blob: 7c25cda9acf459ae7a0a38e61a8b3fc80de75e5c [file] [log] [blame]
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "KeyLayoutMap"
#include <android/keycodes.h>
#include <ftl/enum.h>
#include <input/InputEventLabels.h>
#include <input/KeyLayoutMap.h>
#include <input/Keyboard.h>
#include <utils/Errors.h>
#include <utils/Log.h>
#include <utils/Timers.h>
#include <utils/Tokenizer.h>
#include <cstdlib>
#include <string_view>
#include <unordered_map>
// Enables debug output for the parser.
#define DEBUG_PARSER 0
// Enables debug output for parser performance.
#define DEBUG_PARSER_PERFORMANCE 0
// Enables debug output for mapping.
#define DEBUG_MAPPING 0
namespace android {
namespace {
constexpr const char* WHITESPACE = " \t\r";
template <InputDeviceSensorType S>
constexpr auto sensorPair() {
return std::make_pair(ftl::enum_name<S>(), S);
}
static const std::unordered_map<std::string_view, InputDeviceSensorType> SENSOR_LIST =
{sensorPair<InputDeviceSensorType::ACCELEROMETER>(),
sensorPair<InputDeviceSensorType::MAGNETIC_FIELD>(),
sensorPair<InputDeviceSensorType::ORIENTATION>(),
sensorPair<InputDeviceSensorType::GYROSCOPE>(),
sensorPair<InputDeviceSensorType::LIGHT>(),
sensorPair<InputDeviceSensorType::PRESSURE>(),
sensorPair<InputDeviceSensorType::TEMPERATURE>(),
sensorPair<InputDeviceSensorType::PROXIMITY>(),
sensorPair<InputDeviceSensorType::GRAVITY>(),
sensorPair<InputDeviceSensorType::LINEAR_ACCELERATION>(),
sensorPair<InputDeviceSensorType::ROTATION_VECTOR>(),
sensorPair<InputDeviceSensorType::RELATIVE_HUMIDITY>(),
sensorPair<InputDeviceSensorType::AMBIENT_TEMPERATURE>(),
sensorPair<InputDeviceSensorType::MAGNETIC_FIELD_UNCALIBRATED>(),
sensorPair<InputDeviceSensorType::GAME_ROTATION_VECTOR>(),
sensorPair<InputDeviceSensorType::GYROSCOPE_UNCALIBRATED>(),
sensorPair<InputDeviceSensorType::SIGNIFICANT_MOTION>()};
} // namespace
KeyLayoutMap::KeyLayoutMap() = default;
KeyLayoutMap::~KeyLayoutMap() = default;
base::Result<std::shared_ptr<KeyLayoutMap>> KeyLayoutMap::loadContents(const std::string& filename,
const char* contents) {
Tokenizer* tokenizer;
status_t status = Tokenizer::fromContents(String8(filename.c_str()), contents, &tokenizer);
if (status) {
ALOGE("Error %d opening key layout map.", status);
return Errorf("Error {} opening key layout map file {}.", status, filename.c_str());
}
std::unique_ptr<Tokenizer> t(tokenizer);
auto ret = load(t.get());
if (ret.ok()) {
(*ret)->mLoadFileName = filename;
}
return ret;
}
base::Result<std::shared_ptr<KeyLayoutMap>> KeyLayoutMap::load(const std::string& filename) {
Tokenizer* tokenizer;
status_t status = Tokenizer::open(String8(filename.c_str()), &tokenizer);
if (status) {
ALOGE("Error %d opening key layout map file %s.", status, filename.c_str());
return Errorf("Error {} opening key layout map file {}.", status, filename.c_str());
}
std::unique_ptr<Tokenizer> t(tokenizer);
auto ret = load(t.get());
if (ret.ok()) {
(*ret)->mLoadFileName = filename;
}
return ret;
}
base::Result<std::shared_ptr<KeyLayoutMap>> KeyLayoutMap::load(Tokenizer* tokenizer) {
std::shared_ptr<KeyLayoutMap> map = std::shared_ptr<KeyLayoutMap>(new KeyLayoutMap());
status_t status = OK;
if (!map.get()) {
ALOGE("Error allocating key layout map.");
return Errorf("Error allocating key layout map.");
} else {
#if DEBUG_PARSER_PERFORMANCE
nsecs_t startTime = systemTime(SYSTEM_TIME_MONOTONIC);
#endif
Parser parser(map.get(), tokenizer);
status = parser.parse();
#if DEBUG_PARSER_PERFORMANCE
nsecs_t elapsedTime = systemTime(SYSTEM_TIME_MONOTONIC) - startTime;
ALOGD("Parsed key layout map file '%s' %d lines in %0.3fms.",
tokenizer->getFilename().string(), tokenizer->getLineNumber(),
elapsedTime / 1000000.0);
#endif
if (!status) {
return std::move(map);
}
}
return Errorf("Load KeyLayoutMap failed {}.", status);
}
status_t KeyLayoutMap::mapKey(int32_t scanCode, int32_t usageCode,
int32_t* outKeyCode, uint32_t* outFlags) const {
const Key* key = getKey(scanCode, usageCode);
if (!key) {
#if DEBUG_MAPPING
ALOGD("mapKey: scanCode=%d, usageCode=0x%08x ~ Failed.", scanCode, usageCode);
#endif
*outKeyCode = AKEYCODE_UNKNOWN;
*outFlags = 0;
return NAME_NOT_FOUND;
}
*outKeyCode = key->keyCode;
*outFlags = key->flags;
#if DEBUG_MAPPING
ALOGD("mapKey: scanCode=%d, usageCode=0x%08x ~ Result keyCode=%d, outFlags=0x%08x.",
scanCode, usageCode, *outKeyCode, *outFlags);
#endif
return NO_ERROR;
}
// Return pair of sensor type and sensor data index, for the input device abs code
base::Result<std::pair<InputDeviceSensorType, int32_t>> KeyLayoutMap::mapSensor(int32_t absCode) {
auto it = mSensorsByAbsCode.find(absCode);
if (it == mSensorsByAbsCode.end()) {
#if DEBUG_MAPPING
ALOGD("mapSensor: absCode=%d, ~ Failed.", absCode);
#endif
return Errorf("Can't find abs code {}.", absCode);
}
const Sensor& sensor = it->second;
#if DEBUG_MAPPING
ALOGD("mapSensor: absCode=%d, sensorType=%s, sensorDataIndex=0x%x.", absCode,
ftl::enum_string(sensor.sensorType).c_str(), sensor.sensorDataIndex);
#endif
return std::make_pair(sensor.sensorType, sensor.sensorDataIndex);
}
const KeyLayoutMap::Key* KeyLayoutMap::getKey(int32_t scanCode, int32_t usageCode) const {
if (usageCode) {
ssize_t index = mKeysByUsageCode.indexOfKey(usageCode);
if (index >= 0) {
return &mKeysByUsageCode.valueAt(index);
}
}
if (scanCode) {
ssize_t index = mKeysByScanCode.indexOfKey(scanCode);
if (index >= 0) {
return &mKeysByScanCode.valueAt(index);
}
}
return nullptr;
}
status_t KeyLayoutMap::findScanCodesForKey(
int32_t keyCode, std::vector<int32_t>* outScanCodes) const {
const size_t N = mKeysByScanCode.size();
for (size_t i=0; i<N; i++) {
if (mKeysByScanCode.valueAt(i).keyCode == keyCode) {
outScanCodes->push_back(mKeysByScanCode.keyAt(i));
}
}
return NO_ERROR;
}
status_t KeyLayoutMap::mapAxis(int32_t scanCode, AxisInfo* outAxisInfo) const {
ssize_t index = mAxes.indexOfKey(scanCode);
if (index < 0) {
#if DEBUG_MAPPING
ALOGD("mapAxis: scanCode=%d ~ Failed.", scanCode);
#endif
return NAME_NOT_FOUND;
}
*outAxisInfo = mAxes.valueAt(index);
#if DEBUG_MAPPING
ALOGD("mapAxis: scanCode=%d ~ Result mode=%d, axis=%d, highAxis=%d, "
"splitValue=%d, flatOverride=%d.",
scanCode,
outAxisInfo->mode, outAxisInfo->axis, outAxisInfo->highAxis,
outAxisInfo->splitValue, outAxisInfo->flatOverride);
#endif
return NO_ERROR;
}
status_t KeyLayoutMap::findScanCodeForLed(int32_t ledCode, int32_t* outScanCode) const {
const size_t N = mLedsByScanCode.size();
for (size_t i = 0; i < N; i++) {
if (mLedsByScanCode.valueAt(i).ledCode == ledCode) {
*outScanCode = mLedsByScanCode.keyAt(i);
#if DEBUG_MAPPING
ALOGD("findScanCodeForLed: ledCode=%d, scanCode=%d.", ledCode, *outScanCode);
#endif
return NO_ERROR;
}
}
#if DEBUG_MAPPING
ALOGD("findScanCodeForLed: ledCode=%d ~ Not found.", ledCode);
#endif
return NAME_NOT_FOUND;
}
status_t KeyLayoutMap::findUsageCodeForLed(int32_t ledCode, int32_t* outUsageCode) const {
const size_t N = mLedsByUsageCode.size();
for (size_t i = 0; i < N; i++) {
if (mLedsByUsageCode.valueAt(i).ledCode == ledCode) {
*outUsageCode = mLedsByUsageCode.keyAt(i);
#if DEBUG_MAPPING
ALOGD("findUsageForLed: ledCode=%d, usage=%x.", ledCode, *outUsageCode);
#endif
return NO_ERROR;
}
}
#if DEBUG_MAPPING
ALOGD("findUsageForLed: ledCode=%d ~ Not found.", ledCode);
#endif
return NAME_NOT_FOUND;
}
// --- KeyLayoutMap::Parser ---
KeyLayoutMap::Parser::Parser(KeyLayoutMap* map, Tokenizer* tokenizer) :
mMap(map), mTokenizer(tokenizer) {
}
KeyLayoutMap::Parser::~Parser() {
}
status_t KeyLayoutMap::Parser::parse() {
while (!mTokenizer->isEof()) {
#if DEBUG_PARSER
ALOGD("Parsing %s: '%s'.", mTokenizer->getLocation().string(),
mTokenizer->peekRemainderOfLine().string());
#endif
mTokenizer->skipDelimiters(WHITESPACE);
if (!mTokenizer->isEol() && mTokenizer->peekChar() != '#') {
String8 keywordToken = mTokenizer->nextToken(WHITESPACE);
if (keywordToken == "key") {
mTokenizer->skipDelimiters(WHITESPACE);
status_t status = parseKey();
if (status) return status;
} else if (keywordToken == "axis") {
mTokenizer->skipDelimiters(WHITESPACE);
status_t status = parseAxis();
if (status) return status;
} else if (keywordToken == "led") {
mTokenizer->skipDelimiters(WHITESPACE);
status_t status = parseLed();
if (status) return status;
} else if (keywordToken == "sensor") {
mTokenizer->skipDelimiters(WHITESPACE);
status_t status = parseSensor();
if (status) return status;
} else {
ALOGE("%s: Expected keyword, got '%s'.", mTokenizer->getLocation().string(),
keywordToken.string());
return BAD_VALUE;
}
mTokenizer->skipDelimiters(WHITESPACE);
if (!mTokenizer->isEol() && mTokenizer->peekChar() != '#') {
ALOGE("%s: Expected end of line or trailing comment, got '%s'.",
mTokenizer->getLocation().string(),
mTokenizer->peekRemainderOfLine().string());
return BAD_VALUE;
}
}
mTokenizer->nextLine();
}
return NO_ERROR;
}
status_t KeyLayoutMap::Parser::parseKey() {
String8 codeToken = mTokenizer->nextToken(WHITESPACE);
bool mapUsage = false;
if (codeToken == "usage") {
mapUsage = true;
mTokenizer->skipDelimiters(WHITESPACE);
codeToken = mTokenizer->nextToken(WHITESPACE);
}
char* end;
int32_t code = int32_t(strtol(codeToken.string(), &end, 0));
if (*end) {
ALOGE("%s: Expected key %s number, got '%s'.", mTokenizer->getLocation().string(),
mapUsage ? "usage" : "scan code", codeToken.string());
return BAD_VALUE;
}
KeyedVector<int32_t, Key>& map = mapUsage ? mMap->mKeysByUsageCode : mMap->mKeysByScanCode;
if (map.indexOfKey(code) >= 0) {
ALOGE("%s: Duplicate entry for key %s '%s'.", mTokenizer->getLocation().string(),
mapUsage ? "usage" : "scan code", codeToken.string());
return BAD_VALUE;
}
mTokenizer->skipDelimiters(WHITESPACE);
String8 keyCodeToken = mTokenizer->nextToken(WHITESPACE);
int32_t keyCode = InputEventLookup::getKeyCodeByLabel(keyCodeToken.string());
if (!keyCode) {
ALOGE("%s: Expected key code label, got '%s'.", mTokenizer->getLocation().string(),
keyCodeToken.string());
return BAD_VALUE;
}
uint32_t flags = 0;
for (;;) {
mTokenizer->skipDelimiters(WHITESPACE);
if (mTokenizer->isEol() || mTokenizer->peekChar() == '#') break;
String8 flagToken = mTokenizer->nextToken(WHITESPACE);
uint32_t flag = InputEventLookup::getKeyFlagByLabel(flagToken.string());
if (!flag) {
ALOGE("%s: Expected key flag label, got '%s'.", mTokenizer->getLocation().string(),
flagToken.string());
return BAD_VALUE;
}
if (flags & flag) {
ALOGE("%s: Duplicate key flag '%s'.", mTokenizer->getLocation().string(),
flagToken.string());
return BAD_VALUE;
}
flags |= flag;
}
#if DEBUG_PARSER
ALOGD("Parsed key %s: code=%d, keyCode=%d, flags=0x%08x.",
mapUsage ? "usage" : "scan code", code, keyCode, flags);
#endif
Key key;
key.keyCode = keyCode;
key.flags = flags;
map.add(code, key);
return NO_ERROR;
}
status_t KeyLayoutMap::Parser::parseAxis() {
String8 scanCodeToken = mTokenizer->nextToken(WHITESPACE);
char* end;
int32_t scanCode = int32_t(strtol(scanCodeToken.string(), &end, 0));
if (*end) {
ALOGE("%s: Expected axis scan code number, got '%s'.", mTokenizer->getLocation().string(),
scanCodeToken.string());
return BAD_VALUE;
}
if (mMap->mAxes.indexOfKey(scanCode) >= 0) {
ALOGE("%s: Duplicate entry for axis scan code '%s'.", mTokenizer->getLocation().string(),
scanCodeToken.string());
return BAD_VALUE;
}
AxisInfo axisInfo;
mTokenizer->skipDelimiters(WHITESPACE);
String8 token = mTokenizer->nextToken(WHITESPACE);
if (token == "invert") {
axisInfo.mode = AxisInfo::MODE_INVERT;
mTokenizer->skipDelimiters(WHITESPACE);
String8 axisToken = mTokenizer->nextToken(WHITESPACE);
axisInfo.axis = InputEventLookup::getAxisByLabel(axisToken.string());
if (axisInfo.axis < 0) {
ALOGE("%s: Expected inverted axis label, got '%s'.",
mTokenizer->getLocation().string(), axisToken.string());
return BAD_VALUE;
}
} else if (token == "split") {
axisInfo.mode = AxisInfo::MODE_SPLIT;
mTokenizer->skipDelimiters(WHITESPACE);
String8 splitToken = mTokenizer->nextToken(WHITESPACE);
axisInfo.splitValue = int32_t(strtol(splitToken.string(), &end, 0));
if (*end) {
ALOGE("%s: Expected split value, got '%s'.",
mTokenizer->getLocation().string(), splitToken.string());
return BAD_VALUE;
}
mTokenizer->skipDelimiters(WHITESPACE);
String8 lowAxisToken = mTokenizer->nextToken(WHITESPACE);
axisInfo.axis = InputEventLookup::getAxisByLabel(lowAxisToken.string());
if (axisInfo.axis < 0) {
ALOGE("%s: Expected low axis label, got '%s'.",
mTokenizer->getLocation().string(), lowAxisToken.string());
return BAD_VALUE;
}
mTokenizer->skipDelimiters(WHITESPACE);
String8 highAxisToken = mTokenizer->nextToken(WHITESPACE);
axisInfo.highAxis = InputEventLookup::getAxisByLabel(highAxisToken.string());
if (axisInfo.highAxis < 0) {
ALOGE("%s: Expected high axis label, got '%s'.",
mTokenizer->getLocation().string(), highAxisToken.string());
return BAD_VALUE;
}
} else {
axisInfo.axis = InputEventLookup::getAxisByLabel(token.string());
if (axisInfo.axis < 0) {
ALOGE("%s: Expected axis label, 'split' or 'invert', got '%s'.",
mTokenizer->getLocation().string(), token.string());
return BAD_VALUE;
}
}
for (;;) {
mTokenizer->skipDelimiters(WHITESPACE);
if (mTokenizer->isEol() || mTokenizer->peekChar() == '#') {
break;
}
String8 keywordToken = mTokenizer->nextToken(WHITESPACE);
if (keywordToken == "flat") {
mTokenizer->skipDelimiters(WHITESPACE);
String8 flatToken = mTokenizer->nextToken(WHITESPACE);
axisInfo.flatOverride = int32_t(strtol(flatToken.string(), &end, 0));
if (*end) {
ALOGE("%s: Expected flat value, got '%s'.",
mTokenizer->getLocation().string(), flatToken.string());
return BAD_VALUE;
}
} else {
ALOGE("%s: Expected keyword 'flat', got '%s'.",
mTokenizer->getLocation().string(), keywordToken.string());
return BAD_VALUE;
}
}
#if DEBUG_PARSER
ALOGD("Parsed axis: scanCode=%d, mode=%d, axis=%d, highAxis=%d, "
"splitValue=%d, flatOverride=%d.",
scanCode,
axisInfo.mode, axisInfo.axis, axisInfo.highAxis,
axisInfo.splitValue, axisInfo.flatOverride);
#endif
mMap->mAxes.add(scanCode, axisInfo);
return NO_ERROR;
}
status_t KeyLayoutMap::Parser::parseLed() {
String8 codeToken = mTokenizer->nextToken(WHITESPACE);
bool mapUsage = false;
if (codeToken == "usage") {
mapUsage = true;
mTokenizer->skipDelimiters(WHITESPACE);
codeToken = mTokenizer->nextToken(WHITESPACE);
}
char* end;
int32_t code = int32_t(strtol(codeToken.string(), &end, 0));
if (*end) {
ALOGE("%s: Expected led %s number, got '%s'.", mTokenizer->getLocation().string(),
mapUsage ? "usage" : "scan code", codeToken.string());
return BAD_VALUE;
}
KeyedVector<int32_t, Led>& map = mapUsage ? mMap->mLedsByUsageCode : mMap->mLedsByScanCode;
if (map.indexOfKey(code) >= 0) {
ALOGE("%s: Duplicate entry for led %s '%s'.", mTokenizer->getLocation().string(),
mapUsage ? "usage" : "scan code", codeToken.string());
return BAD_VALUE;
}
mTokenizer->skipDelimiters(WHITESPACE);
String8 ledCodeToken = mTokenizer->nextToken(WHITESPACE);
int32_t ledCode = InputEventLookup::getLedByLabel(ledCodeToken.string());
if (ledCode < 0) {
ALOGE("%s: Expected LED code label, got '%s'.", mTokenizer->getLocation().string(),
ledCodeToken.string());
return BAD_VALUE;
}
#if DEBUG_PARSER
ALOGD("Parsed led %s: code=%d, ledCode=%d.",
mapUsage ? "usage" : "scan code", code, ledCode);
#endif
Led led;
led.ledCode = ledCode;
map.add(code, led);
return NO_ERROR;
}
static std::optional<InputDeviceSensorType> getSensorType(const char* token) {
auto it = SENSOR_LIST.find(token);
if (it == SENSOR_LIST.end()) {
return std::nullopt;
}
return it->second;
}
static std::optional<int32_t> getSensorDataIndex(String8 token) {
std::string tokenStr(token.string());
if (tokenStr == "X") {
return 0;
} else if (tokenStr == "Y") {
return 1;
} else if (tokenStr == "Z") {
return 2;
}
return std::nullopt;
}
// Parse sensor type and data index mapping, as below format
// sensor <raw abs> <sensor type> <sensor data index>
// raw abs : the linux abs code of the axis
// sensor type : string name of InputDeviceSensorType
// sensor data index : the data index of sensor, out of [X, Y, Z]
// Examples:
// sensor 0x00 ACCELEROMETER X
// sensor 0x01 ACCELEROMETER Y
// sensor 0x02 ACCELEROMETER Z
// sensor 0x03 GYROSCOPE X
// sensor 0x04 GYROSCOPE Y
// sensor 0x05 GYROSCOPE Z
status_t KeyLayoutMap::Parser::parseSensor() {
String8 codeToken = mTokenizer->nextToken(WHITESPACE);
char* end;
int32_t code = int32_t(strtol(codeToken.string(), &end, 0));
if (*end) {
ALOGE("%s: Expected sensor %s number, got '%s'.", mTokenizer->getLocation().string(),
"abs code", codeToken.string());
return BAD_VALUE;
}
std::unordered_map<int32_t, Sensor>& map = mMap->mSensorsByAbsCode;
if (map.find(code) != map.end()) {
ALOGE("%s: Duplicate entry for sensor %s '%s'.", mTokenizer->getLocation().string(),
"abs code", codeToken.string());
return BAD_VALUE;
}
mTokenizer->skipDelimiters(WHITESPACE);
String8 sensorTypeToken = mTokenizer->nextToken(WHITESPACE);
std::optional<InputDeviceSensorType> typeOpt = getSensorType(sensorTypeToken.string());
if (!typeOpt) {
ALOGE("%s: Expected sensor code label, got '%s'.", mTokenizer->getLocation().string(),
sensorTypeToken.string());
return BAD_VALUE;
}
InputDeviceSensorType sensorType = typeOpt.value();
mTokenizer->skipDelimiters(WHITESPACE);
String8 sensorDataIndexToken = mTokenizer->nextToken(WHITESPACE);
std::optional<int32_t> indexOpt = getSensorDataIndex(sensorDataIndexToken);
if (!indexOpt) {
ALOGE("%s: Expected sensor data index label, got '%s'.", mTokenizer->getLocation().string(),
sensorDataIndexToken.string());
return BAD_VALUE;
}
int32_t sensorDataIndex = indexOpt.value();
#if DEBUG_PARSER
ALOGD("Parsed sensor: abs code=%d, sensorType=%s, sensorDataIndex=%d.", code,
ftl::enum_string(sensorType).c_str(), sensorDataIndex);
#endif
Sensor sensor;
sensor.sensorType = sensorType;
sensor.sensorDataIndex = sensorDataIndex;
map.emplace(code, sensor);
return NO_ERROR;
}
} // namespace android