphicBufferProducer::setAsyncMode and
// BufferQueueProducer::setAsyncMode for more about original implementation.
ALOGW(
"BufferHubQueueProducer::setAsyncMode: BufferHubQueue should always be "
"asynchronous. This call makes no effact.");
return NO_ERROR;
}
return NO_ERROR;
}
status_t BufferHubQueueProducer::dequeueBuffer(
int* out_slot, sp<Fence>* out_fence, uint32_t width, uint32_t height,
PixelFormat format, uint32_t usage,
FrameEventHistoryDelta* /* out_timestamps */) {
ALOGD_IF(TRACE, "dequeueBuffer: w=%u, h=%u, format=%d, usage=%u", width,
height, format, usage);
status_t ret;
std::unique_lock<std::mutex> lock(core_->mutex_);
if (core_->connected_api_ == BufferHubQueueCore::kNoConnectedApi) {
ALOGE("dequeueBuffer: BufferQueue has no connected producer");
return NO_INIT;
}
if (static_cast<int32_t>(core_->producer_->capacity()) <
max_dequeued_buffer_count_) {
// Lazy allocation. When the capacity of |core_->producer_| has not reach
// |max_dequeued_buffer_count_|, allocate new buffer.
// TODO(jwcai) To save memory, the really reasonable thing to do is to go
// over existing slots and find first existing one to dequeue.
ret = core_->AllocateBuffer(width, height, format, usage, 1);
if (ret < 0)
return ret;
}
size_t slot;
std::shared_ptr<BufferProducer> buffer_producer;
for (size_t retry = 0; retry < BufferHubQueue::kMaxQueueCapacity; retry++) {
LocalHandle fence;
buffer_producer =
core_->producer_->Dequeue(core_->dequeue_timeout_ms_, &slot, &fence);
if (!buffer_producer)
return NO_MEMORY;
if (static_cast<int>(width) == buffer_producer->width() &&
static_cast<int>(height) == buffer_producer->height() &&
static_cast<int>(format) == buffer_producer->format()) {
// The producer queue returns a buffer producer matches the request.
break;
}
// Needs reallocation.
// TODO(jwcai) Consider use VLOG instead if we find this log is not useful.
ALOGI(
"dequeueBuffer: requested buffer (w=%u, h=%u, format=%d) is different "
"from the buffer returned at slot: %zu (w=%d, h=%d, format=%d). Need "
"re-allocattion.",
width, height, format, slot, buffer_producer->width(),
buffer_producer->height(), buffer_producer->format());
// Mark the slot as reallocating, so that later we can set
// BUFFER_NEEDS_REALLOCATION when the buffer actually get dequeued.
core_->buffers_[slot].mIsReallocating = true;
// Detach the old buffer once the allocation before allocating its
// replacement.
core_->DetachBuffer(slot);
// Allocate a new producer buffer with new buffer configs. Note that if
// there are already multiple buffers in the queue, the next one returned
// from |core_->producer_->Dequeue| may not be the new buffer we just
// reallocated. Retry up to BufferHubQueue::kMaxQueueCapacity times.
ret = core_->AllocateBuffer(width, height, format, usage, 1);
if (ret < 0)
return ret;
}
// With the BufferHub backed solution. Buffer slot returned from
// |core_->producer_->Dequeue| is guaranteed to avaiable for producer's use.
// It's either in free state (if the buffer has never been used before) or
// in queued state (if the buffer has been dequeued and queued back to
// BufferHubQueue).
// TODO(jwcai) Clean this up, make mBufferState compatible with BufferHub's
// model.
LOG_ALWAYS_FATAL_IF((!core_->buffers_[slot].mBufferState.isFree() &&
!core_->buffers_[slot].mBufferState.isQueued()),
"dequeueBuffer: slot %zu is not free or queued.", slot);
core_->buffers_[slot].mBufferState.freeQueued();
core_->buffers_[slot].mBufferState.dequeue();
ALOGD_IF(TRACE, "dequeueBuffer: slot=%zu", slot);
// TODO(jwcai) Handle fence properly. |BufferHub| has full fence support, we
// just need to exopose that through |BufferHubQueue| once we need fence.
*out_fence = Fence::NO_FENCE;
*out_slot = slot;
ret = NO_ERROR;
if (core_->buffers_[slot].mIsReallocating) {
ret |= BUFFER_NEEDS_REALLOCATION;
core_->buffers_[slot].mIsReallocating = false;
}
return ret;
}
status_t BufferHubQueueProducer::detachBuffer(int /* slot */) {
ALOGE("BufferHubQueueProducer::detachBuffer not implemented.");
return INVALID_OPERATION;
}
status_t BufferHubQueueProducer::detachNextBuffer(
sp<GraphicBuffer>* /* out_buffer */, sp<Fence>* /* out_fence */) {
ALOGE("BufferHubQueueProducer::detachNextBuffer not implemented.");
return INVALID_OPERATION;
}
status_t BufferHubQueueProducer::attachBuffer(
int* /* out_slot */, const sp<GraphicBuffer>& /* buffer */) {
// With this BufferHub backed implementation, we assume (for now) all buffers
// are allocated and owned by the BufferHub. Thus the attempt of transfering
// ownership of a buffer to the buffer queue is intentionally unsupported.
LOG_ALWAYS_FATAL("BufferHubQueueProducer::attachBuffer not supported.");
return INVALID_OPERATION;
}
status_t BufferHubQueueProducer::queueBuffer(int slot,
const QueueBufferInput& input,
QueueBufferOutput* output) {
ALOGD_IF(TRACE, "queueBuffer: slot %d", slot);
if (output == nullptr) {
return BAD_VALUE;
}
int64_t timestamp;
int scaling_mode;
sp<Fence> fence;
Rect crop(Rect::EMPTY_RECT);
// TODO(jwcai) The following attributes are ignored.
bool is_auto_timestamp;
android_dataspace data_space;
uint32_t transform;
input.deflate(&timestamp, &is_auto_timestamp, &data_space, &crop,
&scaling_mode, &transform, &fence);
// Check input scaling mode is valid.
switch (scaling_mode) {
case NATIVE_WINDOW_SCALING_MODE_FREEZE:
case NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW:
case NATIVE_WINDOW_SCALING_MODE_SCALE_CROP:
case NATIVE_WINDOW_SCALING_MODE_NO_SCALE_CROP:
break;
default:
ALOGE("queueBuffer: unknown scaling mode %d", scaling_mode);
return BAD_VALUE;
}
// Check input fence is valid.
if (fence == nullptr) {
ALOGE("queueBuffer: fence is NULL");
return BAD_VALUE;
}
status_t ret;
std::unique_lock<std::mutex> lock(core_->mutex_);
if (core_->connected_api_ == BufferHubQueueCore::kNoConnectedApi) {
ALOGE("queueBuffer: BufferQueue has no connected producer");
return NO_INIT;
}
if (slot < 0 || slot >= max_buffer_count_) {
ALOGE("queueBuffer: slot index %d out of range [0, %d)", slot,
max_buffer_count_);
return BAD_VALUE;
} else if (!core_->buffers_[slot].mBufferState.isDequeued()) {
ALOGE("queueBuffer: slot %d is not owned by the producer (state = %s)",
slot, core_->buffers_[slot].mBufferState.string());
return BAD_VALUE;
} else if ((!core_->buffers_[slot].mRequestBufferCalled ||
core_->buffers_[slot].mGraphicBuffer == nullptr)) {
ALOGE(
"queueBuffer: slot %d is not requested (mRequestBufferCalled=%d, "
"mGraphicBuffer=%p)",
slot, core_->buffers_[slot].mRequestBufferCalled,
core_->buffers_[slot].mGraphicBuffer.get());
return BAD_VALUE;
}
// Post the buffer producer with timestamp in the metadata.
const auto& buffer_producer = core_->buffers_[slot].mBufferProducer;
// Check input crop is not out of boundary of current buffer.
Rect buffer_rect(buffer_producer->width(), buffer_producer->height());
Rect cropped_rect(Rect::EMPTY_RECT);
crop.intersect(buffer_rect, &cropped_rect);
if (cropped_rect != crop) {
ALOGE("queueBuffer: slot %d has out-of-boundary crop.", slot);
return BAD_VALUE;
}
LocalHandle fence_fd(fence->isValid() ? fence->dup() : -1);
BufferHubQueueCore::BufferMetadata meta_data = {.timestamp = timestamp};
buffer_producer->Post(fence_fd, &meta_data, sizeof(meta_data));
core_->buffers_[slot].mBufferState.queue();
output->width = buffer_producer->width();
output->height = buffer_producer->height();
output->transformHint = 0; // default value, we don't use it yet.
// |numPendingBuffers| counts of the number of buffers that has been enqueued
// by the producer but not yet acquired by the consumer. Due to the nature
// of BufferHubQueue design, this is hard to trace from the producer's client
// side, but it's safe to assume it's zero.
output->numPendingBuffers = 0;
// Note that we are not setting nextFrameNumber here as it seems to be only
// used by surface flinger. See more at b/22802885, ag/791760.
output->nextFrameNumber = 0;
return NO_ERROR;
}
status_t BufferHubQueueProducer::cancelBuffer(int slot,
const sp<Fence>& fence) {
ALOGD_IF(TRACE, __FUNCTION__);
std::unique_lock<std::mutex> lock(core_->mutex_);
if (core_->connected_api_ == BufferHubQueueCore::kNoConnectedApi) {
ALOGE("cancelBuffer: BufferQueue has no connected producer");
return NO_INIT;
}
if (slot < 0 || slot >= max_buffer_count_) {
ALOGE("cancelBuffer: slot index %d out of range [0, %d)", slot,
max_buffer_count_);
return BAD_VALUE;
} else if (!core_->buffers_[slot].mBufferState.isDequeued()) {
ALOGE("cancelBuffer: slot %d is not owned by the producer (state = %s)",
slot, core_->buffers_[slot].mBufferState.string());
return BAD_VALUE;
} else if (fence == nullptr) {
ALOGE("cancelBuffer: fence is NULL");
return BAD_VALUE;
}
auto buffer_producer = core_->buffers_[slot].mBufferProducer;
core_->producer_->Enqueue(buffer_producer, slot);
core_->buffers_[slot].mBufferState.cancel();
core_->buffers_[slot].mFence = fence;
ALOGD_IF(TRACE, "cancelBuffer: slot %d", slot);
return NO_ERROR;
}
status_t BufferHubQueueProducer::query(int what, int* out_value) {
ALOGD_IF(TRACE, __FUNCTION__);
std::unique_lock<std::mutex> lock(core_->mutex_);
if (out_value == nullptr) {
ALOGE("query: out_value was NULL");
return BAD_VALUE;
}
int value = 0;
switch (what) {
case NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS:
value = 0;
break;
case NATIVE_WINDOW_BUFFER_AGE:
value = 0;
break;
case NATIVE_WINDOW_WIDTH:
value = core_->producer_->default_width();
break;
case NATIVE_WINDOW_HEIGHT:
value = core_->producer_->default_height();
break;
case NATIVE_WINDOW_FORMAT:
value = core_->producer_->default_format();
break;
case NATIVE_WINDOW_CONSUMER_RUNNING_BEHIND:
// BufferHubQueue is always operating in async mode, thus semantically
// consumer can never be running behind. See BufferQueueCore.cpp core
// for more information about the original meaning of this flag.
value = 0;
break;
case NATIVE_WINDOW_CONSUMER_USAGE_BITS:
// TODO(jwcai) This is currently not implement as we don't need
// IGraphicBufferConsumer parity.
value = 0;
break;
// The following queries are currently considered as unsupported.
// TODO(jwcai) Need to carefully check the whether they should be
// supported after all.
case NATIVE_WINDOW_STICKY_TRANSFORM:
case NATIVE_WINDOW_DEFAULT_DATASPACE:
default:
return BAD_VALUE;
}
ALOGD_IF(TRACE, "query: key=%d, v=%d", what, value);
*out_value = value;
return NO_ERROR;
}
status_t BufferHubQueueProducer::connect(
const sp<IProducerListener>& /* listener */, int api,
bool /* producer_controlled_by_app */, QueueBufferOutput* output) {
// Consumer interaction are actually handled by buffer hub, and we need
// to maintain consumer operations here. We only need to perform basic input
// parameter checks here.
ALOGD_IF(TRACE, __FUNCTION__);
if (output == nullptr) {
return BAD_VALUE;
}
std::unique_lock<std::mutex> lock(core_->mutex_);
if (core_->connected_api_ != BufferHubQueueCore::kNoConnectedApi) {
return BAD_VALUE;
}
switch (api) {
case NATIVE_WINDOW_API_EGL:
case NATIVE_WINDOW_API_CPU:
case NATIVE_WINDOW_API_MEDIA:
case NATIVE_WINDOW_API_CAMERA:
core_->connected_api_ = api;
// TODO(jwcai) Fill output.
break;
default:
ALOGE("BufferHubQueueProducer::connect: unknow API %d", api);
return BAD_VALUE;
}
return NO_ERROR;
}
status_t BufferHubQueueProducer::disconnect(int api, DisconnectMode mode) {
// Consumer interaction are actually handled by buffer hub, and we need
// to maintain consumer operations here. We only need to perform basic input
// parameter checks here.
ALOGD_IF(TRACE, __FUNCTION__);
std::unique_lock<std::mutex> lock(core_->mutex_);
if (api != core_->connected_api_) {
return BAD_VALUE;
}
core_->connected_api_ = BufferHubQueueCore::kNoConnectedApi;
return NO_ERROR;
}
status_t BufferHubQueueProducer::setSidebandStream(
const sp<NativeHandle>& stream) {
if (stream != nullptr) {
// TODO(jwcai) Investigate how is is used, maybe use BufferHubBuffer's
// metadata.
ALOGE("SidebandStream is not currently supported.");
return INVALID_OPERATION;
}
return NO_ERROR;
}
void BufferHubQueueProducer::allocateBuffers(uint32_t /* width */,
uint32_t /* height */,
PixelFormat /* format */,
uint32_t /* usage */) {
// TODO(jwcai) |allocateBuffers| aims to preallocate up to the maximum number
// of buffers permitted by the current BufferQueue configuration (aka
// |max_buffer_count_|).
ALOGE("BufferHubQueueProducer::allocateBuffers not implemented.");
}
status_t BufferHubQueueProducer::allowAllocation(bool /* allow */) {
ALOGE("BufferHubQueueProducer::allowAllocation not implemented.");
return INVALID_OPERATION;
}
status_t BufferHubQueueProducer::setGenerationNumber(
uint32_t generation_number) {
ALOGD_IF(TRACE, __FUNCTION__);
std::unique_lock<std::mutex> lock(core_->mutex_);
core_->generation_number_ = generation_number;
return NO_ERROR;
}
String8 BufferHubQueueProducer::getConsumerName() const {
// BufferHub based implementation could have one to many producer/consumer
// relationship, thus |getConsumerName| from the producer side does not
// make any sense.
ALOGE("BufferHubQueueProducer::getConsumerName not supported.");
return String8("BufferHubQueue::DummyConsumer");
}
status_t BufferHubQueueProducer::setSharedBufferMode(
bool /* shared_buffer_mode */) {
ALOGE("BufferHubQueueProducer::setSharedBufferMode not implemented.");
// TODO(b/36373181) Front buffer mode for buffer hub queue as ANativeWindow.
return INVALID_OPERATION;
}
status_t BufferHubQueueProducer::setAutoRefresh(bool /* auto_refresh */) {
ALOGE("BufferHubQueueProducer::setAutoRefresh not implemented.");
return INVALID_OPERATION;
}
status_t BufferHubQueueProducer::setDequeueTimeout(nsecs_t timeout) {
ALOGD_IF(TRACE, __FUNCTION__);
std::unique_lock<std::mutex> lock(core_->mutex_);
core_->dequeue_timeout_ms_ = static_cast<int>(timeout / (1000 * 1000));
return NO_ERROR;
}
status_t BufferHubQueueProducer::getLastQueuedBuffer(
sp<GraphicBuffer>* /* out_buffer */, sp<Fence>* /* out_fence */,
float /*out_transform_matrix*/[16]) {
ALOGE("BufferHubQueueProducer::getLastQueuedBuffer not implemented.");
return INVALID_OPERATION;
}
void BufferHubQueueProducer::getFrameTimestamps(
FrameEventHistoryDelta* /*outDelta*/) {
ALOGE("BufferHubQueueProducer::getFrameTimestamps not implemented.");
}
status_t BufferHubQueueProducer::getUniqueId(uint64_t* out_id) const {
ALOGD_IF(TRACE, __FUNCTION__);
*out_id = core_->unique_id_;
return NO_ERROR;
}
IBinder* BufferHubQueueProducer::onAsBinder() {
// BufferHubQueueProducer is a non-binder implementation of
// IGraphicBufferProducer.
ALOGW("BufferHubQueueProducer::onAsBinder is not supported.");
return nullptr;
}
} // namespace dvr
} // namespace android