blob: 2effaa437c31fad51b1b0b809b3faefe57d0b768 [file] [log] [blame]
/*
* Copyright 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <ftl/initializer_list.h>
#include <ftl/small_vector.h>
#include <algorithm>
#include <functional>
#include <optional>
#include <type_traits>
#include <utility>
namespace android::ftl {
// Associative container with unique, unordered keys. Unlike std::unordered_map, key-value pairs are
// stored in contiguous storage for cache efficiency. The map is allocated statically until its size
// exceeds N, at which point mappings are relocated to dynamic memory. The try_emplace operation has
// a non-standard analogue try_replace that destructively emplaces. The API also defines an in-place
// counterpart to insert_or_assign: emplace_or_replace. Lookup is done not via a subscript operator,
// but immutable getters that can optionally transform the value.
//
// SmallMap<K, V, 0> unconditionally allocates on the heap.
//
// Example usage:
//
// ftl::SmallMap<int, std::string, 3> map;
// assert(map.empty());
// assert(!map.dynamic());
//
// map = ftl::init::map<int, std::string>(123, "abc")(-1)(42, 3u, '?');
// assert(map.size() == 3u);
// assert(!map.dynamic());
//
// assert(map.contains(123));
// assert(map.get(42, [](const std::string& s) { return s.size(); }) == 3u);
//
// const auto opt = map.get(-1);
// assert(opt);
//
// std::string& ref = *opt;
// assert(ref.empty());
// ref = "xyz";
//
// map.emplace_or_replace(0, "vanilla", 2u, 3u);
// assert(map.dynamic());
//
// assert(map == SmallMap(ftl::init::map(-1, "xyz")(0, "nil")(42, "???")(123, "abc")));
//
template <typename K, typename V, std::size_t N, typename KeyEqual = std::equal_to<K>>
class SmallMap final {
using Map = SmallVector<std::pair<const K, V>, N>;
public:
using key_type = K;
using mapped_type = V;
using value_type = typename Map::value_type;
using size_type = typename Map::size_type;
using difference_type = typename Map::difference_type;
using reference = typename Map::reference;
using iterator = typename Map::iterator;
using const_reference = typename Map::const_reference;
using const_iterator = typename Map::const_iterator;
// Creates an empty map.
SmallMap() = default;
// Constructs at most N key-value pairs in place by forwarding per-pair constructor arguments.
// The template arguments K, V, and N are inferred using the deduction guide defined below.
// The syntax for listing pairs is as follows:
//
// ftl::SmallMap map = ftl::init::map<int, std::string>(123, "abc")(-1)(42, 3u, '?');
// static_assert(std::is_same_v<decltype(map), ftl::SmallMap<int, std::string, 3>>);
//
// The types of the key and value are deduced if the first pair contains exactly two arguments:
//
// ftl::SmallMap map = ftl::init::map(0, 'a')(1, 'b')(2, 'c');
// static_assert(std::is_same_v<decltype(map), ftl::SmallMap<int, char, 3>>);
//
template <typename U, std::size_t... Sizes, typename... Types>
SmallMap(InitializerList<U, std::index_sequence<Sizes...>, Types...>&& list)
: map_(std::move(list)) {
deduplicate();
}
size_type max_size() const { return map_.max_size(); }
size_type size() const { return map_.size(); }
bool empty() const { return map_.empty(); }
// Returns whether the map is backed by static or dynamic storage.
bool dynamic() const { return map_.dynamic(); }
iterator begin() { return map_.begin(); }
const_iterator begin() const { return cbegin(); }
const_iterator cbegin() const { return map_.cbegin(); }
iterator end() { return map_.end(); }
const_iterator end() const { return cend(); }
const_iterator cend() const { return map_.cend(); }
// Returns whether a mapping exists for the given key.
bool contains(const key_type& key) const {
return get(key, [](const mapped_type&) {});
}
// Returns a reference to the value for the given key, or std::nullopt if the key was not found.
//
// ftl::SmallMap map = ftl::init::map('a', 'A')('b', 'B')('c', 'C');
//
// const auto opt = map.get('c');
// assert(opt == 'C');
//
// char d = 'd';
// const auto ref = map.get('d').value_or(std::ref(d));
// ref.get() = 'D';
// assert(d == 'D');
//
auto get(const key_type& key) const -> std::optional<std::reference_wrapper<const mapped_type>> {
return get(key, [](const mapped_type& v) { return std::cref(v); });
}
auto get(const key_type& key) -> std::optional<std::reference_wrapper<mapped_type>> {
return get(key, [](mapped_type& v) { return std::ref(v); });
}
// Returns the result R of a unary operation F on (a constant or mutable reference to) the value
// for the given key, or std::nullopt if the key was not found. If F has a return type of void,
// then the Boolean result indicates whether the key was found.
//
// ftl::SmallMap map = ftl::init::map('a', 'x')('b', 'y')('c', 'z');
//
// assert(map.get('c', [](char c) { return std::toupper(c); }) == 'Z');
// assert(map.get('c', [](char& c) { c = std::toupper(c); }));
//
template <typename F, typename R = std::invoke_result_t<F, const mapped_type&>>
auto get(const key_type& key, F f) const
-> std::conditional_t<std::is_void_v<R>, bool, std::optional<R>> {
for (auto& [k, v] : *this) {
if (KeyEqual{}(k, key)) {
if constexpr (std::is_void_v<R>) {
f(v);
return true;
} else {
return f(v);
}
}
}
return {};
}
template <typename F>
auto get(const key_type& key, F f) {
return std::as_const(*this).get(
key, [&f](const mapped_type& v) { return f(const_cast<mapped_type&>(v)); });
}
// Returns an iterator to an existing mapping for the given key, or the end() iterator otherwise.
const_iterator find(const key_type& key) const { return const_cast<SmallMap&>(*this).find(key); }
iterator find(const key_type& key) { return find(key, begin()); }
// Inserts a mapping unless it exists. Returns an iterator to the inserted or existing mapping,
// and whether the mapping was inserted.
//
// On emplace, if the map reaches its static or dynamic capacity, then all iterators are
// invalidated. Otherwise, only the end() iterator is invalidated.
//
template <typename... Args>
std::pair<iterator, bool> try_emplace(const key_type& key, Args&&... args) {
if (const auto it = find(key); it != end()) {
return {it, false};
}
auto& ref = map_.emplace_back(std::piecewise_construct, std::forward_as_tuple(key),
std::forward_as_tuple(std::forward<Args>(args)...));
return {&ref, true};
}
// Replaces a mapping if it exists, and returns an iterator to it. Returns the end() iterator
// otherwise.
//
// The value is replaced via move constructor, so type V does not need to define copy/move
// assignment, e.g. its data members may be const.
//
// The arguments may directly or indirectly refer to the mapping being replaced.
//
// Iterators to the replaced mapping point to its replacement, and others remain valid.
//
template <typename... Args>
iterator try_replace(const key_type& key, Args&&... args) {
const auto it = find(key);
if (it == end()) return it;
map_.replace(it, std::piecewise_construct, std::forward_as_tuple(key),
std::forward_as_tuple(std::forward<Args>(args)...));
return it;
}
// In-place counterpart of std::unordered_map's insert_or_assign. Returns true on emplace, or
// false on replace.
//
// The value is emplaced and replaced via move constructor, so type V does not need to define
// copy/move assignment, e.g. its data members may be const.
//
// On emplace, if the map reaches its static or dynamic capacity, then all iterators are
// invalidated. Otherwise, only the end() iterator is invalidated. On replace, iterators
// to the replaced mapping point to its replacement, and others remain valid.
//
template <typename... Args>
std::pair<iterator, bool> emplace_or_replace(const key_type& key, Args&&... args) {
const auto [it, ok] = try_emplace(key, std::forward<Args>(args)...);
if (ok) return {it, ok};
map_.replace(it, std::piecewise_construct, std::forward_as_tuple(key),
std::forward_as_tuple(std::forward<Args>(args)...));
return {it, ok};
}
// Removes a mapping if it exists, and returns whether it did.
//
// The last() and end() iterators, as well as those to the erased mapping, are invalidated.
//
bool erase(const key_type& key) { return erase(key, begin()); }
// Removes all mappings.
//
// All iterators are invalidated.
//
void clear() { map_.clear(); }
private:
iterator find(const key_type& key, iterator first) {
return std::find_if(first, end(),
[&key](const auto& pair) { return KeyEqual{}(pair.first, key); });
}
bool erase(const key_type& key, iterator first) {
const auto it = find(key, first);
if (it == end()) return false;
map_.unstable_erase(it);
return true;
}
void deduplicate() {
for (auto it = begin(); it != end();) {
if (const auto key = it->first; ++it != end()) {
while (erase(key, it));
}
}
}
Map map_;
};
// Deduction guide for in-place constructor.
template <typename K, typename V, typename E, std::size_t... Sizes, typename... Types>
SmallMap(InitializerList<KeyValue<K, V, E>, std::index_sequence<Sizes...>, Types...>&&)
-> SmallMap<K, V, sizeof...(Sizes), E>;
// Returns whether the key-value pairs of two maps are equal.
template <typename K, typename V, std::size_t N, typename Q, typename W, std::size_t M, typename E>
bool operator==(const SmallMap<K, V, N, E>& lhs, const SmallMap<Q, W, M, E>& rhs) {
if (lhs.size() != rhs.size()) return false;
for (const auto& [k, v] : lhs) {
const auto& lv = v;
if (!rhs.get(k, [&lv](const auto& rv) { return lv == rv; }).value_or(false)) {
return false;
}
}
return true;
}
// TODO: Remove in C++20.
template <typename K, typename V, std::size_t N, typename Q, typename W, std::size_t M, typename E>
inline bool operator!=(const SmallMap<K, V, N, E>& lhs, const SmallMap<Q, W, M, E>& rhs) {
return !(lhs == rhs);
}
} // namespace android::ftl