blob: a56827e8f16cbdac7fbced22af8bdc579293bace [file] [log] [blame]
/*
* Copyright 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// #define LOG_NDEBUG 0
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
// TODO(b/129481165): remove the #pragma below and fix conversion issues
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wextra"
#include "RefreshRateConfigs.h"
#include <android-base/properties.h>
#include <android-base/stringprintf.h>
#include <utils/Trace.h>
#include <chrono>
#include <cmath>
#include "../SurfaceFlingerProperties.h"
#undef LOG_TAG
#define LOG_TAG "RefreshRateConfigs"
namespace android::scheduler {
namespace {
std::string formatLayerInfo(const RefreshRateConfigs::LayerRequirement& layer, float weight) {
return base::StringPrintf("%s (type=%s, weight=%.2f seamlessness=%s) %s", layer.name.c_str(),
RefreshRateConfigs::layerVoteTypeString(layer.vote).c_str(), weight,
toString(layer.seamlessness).c_str(),
to_string(layer.desiredRefreshRate).c_str());
}
std::vector<Fps> constructKnownFrameRates(const DisplayModes& modes) {
std::vector<Fps> knownFrameRates = {Fps(24.0f), Fps(30.0f), Fps(45.0f), Fps(60.0f), Fps(72.0f)};
knownFrameRates.reserve(knownFrameRates.size() + modes.size());
// Add all supported refresh rates to the set
for (const auto& mode : modes) {
const auto refreshRate = Fps::fromPeriodNsecs(mode->getVsyncPeriod());
knownFrameRates.emplace_back(refreshRate);
}
// Sort and remove duplicates
std::sort(knownFrameRates.begin(), knownFrameRates.end(), Fps::comparesLess);
knownFrameRates.erase(std::unique(knownFrameRates.begin(), knownFrameRates.end(),
Fps::EqualsWithMargin()),
knownFrameRates.end());
return knownFrameRates;
}
} // namespace
using AllRefreshRatesMapType = RefreshRateConfigs::AllRefreshRatesMapType;
using RefreshRate = RefreshRateConfigs::RefreshRate;
std::string RefreshRate::toString() const {
return base::StringPrintf("{id=%d, hwcId=%d, fps=%.2f, width=%d, height=%d group=%d}",
getModeId().value(), mode->getHwcId(), getFps().getValue(),
mode->getWidth(), mode->getHeight(), getModeGroup());
}
std::string RefreshRateConfigs::layerVoteTypeString(LayerVoteType vote) {
switch (vote) {
case LayerVoteType::NoVote:
return "NoVote";
case LayerVoteType::Min:
return "Min";
case LayerVoteType::Max:
return "Max";
case LayerVoteType::Heuristic:
return "Heuristic";
case LayerVoteType::ExplicitDefault:
return "ExplicitDefault";
case LayerVoteType::ExplicitExactOrMultiple:
return "ExplicitExactOrMultiple";
case LayerVoteType::ExplicitExact:
return "ExplicitExact";
}
}
std::string RefreshRateConfigs::Policy::toString() const {
return base::StringPrintf("default mode ID: %d, allowGroupSwitching = %d"
", primary range: %s, app request range: %s",
defaultMode.value(), allowGroupSwitching,
primaryRange.toString().c_str(), appRequestRange.toString().c_str());
}
std::pair<nsecs_t, nsecs_t> RefreshRateConfigs::getDisplayFrames(nsecs_t layerPeriod,
nsecs_t displayPeriod) const {
auto [quotient, remainder] = std::div(layerPeriod, displayPeriod);
if (remainder <= MARGIN_FOR_PERIOD_CALCULATION ||
std::abs(remainder - displayPeriod) <= MARGIN_FOR_PERIOD_CALCULATION) {
quotient++;
remainder = 0;
}
return {quotient, remainder};
}
bool RefreshRateConfigs::isVoteAllowed(const LayerRequirement& layer,
const RefreshRate& refreshRate) const {
switch (layer.vote) {
case LayerVoteType::ExplicitExactOrMultiple:
case LayerVoteType::Heuristic:
if (mConfig.frameRateMultipleThreshold != 0 &&
refreshRate.getFps().greaterThanOrEqualWithMargin(
Fps(mConfig.frameRateMultipleThreshold)) &&
layer.desiredRefreshRate.lessThanWithMargin(
Fps(mConfig.frameRateMultipleThreshold / 2))) {
// Don't vote high refresh rates past the threshold for layers with a low desired
// refresh rate. For example, desired 24 fps with 120 Hz threshold means no vote for
// 120 Hz, but desired 60 fps should have a vote.
return false;
}
break;
case LayerVoteType::ExplicitDefault:
case LayerVoteType::ExplicitExact:
case LayerVoteType::Max:
case LayerVoteType::Min:
case LayerVoteType::NoVote:
break;
}
return true;
}
float RefreshRateConfigs::calculateNonExactMatchingLayerScoreLocked(
const LayerRequirement& layer, const RefreshRate& refreshRate) const {
constexpr float kScoreForFractionalPairs = .8f;
const auto displayPeriod = refreshRate.getVsyncPeriod();
const auto layerPeriod = layer.desiredRefreshRate.getPeriodNsecs();
if (layer.vote == LayerVoteType::ExplicitDefault) {
// Find the actual rate the layer will render, assuming
// that layerPeriod is the minimal period to render a frame.
// For example if layerPeriod is 20ms and displayPeriod is 16ms,
// then the actualLayerPeriod will be 32ms, because it is the
// smallest multiple of the display period which is >= layerPeriod.
auto actualLayerPeriod = displayPeriod;
int multiplier = 1;
while (layerPeriod > actualLayerPeriod + MARGIN_FOR_PERIOD_CALCULATION) {
multiplier++;
actualLayerPeriod = displayPeriod * multiplier;
}
// Because of the threshold we used above it's possible that score is slightly
// above 1.
return std::min(1.0f,
static_cast<float>(layerPeriod) / static_cast<float>(actualLayerPeriod));
}
if (layer.vote == LayerVoteType::ExplicitExactOrMultiple ||
layer.vote == LayerVoteType::Heuristic) {
if (isFractionalPairOrMultiple(refreshRate.getFps(), layer.desiredRefreshRate)) {
return kScoreForFractionalPairs;
}
// Calculate how many display vsyncs we need to present a single frame for this
// layer
const auto [displayFramesQuotient, displayFramesRemainder] =
getDisplayFrames(layerPeriod, displayPeriod);
static constexpr size_t MAX_FRAMES_TO_FIT = 10; // Stop calculating when score < 0.1
if (displayFramesRemainder == 0) {
// Layer desired refresh rate matches the display rate.
return 1.0f;
}
if (displayFramesQuotient == 0) {
// Layer desired refresh rate is higher than the display rate.
return (static_cast<float>(layerPeriod) / static_cast<float>(displayPeriod)) *
(1.0f / (MAX_FRAMES_TO_FIT + 1));
}
// Layer desired refresh rate is lower than the display rate. Check how well it fits
// the cadence.
auto diff = std::abs(displayFramesRemainder - (displayPeriod - displayFramesRemainder));
int iter = 2;
while (diff > MARGIN_FOR_PERIOD_CALCULATION && iter < MAX_FRAMES_TO_FIT) {
diff = diff - (displayPeriod - diff);
iter++;
}
return (1.0f / iter);
}
return 0;
}
float RefreshRateConfigs::calculateLayerScoreLocked(const LayerRequirement& layer,
const RefreshRate& refreshRate,
bool isSeamlessSwitch) const {
if (!isVoteAllowed(layer, refreshRate)) {
return 0;
}
// Slightly prefer seamless switches.
constexpr float kSeamedSwitchPenalty = 0.95f;
const float seamlessness = isSeamlessSwitch ? 1.0f : kSeamedSwitchPenalty;
// If the layer wants Max, give higher score to the higher refresh rate
if (layer.vote == LayerVoteType::Max) {
const auto ratio = refreshRate.getFps().getValue() /
mAppRequestRefreshRates.back()->getFps().getValue();
// use ratio^2 to get a lower score the more we get further from peak
return ratio * ratio;
}
if (layer.vote == LayerVoteType::ExplicitExact) {
const int divider = getFrameRateDivider(refreshRate.getFps(), layer.desiredRefreshRate);
if (mSupportsFrameRateOverride) {
// Since we support frame rate override, allow refresh rates which are
// multiples of the layer's request, as those apps would be throttled
// down to run at the desired refresh rate.
return divider > 0;
}
return divider == 1;
}
// If the layer frame rate is a divider of the refresh rate it should score
// the highest score.
if (getFrameRateDivider(refreshRate.getFps(), layer.desiredRefreshRate) > 0) {
return 1.0f * seamlessness;
}
// The layer frame rate is not a divider of the refresh rate,
// there is a small penalty attached to the score to favor the frame rates
// the exactly matches the display refresh rate or a multiple.
constexpr float kNonExactMatchingPenalty = 0.95f;
return calculateNonExactMatchingLayerScoreLocked(layer, refreshRate) * seamlessness *
kNonExactMatchingPenalty;
}
struct RefreshRateScore {
const RefreshRate* refreshRate;
float score;
};
RefreshRate RefreshRateConfigs::getBestRefreshRate(const std::vector<LayerRequirement>& layers,
const GlobalSignals& globalSignals,
GlobalSignals* outSignalsConsidered) const {
std::lock_guard lock(mLock);
if (auto cached = getCachedBestRefreshRate(layers, globalSignals, outSignalsConsidered)) {
return *cached;
}
GlobalSignals signalsConsidered;
RefreshRate result = getBestRefreshRateLocked(layers, globalSignals, &signalsConsidered);
lastBestRefreshRateInvocation.emplace(
GetBestRefreshRateInvocation{.layerRequirements = layers,
.globalSignals = globalSignals,
.outSignalsConsidered = signalsConsidered,
.resultingBestRefreshRate = result});
if (outSignalsConsidered) {
*outSignalsConsidered = signalsConsidered;
}
return result;
}
std::optional<RefreshRate> RefreshRateConfigs::getCachedBestRefreshRate(
const std::vector<LayerRequirement>& layers, const GlobalSignals& globalSignals,
GlobalSignals* outSignalsConsidered) const {
const bool sameAsLastCall = lastBestRefreshRateInvocation &&
lastBestRefreshRateInvocation->layerRequirements == layers &&
lastBestRefreshRateInvocation->globalSignals == globalSignals;
if (sameAsLastCall) {
if (outSignalsConsidered) {
*outSignalsConsidered = lastBestRefreshRateInvocation->outSignalsConsidered;
}
return lastBestRefreshRateInvocation->resultingBestRefreshRate;
}
return {};
}
RefreshRate RefreshRateConfigs::getBestRefreshRateLocked(
const std::vector<LayerRequirement>& layers, const GlobalSignals& globalSignals,
GlobalSignals* outSignalsConsidered) const {
ATRACE_CALL();
ALOGV("getBestRefreshRate %zu layers", layers.size());
if (outSignalsConsidered) *outSignalsConsidered = {};
const auto setTouchConsidered = [&] {
if (outSignalsConsidered) {
outSignalsConsidered->touch = true;
}
};
const auto setIdleConsidered = [&] {
if (outSignalsConsidered) {
outSignalsConsidered->idle = true;
}
};
int noVoteLayers = 0;
int minVoteLayers = 0;
int maxVoteLayers = 0;
int explicitDefaultVoteLayers = 0;
int explicitExactOrMultipleVoteLayers = 0;
int explicitExact = 0;
float maxExplicitWeight = 0;
int seamedFocusedLayers = 0;
for (const auto& layer : layers) {
switch (layer.vote) {
case LayerVoteType::NoVote:
noVoteLayers++;
break;
case LayerVoteType::Min:
minVoteLayers++;
break;
case LayerVoteType::Max:
maxVoteLayers++;
break;
case LayerVoteType::ExplicitDefault:
explicitDefaultVoteLayers++;
maxExplicitWeight = std::max(maxExplicitWeight, layer.weight);
break;
case LayerVoteType::ExplicitExactOrMultiple:
explicitExactOrMultipleVoteLayers++;
maxExplicitWeight = std::max(maxExplicitWeight, layer.weight);
break;
case LayerVoteType::ExplicitExact:
explicitExact++;
maxExplicitWeight = std::max(maxExplicitWeight, layer.weight);
break;
case LayerVoteType::Heuristic:
break;
}
if (layer.seamlessness == Seamlessness::SeamedAndSeamless && layer.focused) {
seamedFocusedLayers++;
}
}
const bool hasExplicitVoteLayers = explicitDefaultVoteLayers > 0 ||
explicitExactOrMultipleVoteLayers > 0 || explicitExact > 0;
// Consider the touch event if there are no Explicit* layers. Otherwise wait until after we've
// selected a refresh rate to see if we should apply touch boost.
if (globalSignals.touch && !hasExplicitVoteLayers) {
ALOGV("TouchBoost - choose %s", getMaxRefreshRateByPolicyLocked().getName().c_str());
setTouchConsidered();
return getMaxRefreshRateByPolicyLocked();
}
// If the primary range consists of a single refresh rate then we can only
// move out the of range if layers explicitly request a different refresh
// rate.
const Policy* policy = getCurrentPolicyLocked();
const bool primaryRangeIsSingleRate =
policy->primaryRange.min.equalsWithMargin(policy->primaryRange.max);
if (!globalSignals.touch && globalSignals.idle &&
!(primaryRangeIsSingleRate && hasExplicitVoteLayers)) {
ALOGV("Idle - choose %s", getMinRefreshRateByPolicyLocked().getName().c_str());
setIdleConsidered();
return getMinRefreshRateByPolicyLocked();
}
if (layers.empty() || noVoteLayers == layers.size()) {
return getMaxRefreshRateByPolicyLocked();
}
// Only if all layers want Min we should return Min
if (noVoteLayers + minVoteLayers == layers.size()) {
ALOGV("all layers Min - choose %s", getMinRefreshRateByPolicyLocked().getName().c_str());
return getMinRefreshRateByPolicyLocked();
}
// Find the best refresh rate based on score
std::vector<RefreshRateScore> scores;
scores.reserve(mAppRequestRefreshRates.size());
for (const auto refreshRate : mAppRequestRefreshRates) {
scores.emplace_back(RefreshRateScore{refreshRate, 0.0f});
}
const auto& defaultMode = mRefreshRates.at(policy->defaultMode);
for (const auto& layer : layers) {
ALOGV("Calculating score for %s (%s, weight %.2f, desired %.2f) ", layer.name.c_str(),
layerVoteTypeString(layer.vote).c_str(), layer.weight,
layer.desiredRefreshRate.getValue());
if (layer.vote == LayerVoteType::NoVote || layer.vote == LayerVoteType::Min) {
continue;
}
auto weight = layer.weight;
for (auto i = 0u; i < scores.size(); i++) {
const bool isSeamlessSwitch =
scores[i].refreshRate->getModeGroup() == mCurrentRefreshRate->getModeGroup();
if (layer.seamlessness == Seamlessness::OnlySeamless && !isSeamlessSwitch) {
ALOGV("%s ignores %s to avoid non-seamless switch. Current mode = %s",
formatLayerInfo(layer, weight).c_str(),
scores[i].refreshRate->toString().c_str(),
mCurrentRefreshRate->toString().c_str());
continue;
}
if (layer.seamlessness == Seamlessness::SeamedAndSeamless && !isSeamlessSwitch &&
!layer.focused) {
ALOGV("%s ignores %s because it's not focused and the switch is going to be seamed."
" Current mode = %s",
formatLayerInfo(layer, weight).c_str(),
scores[i].refreshRate->toString().c_str(),
mCurrentRefreshRate->toString().c_str());
continue;
}
// Layers with default seamlessness vote for the current mode group if
// there are layers with seamlessness=SeamedAndSeamless and for the default
// mode group otherwise. In second case, if the current mode group is different
// from the default, this means a layer with seamlessness=SeamedAndSeamless has just
// disappeared.
const bool isInPolicyForDefault = seamedFocusedLayers > 0
? scores[i].refreshRate->getModeGroup() == mCurrentRefreshRate->getModeGroup()
: scores[i].refreshRate->getModeGroup() == defaultMode->getModeGroup();
if (layer.seamlessness == Seamlessness::Default && !isInPolicyForDefault) {
ALOGV("%s ignores %s. Current mode = %s", formatLayerInfo(layer, weight).c_str(),
scores[i].refreshRate->toString().c_str(),
mCurrentRefreshRate->toString().c_str());
continue;
}
bool inPrimaryRange = scores[i].refreshRate->inPolicy(policy->primaryRange.min,
policy->primaryRange.max);
if ((primaryRangeIsSingleRate || !inPrimaryRange) &&
!(layer.focused &&
(layer.vote == LayerVoteType::ExplicitDefault ||
layer.vote == LayerVoteType::ExplicitExact))) {
// Only focused layers with ExplicitDefault frame rate settings are allowed to score
// refresh rates outside the primary range.
continue;
}
const auto layerScore =
calculateLayerScoreLocked(layer, *scores[i].refreshRate, isSeamlessSwitch);
ALOGV("%s gives %s score of %.4f", formatLayerInfo(layer, weight).c_str(),
scores[i].refreshRate->getName().c_str(), layerScore);
scores[i].score += weight * layerScore;
}
}
// Now that we scored all the refresh rates we need to pick the one that got the highest score.
// In case of a tie we will pick the higher refresh rate if any of the layers wanted Max,
// or the lower otherwise.
const RefreshRate* bestRefreshRate = maxVoteLayers > 0
? getBestRefreshRate(scores.rbegin(), scores.rend())
: getBestRefreshRate(scores.begin(), scores.end());
if (primaryRangeIsSingleRate) {
// If we never scored any layers, then choose the rate from the primary
// range instead of picking a random score from the app range.
if (std::all_of(scores.begin(), scores.end(),
[](RefreshRateScore score) { return score.score == 0; })) {
ALOGV("layers not scored - choose %s",
getMaxRefreshRateByPolicyLocked().getName().c_str());
return getMaxRefreshRateByPolicyLocked();
} else {
return *bestRefreshRate;
}
}
// Consider the touch event if there are no ExplicitDefault layers. ExplicitDefault are mostly
// interactive (as opposed to ExplicitExactOrMultiple) and therefore if those posted an explicit
// vote we should not change it if we get a touch event. Only apply touch boost if it will
// actually increase the refresh rate over the normal selection.
const RefreshRate& touchRefreshRate = getMaxRefreshRateByPolicyLocked();
const bool touchBoostForExplicitExact = [&] {
if (mSupportsFrameRateOverride) {
// Enable touch boost if there are other layers besides exact
return explicitExact + noVoteLayers != layers.size();
} else {
// Enable touch boost if there are no exact layers
return explicitExact == 0;
}
}();
if (globalSignals.touch && explicitDefaultVoteLayers == 0 && touchBoostForExplicitExact &&
bestRefreshRate->getFps().lessThanWithMargin(touchRefreshRate.getFps())) {
setTouchConsidered();
ALOGV("TouchBoost - choose %s", touchRefreshRate.getName().c_str());
return touchRefreshRate;
}
return *bestRefreshRate;
}
std::unordered_map<uid_t, std::vector<const RefreshRateConfigs::LayerRequirement*>>
groupLayersByUid(const std::vector<RefreshRateConfigs::LayerRequirement>& layers) {
std::unordered_map<uid_t, std::vector<const RefreshRateConfigs::LayerRequirement*>> layersByUid;
for (const auto& layer : layers) {
auto iter = layersByUid.emplace(layer.ownerUid,
std::vector<const RefreshRateConfigs::LayerRequirement*>());
auto& layersWithSameUid = iter.first->second;
layersWithSameUid.push_back(&layer);
}
// Remove uids that can't have a frame rate override
for (auto iter = layersByUid.begin(); iter != layersByUid.end();) {
const auto& layersWithSameUid = iter->second;
bool skipUid = false;
for (const auto& layer : layersWithSameUid) {
if (layer->vote == RefreshRateConfigs::LayerVoteType::Max ||
layer->vote == RefreshRateConfigs::LayerVoteType::Heuristic) {
skipUid = true;
break;
}
}
if (skipUid) {
iter = layersByUid.erase(iter);
} else {
++iter;
}
}
return layersByUid;
}
std::vector<RefreshRateScore> initializeScoresForAllRefreshRates(
const AllRefreshRatesMapType& refreshRates) {
std::vector<RefreshRateScore> scores;
scores.reserve(refreshRates.size());
for (const auto& [ignored, refreshRate] : refreshRates) {
scores.emplace_back(RefreshRateScore{refreshRate.get(), 0.0f});
}
std::sort(scores.begin(), scores.end(),
[](const auto& a, const auto& b) { return *a.refreshRate < *b.refreshRate; });
return scores;
}
RefreshRateConfigs::UidToFrameRateOverride RefreshRateConfigs::getFrameRateOverrides(
const std::vector<LayerRequirement>& layers, Fps displayFrameRate, bool touch) const {
ATRACE_CALL();
if (!mSupportsFrameRateOverride) return {};
ALOGV("getFrameRateOverrides %zu layers", layers.size());
std::lock_guard lock(mLock);
std::vector<RefreshRateScore> scores = initializeScoresForAllRefreshRates(mRefreshRates);
std::unordered_map<uid_t, std::vector<const LayerRequirement*>> layersByUid =
groupLayersByUid(layers);
UidToFrameRateOverride frameRateOverrides;
for (const auto& [uid, layersWithSameUid] : layersByUid) {
// Layers with ExplicitExactOrMultiple expect touch boost
const bool hasExplicitExactOrMultiple =
std::any_of(layersWithSameUid.cbegin(), layersWithSameUid.cend(),
[](const auto& layer) {
return layer->vote == LayerVoteType::ExplicitExactOrMultiple;
});
if (touch && hasExplicitExactOrMultiple) {
continue;
}
for (auto& score : scores) {
score.score = 0;
}
for (const auto& layer : layersWithSameUid) {
if (layer->vote == LayerVoteType::NoVote || layer->vote == LayerVoteType::Min) {
continue;
}
LOG_ALWAYS_FATAL_IF(layer->vote != LayerVoteType::ExplicitDefault &&
layer->vote != LayerVoteType::ExplicitExactOrMultiple &&
layer->vote != LayerVoteType::ExplicitExact);
for (RefreshRateScore& score : scores) {
const auto layerScore = calculateLayerScoreLocked(*layer, *score.refreshRate,
/*isSeamlessSwitch*/ true);
score.score += layer->weight * layerScore;
}
}
// We just care about the refresh rates which are a divider of the
// display refresh rate
auto iter =
std::remove_if(scores.begin(), scores.end(), [&](const RefreshRateScore& score) {
return getFrameRateDivider(displayFrameRate, score.refreshRate->getFps()) == 0;
});
scores.erase(iter, scores.end());
// If we never scored any layers, we don't have a preferred frame rate
if (std::all_of(scores.begin(), scores.end(),
[](const RefreshRateScore& score) { return score.score == 0; })) {
continue;
}
// Now that we scored all the refresh rates we need to pick the one that got the highest
// score.
const RefreshRate* bestRefreshRate = getBestRefreshRate(scores.begin(), scores.end());
frameRateOverrides.emplace(uid, bestRefreshRate->getFps());
}
return frameRateOverrides;
}
template <typename Iter>
const RefreshRate* RefreshRateConfigs::getBestRefreshRate(Iter begin, Iter end) const {
constexpr auto kEpsilon = 0.0001f;
const RefreshRate* bestRefreshRate = begin->refreshRate;
float max = begin->score;
for (auto i = begin; i != end; ++i) {
const auto [refreshRate, score] = *i;
ALOGV("%s scores %.2f", refreshRate->getName().c_str(), score);
ATRACE_INT(refreshRate->getName().c_str(), round<int>(score * 100));
if (score > max * (1 + kEpsilon)) {
max = score;
bestRefreshRate = refreshRate;
}
}
return bestRefreshRate;
}
std::optional<Fps> RefreshRateConfigs::onKernelTimerChanged(
std::optional<DisplayModeId> desiredActiveConfigId, bool timerExpired) const {
std::lock_guard lock(mLock);
const auto& current = desiredActiveConfigId ? *mRefreshRates.at(*desiredActiveConfigId)
: *mCurrentRefreshRate;
const auto& min = *mMinSupportedRefreshRate;
if (current != min) {
const auto& refreshRate = timerExpired ? min : current;
return refreshRate.getFps();
}
return {};
}
const RefreshRate& RefreshRateConfigs::getMinRefreshRateByPolicyLocked() const {
for (auto refreshRate : mPrimaryRefreshRates) {
if (mCurrentRefreshRate->getModeGroup() == refreshRate->getModeGroup()) {
return *refreshRate;
}
}
ALOGE("Can't find min refresh rate by policy with the same mode group"
" as the current mode %s",
mCurrentRefreshRate->toString().c_str());
// Defaulting to the lowest refresh rate
return *mPrimaryRefreshRates.front();
}
RefreshRate RefreshRateConfigs::getMaxRefreshRateByPolicy() const {
std::lock_guard lock(mLock);
return getMaxRefreshRateByPolicyLocked();
}
const RefreshRate& RefreshRateConfigs::getMaxRefreshRateByPolicyLocked() const {
for (auto it = mPrimaryRefreshRates.rbegin(); it != mPrimaryRefreshRates.rend(); it++) {
const auto& refreshRate = (**it);
if (mCurrentRefreshRate->getModeGroup() == refreshRate.getModeGroup()) {
return refreshRate;
}
}
ALOGE("Can't find max refresh rate by policy with the same mode group"
" as the current mode %s",
mCurrentRefreshRate->toString().c_str());
// Defaulting to the highest refresh rate
return *mPrimaryRefreshRates.back();
}
RefreshRate RefreshRateConfigs::getCurrentRefreshRate() const {
std::lock_guard lock(mLock);
return *mCurrentRefreshRate;
}
RefreshRate RefreshRateConfigs::getCurrentRefreshRateByPolicy() const {
std::lock_guard lock(mLock);
return getCurrentRefreshRateByPolicyLocked();
}
const RefreshRate& RefreshRateConfigs::getCurrentRefreshRateByPolicyLocked() const {
if (std::find(mAppRequestRefreshRates.begin(), mAppRequestRefreshRates.end(),
mCurrentRefreshRate) != mAppRequestRefreshRates.end()) {
return *mCurrentRefreshRate;
}
return *mRefreshRates.at(getCurrentPolicyLocked()->defaultMode);
}
void RefreshRateConfigs::setCurrentModeId(DisplayModeId modeId) {
std::lock_guard lock(mLock);
// Invalidate the cached invocation to getBestRefreshRate. This forces
// the refresh rate to be recomputed on the next call to getBestRefreshRate.
lastBestRefreshRateInvocation.reset();
mCurrentRefreshRate = mRefreshRates.at(modeId).get();
}
RefreshRateConfigs::RefreshRateConfigs(const DisplayModes& modes, DisplayModeId currentModeId,
Config config)
: mKnownFrameRates(constructKnownFrameRates(modes)), mConfig(config) {
initializeIdleTimer();
updateDisplayModes(modes, currentModeId);
}
void RefreshRateConfigs::initializeIdleTimer() {
if (mConfig.idleTimerTimeoutMs > 0) {
const auto getCallback = [this]() -> std::optional<IdleTimerCallbacks::Callbacks> {
std::scoped_lock lock(mIdleTimerCallbacksMutex);
if (!mIdleTimerCallbacks.has_value()) return {};
return mConfig.supportKernelIdleTimer ? mIdleTimerCallbacks->kernel
: mIdleTimerCallbacks->platform;
};
mIdleTimer.emplace(
"IdleTimer", std::chrono::milliseconds(mConfig.idleTimerTimeoutMs),
[getCallback] {
if (const auto callback = getCallback()) callback->onReset();
},
[getCallback] {
if (const auto callback = getCallback()) callback->onExpired();
});
}
}
void RefreshRateConfigs::updateDisplayModes(const DisplayModes& modes,
DisplayModeId currentModeId) {
std::lock_guard lock(mLock);
// The current mode should be supported
LOG_ALWAYS_FATAL_IF(std::none_of(modes.begin(), modes.end(), [&](DisplayModePtr mode) {
return mode->getId() == currentModeId;
}));
// Invalidate the cached invocation to getBestRefreshRate. This forces
// the refresh rate to be recomputed on the next call to getBestRefreshRate.
lastBestRefreshRateInvocation.reset();
mRefreshRates.clear();
for (const auto& mode : modes) {
const auto modeId = mode->getId();
mRefreshRates.emplace(modeId,
std::make_unique<RefreshRate>(mode, RefreshRate::ConstructorTag(0)));
if (modeId == currentModeId) {
mCurrentRefreshRate = mRefreshRates.at(modeId).get();
}
}
std::vector<const RefreshRate*> sortedModes;
getSortedRefreshRateListLocked([](const RefreshRate&) { return true; }, &sortedModes);
// Reset the policy because the old one may no longer be valid.
mDisplayManagerPolicy = {};
mDisplayManagerPolicy.defaultMode = currentModeId;
mMinSupportedRefreshRate = sortedModes.front();
mMaxSupportedRefreshRate = sortedModes.back();
mSupportsFrameRateOverride = false;
if (mConfig.enableFrameRateOverride) {
for (const auto& mode1 : sortedModes) {
for (const auto& mode2 : sortedModes) {
if (getFrameRateDivider(mode1->getFps(), mode2->getFps()) >= 2) {
mSupportsFrameRateOverride = true;
break;
}
}
}
}
constructAvailableRefreshRates();
}
bool RefreshRateConfigs::isPolicyValidLocked(const Policy& policy) const {
// defaultMode must be a valid mode, and within the given refresh rate range.
auto iter = mRefreshRates.find(policy.defaultMode);
if (iter == mRefreshRates.end()) {
ALOGE("Default mode is not found.");
return false;
}
const RefreshRate& refreshRate = *iter->second;
if (!refreshRate.inPolicy(policy.primaryRange.min, policy.primaryRange.max)) {
ALOGE("Default mode is not in the primary range.");
return false;
}
return policy.appRequestRange.min.lessThanOrEqualWithMargin(policy.primaryRange.min) &&
policy.appRequestRange.max.greaterThanOrEqualWithMargin(policy.primaryRange.max);
}
status_t RefreshRateConfigs::setDisplayManagerPolicy(const Policy& policy) {
std::lock_guard lock(mLock);
if (!isPolicyValidLocked(policy)) {
ALOGE("Invalid refresh rate policy: %s", policy.toString().c_str());
return BAD_VALUE;
}
lastBestRefreshRateInvocation.reset();
Policy previousPolicy = *getCurrentPolicyLocked();
mDisplayManagerPolicy = policy;
if (*getCurrentPolicyLocked() == previousPolicy) {
return CURRENT_POLICY_UNCHANGED;
}
constructAvailableRefreshRates();
return NO_ERROR;
}
status_t RefreshRateConfigs::setOverridePolicy(const std::optional<Policy>& policy) {
std::lock_guard lock(mLock);
if (policy && !isPolicyValidLocked(*policy)) {
return BAD_VALUE;
}
lastBestRefreshRateInvocation.reset();
Policy previousPolicy = *getCurrentPolicyLocked();
mOverridePolicy = policy;
if (*getCurrentPolicyLocked() == previousPolicy) {
return CURRENT_POLICY_UNCHANGED;
}
constructAvailableRefreshRates();
return NO_ERROR;
}
const RefreshRateConfigs::Policy* RefreshRateConfigs::getCurrentPolicyLocked() const {
return mOverridePolicy ? &mOverridePolicy.value() : &mDisplayManagerPolicy;
}
RefreshRateConfigs::Policy RefreshRateConfigs::getCurrentPolicy() const {
std::lock_guard lock(mLock);
return *getCurrentPolicyLocked();
}
RefreshRateConfigs::Policy RefreshRateConfigs::getDisplayManagerPolicy() const {
std::lock_guard lock(mLock);
return mDisplayManagerPolicy;
}
bool RefreshRateConfigs::isModeAllowed(DisplayModeId modeId) const {
std::lock_guard lock(mLock);
for (const RefreshRate* refreshRate : mAppRequestRefreshRates) {
if (refreshRate->getModeId() == modeId) {
return true;
}
}
return false;
}
void RefreshRateConfigs::getSortedRefreshRateListLocked(
const std::function<bool(const RefreshRate&)>& shouldAddRefreshRate,
std::vector<const RefreshRate*>* outRefreshRates) {
outRefreshRates->clear();
outRefreshRates->reserve(mRefreshRates.size());
for (const auto& [type, refreshRate] : mRefreshRates) {
if (shouldAddRefreshRate(*refreshRate)) {
ALOGV("getSortedRefreshRateListLocked: mode %d added to list policy",
refreshRate->getModeId().value());
outRefreshRates->push_back(refreshRate.get());
}
}
std::sort(outRefreshRates->begin(), outRefreshRates->end(),
[](const auto refreshRate1, const auto refreshRate2) {
if (refreshRate1->mode->getVsyncPeriod() !=
refreshRate2->mode->getVsyncPeriod()) {
return refreshRate1->mode->getVsyncPeriod() >
refreshRate2->mode->getVsyncPeriod();
} else {
return refreshRate1->mode->getGroup() > refreshRate2->mode->getGroup();
}
});
}
void RefreshRateConfigs::constructAvailableRefreshRates() {
// Filter modes based on current policy and sort based on vsync period
const Policy* policy = getCurrentPolicyLocked();
const auto& defaultMode = mRefreshRates.at(policy->defaultMode)->mode;
ALOGV("constructAvailableRefreshRates: %s ", policy->toString().c_str());
auto filterRefreshRates =
[&](Fps min, Fps max, const char* listName,
std::vector<const RefreshRate*>* outRefreshRates) REQUIRES(mLock) {
getSortedRefreshRateListLocked(
[&](const RefreshRate& refreshRate) REQUIRES(mLock) {
const auto& mode = refreshRate.mode;
return mode->getHeight() == defaultMode->getHeight() &&
mode->getWidth() == defaultMode->getWidth() &&
mode->getDpiX() == defaultMode->getDpiX() &&
mode->getDpiY() == defaultMode->getDpiY() &&
(policy->allowGroupSwitching ||
mode->getGroup() == defaultMode->getGroup()) &&
refreshRate.inPolicy(min, max);
},
outRefreshRates);
LOG_ALWAYS_FATAL_IF(outRefreshRates->empty(),
"No matching modes for %s range: min=%s max=%s", listName,
to_string(min).c_str(), to_string(max).c_str());
auto stringifyRefreshRates = [&]() -> std::string {
std::string str;
for (auto refreshRate : *outRefreshRates) {
base::StringAppendF(&str, "%s ", refreshRate->getName().c_str());
}
return str;
};
ALOGV("%s refresh rates: %s", listName, stringifyRefreshRates().c_str());
};
filterRefreshRates(policy->primaryRange.min, policy->primaryRange.max, "primary",
&mPrimaryRefreshRates);
filterRefreshRates(policy->appRequestRange.min, policy->appRequestRange.max, "app request",
&mAppRequestRefreshRates);
}
Fps RefreshRateConfigs::findClosestKnownFrameRate(Fps frameRate) const {
if (frameRate.lessThanOrEqualWithMargin(*mKnownFrameRates.begin())) {
return *mKnownFrameRates.begin();
}
if (frameRate.greaterThanOrEqualWithMargin(*std::prev(mKnownFrameRates.end()))) {
return *std::prev(mKnownFrameRates.end());
}
auto lowerBound = std::lower_bound(mKnownFrameRates.begin(), mKnownFrameRates.end(), frameRate,
Fps::comparesLess);
const auto distance1 = std::abs((frameRate.getValue() - lowerBound->getValue()));
const auto distance2 = std::abs((frameRate.getValue() - std::prev(lowerBound)->getValue()));
return distance1 < distance2 ? *lowerBound : *std::prev(lowerBound);
}
RefreshRateConfigs::KernelIdleTimerAction RefreshRateConfigs::getIdleTimerAction() const {
std::lock_guard lock(mLock);
const auto& deviceMin = *mMinSupportedRefreshRate;
const auto& minByPolicy = getMinRefreshRateByPolicyLocked();
const auto& maxByPolicy = getMaxRefreshRateByPolicyLocked();
const auto& currentPolicy = getCurrentPolicyLocked();
// Kernel idle timer will set the refresh rate to the device min. If DisplayManager says that
// the min allowed refresh rate is higher than the device min, we do not want to enable the
// timer.
if (deviceMin < minByPolicy) {
return RefreshRateConfigs::KernelIdleTimerAction::TurnOff;
}
if (minByPolicy == maxByPolicy) {
// when min primary range in display manager policy is below device min turn on the timer.
if (currentPolicy->primaryRange.min.lessThanWithMargin(deviceMin.getFps())) {
return RefreshRateConfigs::KernelIdleTimerAction::TurnOn;
}
return RefreshRateConfigs::KernelIdleTimerAction::TurnOff;
}
// Turn on the timer in all other cases.
return RefreshRateConfigs::KernelIdleTimerAction::TurnOn;
}
int RefreshRateConfigs::getFrameRateDivider(Fps displayFrameRate, Fps layerFrameRate) {
// This calculation needs to be in sync with the java code
// in DisplayManagerService.getDisplayInfoForFrameRateOverride
// The threshold must be smaller than 0.001 in order to differentiate
// between the fractional pairs (e.g. 59.94 and 60).
constexpr float kThreshold = 0.0009f;
const auto numPeriods = displayFrameRate.getValue() / layerFrameRate.getValue();
const auto numPeriodsRounded = std::round(numPeriods);
if (std::abs(numPeriods - numPeriodsRounded) > kThreshold) {
return 0;
}
return static_cast<int>(numPeriodsRounded);
}
bool RefreshRateConfigs::isFractionalPairOrMultiple(Fps smaller, Fps bigger) {
if (smaller.getValue() > bigger.getValue()) {
return isFractionalPairOrMultiple(bigger, smaller);
}
const auto multiplier = std::round(bigger.getValue() / smaller.getValue());
constexpr float kCoef = 1000.f / 1001.f;
return bigger.equalsWithMargin(Fps(smaller.getValue() * multiplier / kCoef)) ||
bigger.equalsWithMargin(Fps(smaller.getValue() * multiplier * kCoef));
}
void RefreshRateConfigs::dump(std::string& result) const {
std::lock_guard lock(mLock);
base::StringAppendF(&result, "DesiredDisplayModeSpecs (DisplayManager): %s\n\n",
mDisplayManagerPolicy.toString().c_str());
scheduler::RefreshRateConfigs::Policy currentPolicy = *getCurrentPolicyLocked();
if (mOverridePolicy && currentPolicy != mDisplayManagerPolicy) {
base::StringAppendF(&result, "DesiredDisplayModeSpecs (Override): %s\n\n",
currentPolicy.toString().c_str());
}
auto mode = mCurrentRefreshRate->mode;
base::StringAppendF(&result, "Current mode: %s\n", mCurrentRefreshRate->toString().c_str());
result.append("Refresh rates:\n");
for (const auto& [id, refreshRate] : mRefreshRates) {
mode = refreshRate->mode;
base::StringAppendF(&result, "\t%s\n", refreshRate->toString().c_str());
}
base::StringAppendF(&result, "Supports Frame Rate Override: %s\n",
mSupportsFrameRateOverride ? "yes" : "no");
base::StringAppendF(&result, "Idle timer: (%s) %s\n",
mConfig.supportKernelIdleTimer ? "kernel" : "platform",
mIdleTimer ? mIdleTimer->dump().c_str() : "off");
result.append("\n");
}
} // namespace android::scheduler
// TODO(b/129481165): remove the #pragma below and fix conversion issues
#pragma clang diagnostic pop // ignored "-Wextra"