blob: 043a53621608c62cd900499c835a41b39a00e784 [file] [log] [blame]
/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include <binder/IPCThreadState.h>
#include <utils/Log.h>
#include <utils/Timers.h>
#include <utils/threads.h>
#include <gui/DisplayEventReceiver.h>
#include "EventThread.h"
#include "FrameTimeline.h"
#include "MessageQueue.h"
namespace android::impl {
void MessageQueue::Handler::dispatchComposite() {
if ((mEventMask.fetch_or(kComposite) & kComposite) == 0) {
mQueue.mLooper->sendMessage(this, Message(kComposite));
}
}
void MessageQueue::Handler::dispatchCommit(int64_t vsyncId, nsecs_t expectedVsyncTime) {
if ((mEventMask.fetch_or(kCommit) & kCommit) == 0) {
mVsyncId = vsyncId;
mExpectedVsyncTime = expectedVsyncTime;
mQueue.mLooper->sendMessage(this, Message(kCommit));
}
}
bool MessageQueue::Handler::isFramePending() const {
constexpr auto kPendingMask = kCommit | kComposite;
return (mEventMask.load() & kPendingMask) != 0;
}
void MessageQueue::Handler::handleMessage(const Message& message) {
const nsecs_t frameTime = systemTime();
switch (message.what) {
case kCommit:
mEventMask.fetch_and(~kCommit);
if (!mQueue.mCompositor.commit(frameTime, mVsyncId, mExpectedVsyncTime)) {
return;
}
// Composite immediately, rather than after pending tasks through scheduleComposite.
[[fallthrough]];
case kComposite:
mEventMask.fetch_and(~kComposite);
mQueue.mCompositor.composite(frameTime);
mQueue.mCompositor.sample();
break;
}
}
MessageQueue::MessageQueue(ICompositor& compositor)
: MessageQueue(compositor, sp<Handler>::make(*this)) {}
constexpr bool kAllowNonCallbacks = true;
MessageQueue::MessageQueue(ICompositor& compositor, sp<Handler> handler)
: mCompositor(compositor),
mLooper(sp<Looper>::make(kAllowNonCallbacks)),
mHandler(std::move(handler)) {}
// TODO(b/169865816): refactor VSyncInjections to use MessageQueue directly
// and remove the EventThread from MessageQueue
void MessageQueue::setInjector(sp<EventThreadConnection> connection) {
auto& tube = mInjector.tube;
if (const int fd = tube.getFd(); fd >= 0) {
mLooper->removeFd(fd);
}
if (connection) {
// The EventThreadConnection is retained when disabling injection, so avoid subsequently
// stealing invalid FDs. Note that the stolen FDs are kept open.
if (tube.getFd() < 0) {
connection->stealReceiveChannel(&tube);
} else {
ALOGW("Recycling channel for VSYNC injection.");
}
mLooper->addFd(
tube.getFd(), 0, Looper::EVENT_INPUT,
[](int, int, void* data) {
reinterpret_cast<MessageQueue*>(data)->injectorCallback();
return 1; // Keep registration.
},
this);
}
std::lock_guard lock(mInjector.mutex);
mInjector.connection = std::move(connection);
}
void MessageQueue::vsyncCallback(nsecs_t vsyncTime, nsecs_t targetWakeupTime, nsecs_t readyTime) {
ATRACE_CALL();
// Trace VSYNC-sf
mVsync.value = (mVsync.value + 1) % 2;
{
std::lock_guard lock(mVsync.mutex);
mVsync.lastCallbackTime = std::chrono::nanoseconds(vsyncTime);
mVsync.scheduledFrameTime.reset();
}
const auto vsyncId = mVsync.tokenManager->generateTokenForPredictions(
{targetWakeupTime, readyTime, vsyncTime});
mHandler->dispatchCommit(vsyncId, vsyncTime);
}
void MessageQueue::initVsync(scheduler::VSyncDispatch& dispatch,
frametimeline::TokenManager& tokenManager,
std::chrono::nanoseconds workDuration) {
setDuration(workDuration);
mVsync.tokenManager = &tokenManager;
mVsync.registration = std::make_unique<
scheduler::VSyncCallbackRegistration>(dispatch,
std::bind(&MessageQueue::vsyncCallback, this,
std::placeholders::_1,
std::placeholders::_2,
std::placeholders::_3),
"sf");
}
void MessageQueue::setDuration(std::chrono::nanoseconds workDuration) {
ATRACE_CALL();
std::lock_guard lock(mVsync.mutex);
mVsync.workDuration = workDuration;
if (mVsync.scheduledFrameTime) {
mVsync.scheduledFrameTime = mVsync.registration->schedule(
{mVsync.workDuration.get().count(),
/*readyDuration=*/0, mVsync.lastCallbackTime.count()});
}
}
void MessageQueue::waitMessage() {
do {
IPCThreadState::self()->flushCommands();
int32_t ret = mLooper->pollOnce(-1);
switch (ret) {
case Looper::POLL_WAKE:
case Looper::POLL_CALLBACK:
continue;
case Looper::POLL_ERROR:
ALOGE("Looper::POLL_ERROR");
continue;
case Looper::POLL_TIMEOUT:
// timeout (should not happen)
continue;
default:
// should not happen
ALOGE("Looper::pollOnce() returned unknown status %d", ret);
continue;
}
} while (true);
}
void MessageQueue::postMessage(sp<MessageHandler>&& handler) {
mLooper->sendMessage(handler, Message());
}
void MessageQueue::scheduleCommit() {
ATRACE_CALL();
{
std::lock_guard lock(mInjector.mutex);
if (CC_UNLIKELY(mInjector.connection)) {
ALOGD("%s while injecting VSYNC", __FUNCTION__);
mInjector.connection->requestNextVsync();
return;
}
}
std::lock_guard lock(mVsync.mutex);
mVsync.scheduledFrameTime =
mVsync.registration->schedule({.workDuration = mVsync.workDuration.get().count(),
.readyDuration = 0,
.earliestVsync = mVsync.lastCallbackTime.count()});
}
void MessageQueue::scheduleComposite() {
mHandler->dispatchComposite();
}
void MessageQueue::injectorCallback() {
ssize_t n;
DisplayEventReceiver::Event buffer[8];
while ((n = DisplayEventReceiver::getEvents(&mInjector.tube, buffer, 8)) > 0) {
for (int i = 0; i < n; i++) {
if (buffer[i].header.type == DisplayEventReceiver::DISPLAY_EVENT_VSYNC) {
mHandler->dispatchCommit(buffer[i].vsync.vsyncId,
buffer[i].vsync.expectedVSyncTimestamp);
break;
}
}
}
}
auto MessageQueue::getScheduledFrameTime() const -> std::optional<Clock::time_point> {
if (mHandler->isFramePending()) {
return Clock::now();
}
std::lock_guard lock(mVsync.mutex);
if (const auto time = mVsync.scheduledFrameTime) {
return Clock::time_point(std::chrono::nanoseconds(*time));
}
return std::nullopt;
}
} // namespace android::impl