| /* |
| * Copyright 2013 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| //#define LOG_NDEBUG 0 |
| #undef LOG_TAG |
| #define LOG_TAG "RenderEngine" |
| #define ATRACE_TAG ATRACE_TAG_GRAPHICS |
| |
| #include <GLES2/gl2.h> |
| #include <GLES2/gl2ext.h> |
| |
| #include <ui/ColorSpace.h> |
| #include <ui/DebugUtils.h> |
| #include <ui/Rect.h> |
| |
| #include <utils/String8.h> |
| #include <utils/Trace.h> |
| |
| #include <cutils/compiler.h> |
| #include <gui/ISurfaceComposer.h> |
| #include <math.h> |
| |
| #include "Description.h" |
| #include "GLES20RenderEngine.h" |
| #include "Mesh.h" |
| #include "Program.h" |
| #include "ProgramCache.h" |
| #include "Texture.h" |
| |
| #include <fstream> |
| #include <sstream> |
| |
| // --------------------------------------------------------------------------- |
| bool checkGlError(const char* op, int lineNumber) { |
| bool errorFound = false; |
| GLint error = glGetError(); |
| while (error != GL_NO_ERROR) { |
| errorFound = true; |
| error = glGetError(); |
| ALOGV("after %s() (line # %d) glError (0x%x)\n", op, lineNumber, error); |
| } |
| return errorFound; |
| } |
| |
| static constexpr bool outputDebugPPMs = false; |
| |
| void writePPM(const char* basename, GLuint width, GLuint height) { |
| ALOGV("writePPM #%s: %d x %d", basename, width, height); |
| |
| std::vector<GLubyte> pixels(width * height * 4); |
| std::vector<GLubyte> outBuffer(width * height * 3); |
| |
| // TODO(courtneygo): We can now have float formats, need |
| // to remove this code or update to support. |
| // Make returned pixels fit in uint32_t, one byte per component |
| glReadPixels(0, 0, width, height, GL_RGBA, GL_UNSIGNED_BYTE, pixels.data()); |
| if (checkGlError(__FUNCTION__, __LINE__)) { |
| return; |
| } |
| |
| std::string filename(basename); |
| filename.append(".ppm"); |
| std::ofstream file(filename.c_str(), std::ios::binary); |
| if (!file.is_open()) { |
| ALOGE("Unable to open file: %s", filename.c_str()); |
| ALOGE("You may need to do: \"adb shell setenforce 0\" to enable " |
| "surfaceflinger to write debug images"); |
| return; |
| } |
| |
| file << "P6\n"; |
| file << width << "\n"; |
| file << height << "\n"; |
| file << 255 << "\n"; |
| |
| auto ptr = reinterpret_cast<char*>(pixels.data()); |
| auto outPtr = reinterpret_cast<char*>(outBuffer.data()); |
| for (int y = height - 1; y >= 0; y--) { |
| char* data = ptr + y * width * sizeof(uint32_t); |
| |
| for (GLuint x = 0; x < width; x++) { |
| // Only copy R, G and B components |
| outPtr[0] = data[0]; |
| outPtr[1] = data[1]; |
| outPtr[2] = data[2]; |
| data += sizeof(uint32_t); |
| outPtr += 3; |
| } |
| } |
| file.write(reinterpret_cast<char*>(outBuffer.data()), outBuffer.size()); |
| } |
| |
| // --------------------------------------------------------------------------- |
| namespace android { |
| namespace RE { |
| namespace impl { |
| // --------------------------------------------------------------------------- |
| |
| using ui::Dataspace; |
| |
| GLES20RenderEngine::GLES20RenderEngine(uint32_t featureFlags) |
| : RenderEngine(featureFlags), |
| mVpWidth(0), |
| mVpHeight(0), |
| mPlatformHasWideColor((featureFlags & WIDE_COLOR_SUPPORT) != 0) { |
| glGetIntegerv(GL_MAX_TEXTURE_SIZE, &mMaxTextureSize); |
| glGetIntegerv(GL_MAX_VIEWPORT_DIMS, mMaxViewportDims); |
| |
| glPixelStorei(GL_UNPACK_ALIGNMENT, 4); |
| glPixelStorei(GL_PACK_ALIGNMENT, 4); |
| |
| const uint16_t protTexData[] = {0}; |
| glGenTextures(1, &mProtectedTexName); |
| glBindTexture(GL_TEXTURE_2D, mProtectedTexName); |
| glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); |
| glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); |
| glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); |
| glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); |
| glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 1, 1, 0, GL_RGB, GL_UNSIGNED_SHORT_5_6_5, protTexData); |
| |
| // mColorBlindnessCorrection = M; |
| |
| if (mPlatformHasWideColor) { |
| ColorSpace srgb(ColorSpace::sRGB()); |
| ColorSpace displayP3(ColorSpace::DisplayP3()); |
| ColorSpace bt2020(ColorSpace::BT2020()); |
| |
| // Compute sRGB to Display P3 transform matrix. |
| // NOTE: For now, we are limiting output wide color space support to |
| // Display-P3 only. |
| mSrgbToDisplayP3 = mat4(ColorSpaceConnector(srgb, displayP3).getTransform()); |
| |
| // Compute Display P3 to sRGB transform matrix. |
| mDisplayP3ToSrgb = mat4(ColorSpaceConnector(displayP3, srgb).getTransform()); |
| |
| // no chromatic adaptation needed since all color spaces use D65 for their white points. |
| mSrgbToXyz = srgb.getRGBtoXYZ(); |
| mDisplayP3ToXyz = displayP3.getRGBtoXYZ(); |
| mBt2020ToXyz = bt2020.getRGBtoXYZ(); |
| mXyzToSrgb = mat4(srgb.getXYZtoRGB()); |
| mXyzToDisplayP3 = mat4(displayP3.getXYZtoRGB()); |
| mXyzToBt2020 = mat4(bt2020.getXYZtoRGB()); |
| } |
| } |
| |
| GLES20RenderEngine::~GLES20RenderEngine() {} |
| |
| size_t GLES20RenderEngine::getMaxTextureSize() const { |
| return mMaxTextureSize; |
| } |
| |
| size_t GLES20RenderEngine::getMaxViewportDims() const { |
| return mMaxViewportDims[0] < mMaxViewportDims[1] ? mMaxViewportDims[0] : mMaxViewportDims[1]; |
| } |
| |
| void GLES20RenderEngine::setViewportAndProjection(size_t vpw, size_t vph, Rect sourceCrop, |
| size_t hwh, bool yswap, |
| Transform::orientation_flags rotation) { |
| int32_t l = sourceCrop.left; |
| int32_t r = sourceCrop.right; |
| |
| // In GL, (0, 0) is the bottom-left corner, so flip y coordinates |
| int32_t t = hwh - sourceCrop.top; |
| int32_t b = hwh - sourceCrop.bottom; |
| |
| mat4 m; |
| if (yswap) { |
| m = mat4::ortho(l, r, t, b, 0, 1); |
| } else { |
| m = mat4::ortho(l, r, b, t, 0, 1); |
| } |
| |
| // Apply custom rotation to the projection. |
| float rot90InRadians = 2.0f * static_cast<float>(M_PI) / 4.0f; |
| switch (rotation) { |
| case Transform::ROT_0: |
| break; |
| case Transform::ROT_90: |
| m = mat4::rotate(rot90InRadians, vec3(0, 0, 1)) * m; |
| break; |
| case Transform::ROT_180: |
| m = mat4::rotate(rot90InRadians * 2.0f, vec3(0, 0, 1)) * m; |
| break; |
| case Transform::ROT_270: |
| m = mat4::rotate(rot90InRadians * 3.0f, vec3(0, 0, 1)) * m; |
| break; |
| default: |
| break; |
| } |
| |
| glViewport(0, 0, vpw, vph); |
| mState.setProjectionMatrix(m); |
| mVpWidth = vpw; |
| mVpHeight = vph; |
| } |
| |
| void GLES20RenderEngine::setupLayerBlending(bool premultipliedAlpha, bool opaque, |
| bool disableTexture, const half4& color) { |
| mState.setPremultipliedAlpha(premultipliedAlpha); |
| mState.setOpaque(opaque); |
| mState.setColor(color); |
| |
| if (disableTexture) { |
| mState.disableTexture(); |
| } |
| |
| if (color.a < 1.0f || !opaque) { |
| glEnable(GL_BLEND); |
| glBlendFunc(premultipliedAlpha ? GL_ONE : GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); |
| } else { |
| glDisable(GL_BLEND); |
| } |
| } |
| |
| void GLES20RenderEngine::setSourceY410BT2020(bool enable) { |
| mState.setY410BT2020(enable); |
| } |
| |
| void GLES20RenderEngine::setSourceDataSpace(Dataspace source) { |
| mDataSpace = source; |
| } |
| |
| void GLES20RenderEngine::setOutputDataSpace(Dataspace dataspace) { |
| mOutputDataSpace = dataspace; |
| } |
| |
| void GLES20RenderEngine::setDisplayMaxLuminance(const float maxLuminance) { |
| mState.setDisplayMaxLuminance(maxLuminance); |
| } |
| |
| void GLES20RenderEngine::setupLayerTexturing(const Texture& texture) { |
| GLuint target = texture.getTextureTarget(); |
| glBindTexture(target, texture.getTextureName()); |
| GLenum filter = GL_NEAREST; |
| if (texture.getFiltering()) { |
| filter = GL_LINEAR; |
| } |
| glTexParameteri(target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); |
| glTexParameteri(target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); |
| glTexParameteri(target, GL_TEXTURE_MAG_FILTER, filter); |
| glTexParameteri(target, GL_TEXTURE_MIN_FILTER, filter); |
| |
| mState.setTexture(texture); |
| } |
| |
| void GLES20RenderEngine::setupLayerBlackedOut() { |
| glBindTexture(GL_TEXTURE_2D, mProtectedTexName); |
| Texture texture(Texture::TEXTURE_2D, mProtectedTexName); |
| texture.setDimensions(1, 1); // FIXME: we should get that from somewhere |
| mState.setTexture(texture); |
| } |
| |
| void GLES20RenderEngine::setupColorTransform(const mat4& colorTransform) { |
| mState.setColorMatrix(colorTransform); |
| } |
| |
| void GLES20RenderEngine::setSaturationMatrix(const mat4& saturationMatrix) { |
| mState.setSaturationMatrix(saturationMatrix); |
| } |
| |
| void GLES20RenderEngine::disableTexturing() { |
| mState.disableTexture(); |
| } |
| |
| void GLES20RenderEngine::disableBlending() { |
| glDisable(GL_BLEND); |
| } |
| |
| void GLES20RenderEngine::bindImageAsFramebuffer(EGLImageKHR image, uint32_t* texName, |
| uint32_t* fbName, uint32_t* status) { |
| GLuint tname, name; |
| // turn our EGLImage into a texture |
| glGenTextures(1, &tname); |
| glBindTexture(GL_TEXTURE_2D, tname); |
| glEGLImageTargetTexture2DOES(GL_TEXTURE_2D, (GLeglImageOES)image); |
| |
| // create a Framebuffer Object to render into |
| glGenFramebuffers(1, &name); |
| glBindFramebuffer(GL_FRAMEBUFFER, name); |
| glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, tname, 0); |
| |
| *status = glCheckFramebufferStatus(GL_FRAMEBUFFER); |
| *texName = tname; |
| *fbName = name; |
| } |
| |
| void GLES20RenderEngine::unbindFramebuffer(uint32_t texName, uint32_t fbName) { |
| glBindFramebuffer(GL_FRAMEBUFFER, 0); |
| glDeleteFramebuffers(1, &fbName); |
| glDeleteTextures(1, &texName); |
| } |
| |
| void GLES20RenderEngine::setupFillWithColor(float r, float g, float b, float a) { |
| mState.setPremultipliedAlpha(true); |
| mState.setOpaque(false); |
| mState.setColor(half4(r, g, b, a)); |
| mState.disableTexture(); |
| glDisable(GL_BLEND); |
| } |
| |
| void GLES20RenderEngine::drawMesh(const Mesh& mesh) { |
| ATRACE_CALL(); |
| if (mesh.getTexCoordsSize()) { |
| glEnableVertexAttribArray(Program::texCoords); |
| glVertexAttribPointer(Program::texCoords, mesh.getTexCoordsSize(), GL_FLOAT, GL_FALSE, |
| mesh.getByteStride(), mesh.getTexCoords()); |
| } |
| |
| glVertexAttribPointer(Program::position, mesh.getVertexSize(), GL_FLOAT, GL_FALSE, |
| mesh.getByteStride(), mesh.getPositions()); |
| |
| // By default, DISPLAY_P3 is the only supported wide color output. However, |
| // when HDR content is present, hardware composer may be able to handle |
| // BT2020 data space, in that case, the output data space is set to be |
| // BT2020_HLG or BT2020_PQ respectively. In GPU fall back we need |
| // to respect this and convert non-HDR content to HDR format. |
| if (mPlatformHasWideColor) { |
| Description wideColorState = mState; |
| Dataspace inputStandard = static_cast<Dataspace>(mDataSpace & Dataspace::STANDARD_MASK); |
| Dataspace inputTransfer = static_cast<Dataspace>(mDataSpace & Dataspace::TRANSFER_MASK); |
| Dataspace outputStandard = static_cast<Dataspace>(mOutputDataSpace & |
| Dataspace::STANDARD_MASK); |
| Dataspace outputTransfer = static_cast<Dataspace>(mOutputDataSpace & |
| Dataspace::TRANSFER_MASK); |
| bool needsXYZConversion = needsXYZTransformMatrix(); |
| |
| if (needsXYZConversion) { |
| // The supported input color spaces are standard RGB, Display P3 and BT2020. |
| switch (inputStandard) { |
| case Dataspace::STANDARD_DCI_P3: |
| wideColorState.setInputTransformMatrix(mDisplayP3ToXyz); |
| break; |
| case Dataspace::STANDARD_BT2020: |
| wideColorState.setInputTransformMatrix(mBt2020ToXyz); |
| break; |
| default: |
| wideColorState.setInputTransformMatrix(mSrgbToXyz); |
| break; |
| } |
| |
| // The supported output color spaces are BT2020, Display P3 and standard RGB. |
| switch (outputStandard) { |
| case Dataspace::STANDARD_BT2020: |
| wideColorState.setOutputTransformMatrix(mXyzToBt2020); |
| break; |
| case Dataspace::STANDARD_DCI_P3: |
| wideColorState.setOutputTransformMatrix(mXyzToDisplayP3); |
| break; |
| default: |
| wideColorState.setOutputTransformMatrix(mXyzToSrgb); |
| break; |
| } |
| } else if (inputStandard != outputStandard) { |
| // At this point, the input data space and output data space could be both |
| // HDR data spaces, but they match each other, we do nothing in this case. |
| // In addition to the case above, the input data space could be |
| // - scRGB linear |
| // - scRGB non-linear |
| // - sRGB |
| // - Display P3 |
| // The output data spaces could be |
| // - sRGB |
| // - Display P3 |
| if (outputStandard == Dataspace::STANDARD_BT709) { |
| wideColorState.setOutputTransformMatrix(mDisplayP3ToSrgb); |
| } else if (outputStandard == Dataspace::STANDARD_DCI_P3) { |
| wideColorState.setOutputTransformMatrix(mSrgbToDisplayP3); |
| } |
| } |
| |
| // we need to convert the RGB value to linear space and convert it back when: |
| // - there is a color matrix that is not an identity matrix, or |
| // - there is a saturation matrix that is not an identity matrix, or |
| // - there is an output transform matrix that is not an identity matrix, or |
| // - the input transfer function doesn't match the output transfer function. |
| if (wideColorState.hasColorMatrix() || wideColorState.hasSaturationMatrix() || |
| wideColorState.hasOutputTransformMatrix() || inputTransfer != outputTransfer) { |
| switch (inputTransfer) { |
| case Dataspace::TRANSFER_ST2084: |
| wideColorState.setInputTransferFunction(Description::TransferFunction::ST2084); |
| break; |
| case Dataspace::TRANSFER_HLG: |
| wideColorState.setInputTransferFunction(Description::TransferFunction::HLG); |
| break; |
| case Dataspace::TRANSFER_LINEAR: |
| wideColorState.setInputTransferFunction(Description::TransferFunction::LINEAR); |
| break; |
| default: |
| wideColorState.setInputTransferFunction(Description::TransferFunction::SRGB); |
| break; |
| } |
| |
| switch (outputTransfer) { |
| case Dataspace::TRANSFER_ST2084: |
| wideColorState.setOutputTransferFunction(Description::TransferFunction::ST2084); |
| break; |
| case Dataspace::TRANSFER_HLG: |
| wideColorState.setOutputTransferFunction(Description::TransferFunction::HLG); |
| break; |
| default: |
| wideColorState.setOutputTransferFunction(Description::TransferFunction::SRGB); |
| break; |
| } |
| } |
| |
| ProgramCache::getInstance().useProgram(wideColorState); |
| |
| glDrawArrays(mesh.getPrimitive(), 0, mesh.getVertexCount()); |
| |
| if (outputDebugPPMs) { |
| static uint64_t wideColorFrameCount = 0; |
| std::ostringstream out; |
| out << "/data/texture_out" << wideColorFrameCount++; |
| writePPM(out.str().c_str(), mVpWidth, mVpHeight); |
| } |
| } else { |
| ProgramCache::getInstance().useProgram(mState); |
| |
| glDrawArrays(mesh.getPrimitive(), 0, mesh.getVertexCount()); |
| } |
| |
| if (mesh.getTexCoordsSize()) { |
| glDisableVertexAttribArray(Program::texCoords); |
| } |
| } |
| |
| void GLES20RenderEngine::dump(String8& result) { |
| RenderEngine::dump(result); |
| result.appendFormat("RenderEngine last dataspace conversion: (%s) to (%s)\n", |
| dataspaceDetails(static_cast<android_dataspace>(mDataSpace)).c_str(), |
| dataspaceDetails(static_cast<android_dataspace>(mOutputDataSpace)).c_str()); |
| } |
| |
| bool GLES20RenderEngine::isHdrDataSpace(const Dataspace dataSpace) const { |
| const Dataspace standard = static_cast<Dataspace>(dataSpace & Dataspace::STANDARD_MASK); |
| const Dataspace transfer = static_cast<Dataspace>(dataSpace & Dataspace::TRANSFER_MASK); |
| return standard == Dataspace::STANDARD_BT2020 && |
| (transfer == Dataspace::TRANSFER_ST2084 || transfer == Dataspace::TRANSFER_HLG); |
| } |
| |
| // For convenience, we want to convert the input color space to XYZ color space first, |
| // and then convert from XYZ color space to output color space when |
| // - SDR and HDR contents are mixed, either SDR content will be converted to HDR or |
| // HDR content will be tone-mapped to SDR; Or, |
| // - there are HDR PQ and HLG contents presented at the same time, where we want to convert |
| // HLG content to PQ content. |
| // In either case above, we need to operate the Y value in XYZ color space. Thus, when either |
| // input data space or output data space is HDR data space, and the input transfer function |
| // doesn't match the output transfer function, we would enable an intermediate transfrom to |
| // XYZ color space. |
| bool GLES20RenderEngine::needsXYZTransformMatrix() const { |
| const bool isInputHdrDataSpace = isHdrDataSpace(mDataSpace); |
| const bool isOutputHdrDataSpace = isHdrDataSpace(mOutputDataSpace); |
| const Dataspace inputTransfer = static_cast<Dataspace>(mDataSpace & Dataspace::TRANSFER_MASK); |
| const Dataspace outputTransfer = static_cast<Dataspace>(mOutputDataSpace & |
| Dataspace::TRANSFER_MASK); |
| |
| return (isInputHdrDataSpace || isOutputHdrDataSpace) && inputTransfer != outputTransfer; |
| } |
| |
| // --------------------------------------------------------------------------- |
| } // namespace impl |
| } // namespace RE |
| } // namespace android |
| // --------------------------------------------------------------------------- |
| |
| #if defined(__gl_h_) |
| #error "don't include gl/gl.h in this file" |
| #endif |