| /* |
| * Copyright (C) 2007 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| // #define LOG_NDEBUG 0 |
| #define ATRACE_TAG ATRACE_TAG_GRAPHICS |
| |
| #include <stdint.h> |
| #include <sys/types.h> |
| #include <algorithm> |
| #include <errno.h> |
| #include <math.h> |
| #include <mutex> |
| #include <dlfcn.h> |
| #include <inttypes.h> |
| #include <stdatomic.h> |
| #include <optional> |
| |
| #include <EGL/egl.h> |
| |
| #include <cutils/properties.h> |
| #include <log/log.h> |
| |
| #include <binder/IPCThreadState.h> |
| #include <binder/IServiceManager.h> |
| #include <binder/PermissionCache.h> |
| |
| #include <dvr/vr_flinger.h> |
| |
| #include <ui/DebugUtils.h> |
| #include <ui/DisplayInfo.h> |
| #include <ui/DisplayStatInfo.h> |
| |
| #include <gui/BufferQueue.h> |
| #include <gui/GuiConfig.h> |
| #include <gui/IDisplayEventConnection.h> |
| #include <gui/LayerDebugInfo.h> |
| #include <gui/Surface.h> |
| |
| #include <ui/GraphicBufferAllocator.h> |
| #include <ui/PixelFormat.h> |
| #include <ui/UiConfig.h> |
| |
| #include <utils/misc.h> |
| #include <utils/String8.h> |
| #include <utils/String16.h> |
| #include <utils/StopWatch.h> |
| #include <utils/Timers.h> |
| #include <utils/Trace.h> |
| |
| #include <private/android_filesystem_config.h> |
| #include <private/gui/SyncFeatures.h> |
| |
| #include "Client.h" |
| #include "clz.h" |
| #include "Colorizer.h" |
| #include "DdmConnection.h" |
| #include "DisplayDevice.h" |
| #include "DispSync.h" |
| #include "EventControlThread.h" |
| #include "EventThread.h" |
| #include "Layer.h" |
| #include "LayerVector.h" |
| #include "LayerDim.h" |
| #include "MonitoredProducer.h" |
| #include "SurfaceFlinger.h" |
| |
| #include "DisplayHardware/ComposerHal.h" |
| #include "DisplayHardware/FramebufferSurface.h" |
| #include "DisplayHardware/HWComposer.h" |
| #include "DisplayHardware/VirtualDisplaySurface.h" |
| |
| #include "Effects/Daltonizer.h" |
| |
| #include "RenderEngine/RenderEngine.h" |
| #include <cutils/compiler.h> |
| |
| #include <android/hardware/configstore/1.0/ISurfaceFlingerConfigs.h> |
| #include <configstore/Utils.h> |
| |
| #define DISPLAY_COUNT 1 |
| |
| /* |
| * DEBUG_SCREENSHOTS: set to true to check that screenshots are not all |
| * black pixels. |
| */ |
| #define DEBUG_SCREENSHOTS false |
| |
| extern "C" EGLAPI const char* eglQueryStringImplementationANDROID(EGLDisplay dpy, EGLint name); |
| |
| namespace android { |
| |
| using namespace android::hardware::configstore; |
| using namespace android::hardware::configstore::V1_0; |
| |
| namespace { |
| class ConditionalLock { |
| public: |
| ConditionalLock(Mutex& mutex, bool lock) : mMutex(mutex), mLocked(lock) { |
| if (lock) { |
| mMutex.lock(); |
| } |
| } |
| ~ConditionalLock() { if (mLocked) mMutex.unlock(); } |
| private: |
| Mutex& mMutex; |
| bool mLocked; |
| }; |
| } // namespace anonymous |
| |
| // --------------------------------------------------------------------------- |
| |
| const String16 sHardwareTest("android.permission.HARDWARE_TEST"); |
| const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER"); |
| const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER"); |
| const String16 sDump("android.permission.DUMP"); |
| |
| // --------------------------------------------------------------------------- |
| int64_t SurfaceFlinger::vsyncPhaseOffsetNs; |
| int64_t SurfaceFlinger::sfVsyncPhaseOffsetNs; |
| bool SurfaceFlinger::useContextPriority; |
| int64_t SurfaceFlinger::dispSyncPresentTimeOffset; |
| bool SurfaceFlinger::useHwcForRgbToYuv; |
| uint64_t SurfaceFlinger::maxVirtualDisplaySize; |
| bool SurfaceFlinger::hasSyncFramework; |
| bool SurfaceFlinger::useVrFlinger; |
| int64_t SurfaceFlinger::maxFrameBufferAcquiredBuffers; |
| bool SurfaceFlinger::hasWideColorDisplay; |
| |
| |
| std::string getHwcServiceName() { |
| char value[PROPERTY_VALUE_MAX] = {}; |
| property_get("debug.sf.hwc_service_name", value, "default"); |
| ALOGI("Using HWComposer service: '%s'", value); |
| return std::string(value); |
| } |
| |
| bool useTrebleTestingOverride() { |
| char value[PROPERTY_VALUE_MAX] = {}; |
| property_get("debug.sf.treble_testing_override", value, "false"); |
| ALOGI("Treble testing override: '%s'", value); |
| return std::string(value) == "true"; |
| } |
| |
| SurfaceFlinger::SurfaceFlinger() |
| : BnSurfaceComposer(), |
| mTransactionFlags(0), |
| mTransactionPending(false), |
| mAnimTransactionPending(false), |
| mLayersRemoved(false), |
| mLayersAdded(false), |
| mRepaintEverything(0), |
| mHwcServiceName(getHwcServiceName()), |
| mRenderEngine(nullptr), |
| mBootTime(systemTime()), |
| mBuiltinDisplays(), |
| mVisibleRegionsDirty(false), |
| mGeometryInvalid(false), |
| mAnimCompositionPending(false), |
| mDebugRegion(0), |
| mDebugDDMS(0), |
| mDebugDisableHWC(0), |
| mDebugDisableTransformHint(0), |
| mDebugInSwapBuffers(0), |
| mLastSwapBufferTime(0), |
| mDebugInTransaction(0), |
| mLastTransactionTime(0), |
| mBootFinished(false), |
| mForceFullDamage(false), |
| mInterceptor(this), |
| mPrimaryDispSync("PrimaryDispSync"), |
| mPrimaryHWVsyncEnabled(false), |
| mHWVsyncAvailable(false), |
| mHasColorMatrix(false), |
| mHasPoweredOff(false), |
| mFrameBuckets(), |
| mTotalTime(0), |
| mLastSwapTime(0), |
| mNumLayers(0), |
| mVrFlingerRequestsDisplay(false), |
| mMainThreadId(std::this_thread::get_id()), |
| mComposerSequenceId(0) |
| { |
| ALOGI("SurfaceFlinger is starting"); |
| |
| vsyncPhaseOffsetNs = getInt64< ISurfaceFlingerConfigs, |
| &ISurfaceFlingerConfigs::vsyncEventPhaseOffsetNs>(1000000); |
| |
| sfVsyncPhaseOffsetNs = getInt64< ISurfaceFlingerConfigs, |
| &ISurfaceFlingerConfigs::vsyncSfEventPhaseOffsetNs>(1000000); |
| |
| hasSyncFramework = getBool< ISurfaceFlingerConfigs, |
| &ISurfaceFlingerConfigs::hasSyncFramework>(true); |
| |
| useContextPriority = getBool< ISurfaceFlingerConfigs, |
| &ISurfaceFlingerConfigs::useContextPriority>(false); |
| |
| dispSyncPresentTimeOffset = getInt64< ISurfaceFlingerConfigs, |
| &ISurfaceFlingerConfigs::presentTimeOffsetFromVSyncNs>(0); |
| |
| useHwcForRgbToYuv = getBool< ISurfaceFlingerConfigs, |
| &ISurfaceFlingerConfigs::useHwcForRGBtoYUV>(false); |
| |
| maxVirtualDisplaySize = getUInt64<ISurfaceFlingerConfigs, |
| &ISurfaceFlingerConfigs::maxVirtualDisplaySize>(0); |
| |
| // Vr flinger is only enabled on Daydream ready devices. |
| useVrFlinger = getBool< ISurfaceFlingerConfigs, |
| &ISurfaceFlingerConfigs::useVrFlinger>(false); |
| |
| maxFrameBufferAcquiredBuffers = getInt64< ISurfaceFlingerConfigs, |
| &ISurfaceFlingerConfigs::maxFrameBufferAcquiredBuffers>(2); |
| |
| hasWideColorDisplay = |
| getBool<ISurfaceFlingerConfigs, &ISurfaceFlingerConfigs::hasWideColorDisplay>(false); |
| |
| mPrimaryDispSync.init(hasSyncFramework, dispSyncPresentTimeOffset); |
| |
| // debugging stuff... |
| char value[PROPERTY_VALUE_MAX]; |
| |
| property_get("ro.bq.gpu_to_cpu_unsupported", value, "0"); |
| mGpuToCpuSupported = !atoi(value); |
| |
| property_get("debug.sf.showupdates", value, "0"); |
| mDebugRegion = atoi(value); |
| |
| property_get("debug.sf.ddms", value, "0"); |
| mDebugDDMS = atoi(value); |
| if (mDebugDDMS) { |
| if (!startDdmConnection()) { |
| // start failed, and DDMS debugging not enabled |
| mDebugDDMS = 0; |
| } |
| } |
| ALOGI_IF(mDebugRegion, "showupdates enabled"); |
| ALOGI_IF(mDebugDDMS, "DDMS debugging enabled"); |
| |
| property_get("debug.sf.disable_backpressure", value, "0"); |
| mPropagateBackpressure = !atoi(value); |
| ALOGI_IF(!mPropagateBackpressure, "Disabling backpressure propagation"); |
| |
| property_get("debug.sf.enable_hwc_vds", value, "0"); |
| mUseHwcVirtualDisplays = atoi(value); |
| ALOGI_IF(!mUseHwcVirtualDisplays, "Enabling HWC virtual displays"); |
| |
| property_get("ro.sf.disable_triple_buffer", value, "1"); |
| mLayerTripleBufferingDisabled = atoi(value); |
| ALOGI_IF(mLayerTripleBufferingDisabled, "Disabling Triple Buffering"); |
| |
| // We should be reading 'persist.sys.sf.color_saturation' here |
| // but since /data may be encrypted, we need to wait until after vold |
| // comes online to attempt to read the property. The property is |
| // instead read after the boot animation |
| |
| if (useTrebleTestingOverride()) { |
| // Without the override SurfaceFlinger cannot connect to HIDL |
| // services that are not listed in the manifests. Considered |
| // deriving the setting from the set service name, but it |
| // would be brittle if the name that's not 'default' is used |
| // for production purposes later on. |
| setenv("TREBLE_TESTING_OVERRIDE", "true", true); |
| } |
| } |
| |
| void SurfaceFlinger::onFirstRef() |
| { |
| mEventQueue.init(this); |
| } |
| |
| SurfaceFlinger::~SurfaceFlinger() |
| { |
| EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY); |
| eglMakeCurrent(display, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT); |
| eglTerminate(display); |
| } |
| |
| void SurfaceFlinger::binderDied(const wp<IBinder>& /* who */) |
| { |
| // the window manager died on us. prepare its eulogy. |
| |
| // restore initial conditions (default device unblank, etc) |
| initializeDisplays(); |
| |
| // restart the boot-animation |
| startBootAnim(); |
| } |
| |
| static sp<ISurfaceComposerClient> initClient(const sp<Client>& client) { |
| status_t err = client->initCheck(); |
| if (err == NO_ERROR) { |
| return client; |
| } |
| return nullptr; |
| } |
| |
| sp<ISurfaceComposerClient> SurfaceFlinger::createConnection() { |
| return initClient(new Client(this)); |
| } |
| |
| sp<ISurfaceComposerClient> SurfaceFlinger::createScopedConnection( |
| const sp<IGraphicBufferProducer>& gbp) { |
| if (authenticateSurfaceTexture(gbp) == false) { |
| return nullptr; |
| } |
| const auto& layer = (static_cast<MonitoredProducer*>(gbp.get()))->getLayer(); |
| if (layer == nullptr) { |
| return nullptr; |
| } |
| |
| return initClient(new Client(this, layer)); |
| } |
| |
| sp<IBinder> SurfaceFlinger::createDisplay(const String8& displayName, |
| bool secure) |
| { |
| class DisplayToken : public BBinder { |
| sp<SurfaceFlinger> flinger; |
| virtual ~DisplayToken() { |
| // no more references, this display must be terminated |
| Mutex::Autolock _l(flinger->mStateLock); |
| flinger->mCurrentState.displays.removeItem(this); |
| flinger->setTransactionFlags(eDisplayTransactionNeeded); |
| } |
| public: |
| explicit DisplayToken(const sp<SurfaceFlinger>& flinger) |
| : flinger(flinger) { |
| } |
| }; |
| |
| sp<BBinder> token = new DisplayToken(this); |
| |
| Mutex::Autolock _l(mStateLock); |
| DisplayDeviceState info(DisplayDevice::DISPLAY_VIRTUAL, secure); |
| info.displayName = displayName; |
| mCurrentState.displays.add(token, info); |
| mInterceptor.saveDisplayCreation(info); |
| return token; |
| } |
| |
| void SurfaceFlinger::destroyDisplay(const sp<IBinder>& display) { |
| Mutex::Autolock _l(mStateLock); |
| |
| ssize_t idx = mCurrentState.displays.indexOfKey(display); |
| if (idx < 0) { |
| ALOGW("destroyDisplay: invalid display token"); |
| return; |
| } |
| |
| const DisplayDeviceState& info(mCurrentState.displays.valueAt(idx)); |
| if (!info.isVirtualDisplay()) { |
| ALOGE("destroyDisplay called for non-virtual display"); |
| return; |
| } |
| mInterceptor.saveDisplayDeletion(info.displayId); |
| mCurrentState.displays.removeItemsAt(idx); |
| setTransactionFlags(eDisplayTransactionNeeded); |
| } |
| |
| void SurfaceFlinger::createBuiltinDisplayLocked(DisplayDevice::DisplayType type) { |
| ALOGV("createBuiltinDisplayLocked(%d)", type); |
| ALOGW_IF(mBuiltinDisplays[type], |
| "Overwriting display token for display type %d", type); |
| mBuiltinDisplays[type] = new BBinder(); |
| // All non-virtual displays are currently considered secure. |
| DisplayDeviceState info(type, true); |
| mCurrentState.displays.add(mBuiltinDisplays[type], info); |
| mInterceptor.saveDisplayCreation(info); |
| } |
| |
| sp<IBinder> SurfaceFlinger::getBuiltInDisplay(int32_t id) { |
| if (uint32_t(id) >= DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES) { |
| ALOGE("getDefaultDisplay: id=%d is not a valid default display id", id); |
| return NULL; |
| } |
| return mBuiltinDisplays[id]; |
| } |
| |
| void SurfaceFlinger::bootFinished() |
| { |
| if (mStartPropertySetThread->join() != NO_ERROR) { |
| ALOGE("Join StartPropertySetThread failed!"); |
| } |
| const nsecs_t now = systemTime(); |
| const nsecs_t duration = now - mBootTime; |
| ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) ); |
| |
| // wait patiently for the window manager death |
| const String16 name("window"); |
| sp<IBinder> window(defaultServiceManager()->getService(name)); |
| if (window != 0) { |
| window->linkToDeath(static_cast<IBinder::DeathRecipient*>(this)); |
| } |
| |
| if (mVrFlinger) { |
| mVrFlinger->OnBootFinished(); |
| } |
| |
| // stop boot animation |
| // formerly we would just kill the process, but we now ask it to exit so it |
| // can choose where to stop the animation. |
| property_set("service.bootanim.exit", "1"); |
| |
| const int LOGTAG_SF_STOP_BOOTANIM = 60110; |
| LOG_EVENT_LONG(LOGTAG_SF_STOP_BOOTANIM, |
| ns2ms(systemTime(SYSTEM_TIME_MONOTONIC))); |
| |
| sp<LambdaMessage> readProperties = new LambdaMessage([&]() { |
| readPersistentProperties(); |
| }); |
| postMessageAsync(readProperties); |
| } |
| |
| void SurfaceFlinger::deleteTextureAsync(uint32_t texture) { |
| class MessageDestroyGLTexture : public MessageBase { |
| RenderEngine& engine; |
| uint32_t texture; |
| public: |
| MessageDestroyGLTexture(RenderEngine& engine, uint32_t texture) |
| : engine(engine), texture(texture) { |
| } |
| virtual bool handler() { |
| engine.deleteTextures(1, &texture); |
| return true; |
| } |
| }; |
| postMessageAsync(new MessageDestroyGLTexture(getRenderEngine(), texture)); |
| } |
| |
| class DispSyncSource : public VSyncSource, private DispSync::Callback { |
| public: |
| DispSyncSource(DispSync* dispSync, nsecs_t phaseOffset, bool traceVsync, |
| const char* name) : |
| mName(name), |
| mValue(0), |
| mTraceVsync(traceVsync), |
| mVsyncOnLabel(String8::format("VsyncOn-%s", name)), |
| mVsyncEventLabel(String8::format("VSYNC-%s", name)), |
| mDispSync(dispSync), |
| mCallbackMutex(), |
| mCallback(), |
| mVsyncMutex(), |
| mPhaseOffset(phaseOffset), |
| mEnabled(false) {} |
| |
| virtual ~DispSyncSource() {} |
| |
| virtual void setVSyncEnabled(bool enable) { |
| Mutex::Autolock lock(mVsyncMutex); |
| if (enable) { |
| status_t err = mDispSync->addEventListener(mName, mPhaseOffset, |
| static_cast<DispSync::Callback*>(this)); |
| if (err != NO_ERROR) { |
| ALOGE("error registering vsync callback: %s (%d)", |
| strerror(-err), err); |
| } |
| //ATRACE_INT(mVsyncOnLabel.string(), 1); |
| } else { |
| status_t err = mDispSync->removeEventListener( |
| static_cast<DispSync::Callback*>(this)); |
| if (err != NO_ERROR) { |
| ALOGE("error unregistering vsync callback: %s (%d)", |
| strerror(-err), err); |
| } |
| //ATRACE_INT(mVsyncOnLabel.string(), 0); |
| } |
| mEnabled = enable; |
| } |
| |
| virtual void setCallback(const sp<VSyncSource::Callback>& callback) { |
| Mutex::Autolock lock(mCallbackMutex); |
| mCallback = callback; |
| } |
| |
| virtual void setPhaseOffset(nsecs_t phaseOffset) { |
| Mutex::Autolock lock(mVsyncMutex); |
| |
| // Normalize phaseOffset to [0, period) |
| auto period = mDispSync->getPeriod(); |
| phaseOffset %= period; |
| if (phaseOffset < 0) { |
| // If we're here, then phaseOffset is in (-period, 0). After this |
| // operation, it will be in (0, period) |
| phaseOffset += period; |
| } |
| mPhaseOffset = phaseOffset; |
| |
| // If we're not enabled, we don't need to mess with the listeners |
| if (!mEnabled) { |
| return; |
| } |
| |
| // Remove the listener with the old offset |
| status_t err = mDispSync->removeEventListener( |
| static_cast<DispSync::Callback*>(this)); |
| if (err != NO_ERROR) { |
| ALOGE("error unregistering vsync callback: %s (%d)", |
| strerror(-err), err); |
| } |
| |
| // Add a listener with the new offset |
| err = mDispSync->addEventListener(mName, mPhaseOffset, |
| static_cast<DispSync::Callback*>(this)); |
| if (err != NO_ERROR) { |
| ALOGE("error registering vsync callback: %s (%d)", |
| strerror(-err), err); |
| } |
| } |
| |
| private: |
| virtual void onDispSyncEvent(nsecs_t when) { |
| sp<VSyncSource::Callback> callback; |
| { |
| Mutex::Autolock lock(mCallbackMutex); |
| callback = mCallback; |
| |
| if (mTraceVsync) { |
| mValue = (mValue + 1) % 2; |
| ATRACE_INT(mVsyncEventLabel.string(), mValue); |
| } |
| } |
| |
| if (callback != NULL) { |
| callback->onVSyncEvent(when); |
| } |
| } |
| |
| const char* const mName; |
| |
| int mValue; |
| |
| const bool mTraceVsync; |
| const String8 mVsyncOnLabel; |
| const String8 mVsyncEventLabel; |
| |
| DispSync* mDispSync; |
| |
| Mutex mCallbackMutex; // Protects the following |
| sp<VSyncSource::Callback> mCallback; |
| |
| Mutex mVsyncMutex; // Protects the following |
| nsecs_t mPhaseOffset; |
| bool mEnabled; |
| }; |
| |
| class InjectVSyncSource : public VSyncSource { |
| public: |
| InjectVSyncSource() {} |
| |
| virtual ~InjectVSyncSource() {} |
| |
| virtual void setCallback(const sp<VSyncSource::Callback>& callback) { |
| std::lock_guard<std::mutex> lock(mCallbackMutex); |
| mCallback = callback; |
| } |
| |
| virtual void onInjectSyncEvent(nsecs_t when) { |
| std::lock_guard<std::mutex> lock(mCallbackMutex); |
| mCallback->onVSyncEvent(when); |
| } |
| |
| virtual void setVSyncEnabled(bool) {} |
| virtual void setPhaseOffset(nsecs_t) {} |
| |
| private: |
| std::mutex mCallbackMutex; // Protects the following |
| sp<VSyncSource::Callback> mCallback; |
| }; |
| |
| // Do not call property_set on main thread which will be blocked by init |
| // Use StartPropertySetThread instead. |
| void SurfaceFlinger::init() { |
| ALOGI( "SurfaceFlinger's main thread ready to run. " |
| "Initializing graphics H/W..."); |
| |
| ALOGI("Phase offest NS: %" PRId64 "", vsyncPhaseOffsetNs); |
| |
| Mutex::Autolock _l(mStateLock); |
| |
| // initialize EGL for the default display |
| mEGLDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY); |
| eglInitialize(mEGLDisplay, NULL, NULL); |
| |
| // start the EventThread |
| sp<VSyncSource> vsyncSrc = new DispSyncSource(&mPrimaryDispSync, |
| vsyncPhaseOffsetNs, true, "app"); |
| mEventThread = new EventThread(vsyncSrc, *this, false); |
| sp<VSyncSource> sfVsyncSrc = new DispSyncSource(&mPrimaryDispSync, |
| sfVsyncPhaseOffsetNs, true, "sf"); |
| mSFEventThread = new EventThread(sfVsyncSrc, *this, true); |
| mEventQueue.setEventThread(mSFEventThread); |
| |
| // set EventThread and SFEventThread to SCHED_FIFO to minimize jitter |
| struct sched_param param = {0}; |
| param.sched_priority = 2; |
| if (sched_setscheduler(mSFEventThread->getTid(), SCHED_FIFO, ¶m) != 0) { |
| ALOGE("Couldn't set SCHED_FIFO for SFEventThread"); |
| } |
| if (sched_setscheduler(mEventThread->getTid(), SCHED_FIFO, ¶m) != 0) { |
| ALOGE("Couldn't set SCHED_FIFO for EventThread"); |
| } |
| |
| // Get a RenderEngine for the given display / config (can't fail) |
| mRenderEngine = RenderEngine::create(mEGLDisplay, |
| HAL_PIXEL_FORMAT_RGBA_8888, |
| hasWideColorDisplay ? RenderEngine::WIDE_COLOR_SUPPORT : 0); |
| |
| // retrieve the EGL context that was selected/created |
| mEGLContext = mRenderEngine->getEGLContext(); |
| |
| LOG_ALWAYS_FATAL_IF(mEGLContext == EGL_NO_CONTEXT, |
| "couldn't create EGLContext"); |
| |
| LOG_ALWAYS_FATAL_IF(mVrFlingerRequestsDisplay, |
| "Starting with vr flinger active is not currently supported."); |
| mHwc.reset(new HWComposer(mHwcServiceName)); |
| mHwc->registerCallback(this, mComposerSequenceId); |
| |
| if (useVrFlinger) { |
| auto vrFlingerRequestDisplayCallback = [this] (bool requestDisplay) { |
| // This callback is called from the vr flinger dispatch thread. We |
| // need to call signalTransaction(), which requires holding |
| // mStateLock when we're not on the main thread. Acquiring |
| // mStateLock from the vr flinger dispatch thread might trigger a |
| // deadlock in surface flinger (see b/66916578), so post a message |
| // to be handled on the main thread instead. |
| sp<LambdaMessage> message = new LambdaMessage([=]() { |
| ALOGI("VR request display mode: requestDisplay=%d", requestDisplay); |
| mVrFlingerRequestsDisplay = requestDisplay; |
| signalTransaction(); |
| }); |
| postMessageAsync(message); |
| }; |
| mVrFlinger = dvr::VrFlinger::Create(mHwc->getComposer(), |
| vrFlingerRequestDisplayCallback); |
| if (!mVrFlinger) { |
| ALOGE("Failed to start vrflinger"); |
| } |
| } |
| |
| mEventControlThread = new EventControlThread(this); |
| mEventControlThread->run("EventControl", PRIORITY_URGENT_DISPLAY); |
| |
| // initialize our drawing state |
| mDrawingState = mCurrentState; |
| |
| // set initial conditions (e.g. unblank default device) |
| initializeDisplays(); |
| |
| mRenderEngine->primeCache(); |
| |
| // Inform native graphics APIs whether the present timestamp is supported: |
| if (getHwComposer().hasCapability( |
| HWC2::Capability::PresentFenceIsNotReliable)) { |
| mStartPropertySetThread = new StartPropertySetThread(false); |
| } else { |
| mStartPropertySetThread = new StartPropertySetThread(true); |
| } |
| |
| if (mStartPropertySetThread->Start() != NO_ERROR) { |
| ALOGE("Run StartPropertySetThread failed!"); |
| } |
| |
| ALOGV("Done initializing"); |
| } |
| |
| void SurfaceFlinger::readPersistentProperties() { |
| char value[PROPERTY_VALUE_MAX]; |
| |
| property_get("persist.sys.sf.color_saturation", value, "1.0"); |
| mSaturation = atof(value); |
| ALOGV("Saturation is set to %.2f", mSaturation); |
| } |
| |
| void SurfaceFlinger::startBootAnim() { |
| // Start boot animation service by setting a property mailbox |
| // if property setting thread is already running, Start() will be just a NOP |
| mStartPropertySetThread->Start(); |
| // Wait until property was set |
| if (mStartPropertySetThread->join() != NO_ERROR) { |
| ALOGE("Join StartPropertySetThread failed!"); |
| } |
| } |
| |
| size_t SurfaceFlinger::getMaxTextureSize() const { |
| return mRenderEngine->getMaxTextureSize(); |
| } |
| |
| size_t SurfaceFlinger::getMaxViewportDims() const { |
| return mRenderEngine->getMaxViewportDims(); |
| } |
| |
| // ---------------------------------------------------------------------------- |
| |
| bool SurfaceFlinger::authenticateSurfaceTexture( |
| const sp<IGraphicBufferProducer>& bufferProducer) const { |
| Mutex::Autolock _l(mStateLock); |
| return authenticateSurfaceTextureLocked(bufferProducer); |
| } |
| |
| bool SurfaceFlinger::authenticateSurfaceTextureLocked( |
| const sp<IGraphicBufferProducer>& bufferProducer) const { |
| sp<IBinder> surfaceTextureBinder(IInterface::asBinder(bufferProducer)); |
| return mGraphicBufferProducerList.indexOf(surfaceTextureBinder) >= 0; |
| } |
| |
| status_t SurfaceFlinger::getSupportedFrameTimestamps( |
| std::vector<FrameEvent>* outSupported) const { |
| *outSupported = { |
| FrameEvent::REQUESTED_PRESENT, |
| FrameEvent::ACQUIRE, |
| FrameEvent::LATCH, |
| FrameEvent::FIRST_REFRESH_START, |
| FrameEvent::LAST_REFRESH_START, |
| FrameEvent::GPU_COMPOSITION_DONE, |
| FrameEvent::DEQUEUE_READY, |
| FrameEvent::RELEASE, |
| }; |
| ConditionalLock _l(mStateLock, |
| std::this_thread::get_id() != mMainThreadId); |
| if (!getHwComposer().hasCapability( |
| HWC2::Capability::PresentFenceIsNotReliable)) { |
| outSupported->push_back(FrameEvent::DISPLAY_PRESENT); |
| } |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::getDisplayConfigs(const sp<IBinder>& display, |
| Vector<DisplayInfo>* configs) { |
| if ((configs == NULL) || (display.get() == NULL)) { |
| return BAD_VALUE; |
| } |
| |
| if (!display.get()) |
| return NAME_NOT_FOUND; |
| |
| int32_t type = NAME_NOT_FOUND; |
| for (int i=0 ; i<DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES ; i++) { |
| if (display == mBuiltinDisplays[i]) { |
| type = i; |
| break; |
| } |
| } |
| |
| if (type < 0) { |
| return type; |
| } |
| |
| // TODO: Not sure if display density should handled by SF any longer |
| class Density { |
| static int getDensityFromProperty(char const* propName) { |
| char property[PROPERTY_VALUE_MAX]; |
| int density = 0; |
| if (property_get(propName, property, NULL) > 0) { |
| density = atoi(property); |
| } |
| return density; |
| } |
| public: |
| static int getEmuDensity() { |
| return getDensityFromProperty("qemu.sf.lcd_density"); } |
| static int getBuildDensity() { |
| return getDensityFromProperty("ro.sf.lcd_density"); } |
| }; |
| |
| configs->clear(); |
| |
| ConditionalLock _l(mStateLock, |
| std::this_thread::get_id() != mMainThreadId); |
| for (const auto& hwConfig : getHwComposer().getConfigs(type)) { |
| DisplayInfo info = DisplayInfo(); |
| |
| float xdpi = hwConfig->getDpiX(); |
| float ydpi = hwConfig->getDpiY(); |
| |
| if (type == DisplayDevice::DISPLAY_PRIMARY) { |
| // The density of the device is provided by a build property |
| float density = Density::getBuildDensity() / 160.0f; |
| if (density == 0) { |
| // the build doesn't provide a density -- this is wrong! |
| // use xdpi instead |
| ALOGE("ro.sf.lcd_density must be defined as a build property"); |
| density = xdpi / 160.0f; |
| } |
| if (Density::getEmuDensity()) { |
| // if "qemu.sf.lcd_density" is specified, it overrides everything |
| xdpi = ydpi = density = Density::getEmuDensity(); |
| density /= 160.0f; |
| } |
| info.density = density; |
| |
| // TODO: this needs to go away (currently needed only by webkit) |
| sp<const DisplayDevice> hw(getDefaultDisplayDeviceLocked()); |
| info.orientation = hw->getOrientation(); |
| } else { |
| // TODO: where should this value come from? |
| static const int TV_DENSITY = 213; |
| info.density = TV_DENSITY / 160.0f; |
| info.orientation = 0; |
| } |
| |
| info.w = hwConfig->getWidth(); |
| info.h = hwConfig->getHeight(); |
| info.xdpi = xdpi; |
| info.ydpi = ydpi; |
| info.fps = 1e9 / hwConfig->getVsyncPeriod(); |
| info.appVsyncOffset = vsyncPhaseOffsetNs; |
| |
| // This is how far in advance a buffer must be queued for |
| // presentation at a given time. If you want a buffer to appear |
| // on the screen at time N, you must submit the buffer before |
| // (N - presentationDeadline). |
| // |
| // Normally it's one full refresh period (to give SF a chance to |
| // latch the buffer), but this can be reduced by configuring a |
| // DispSync offset. Any additional delays introduced by the hardware |
| // composer or panel must be accounted for here. |
| // |
| // We add an additional 1ms to allow for processing time and |
| // differences between the ideal and actual refresh rate. |
| info.presentationDeadline = hwConfig->getVsyncPeriod() - |
| sfVsyncPhaseOffsetNs + 1000000; |
| |
| // All non-virtual displays are currently considered secure. |
| info.secure = true; |
| |
| configs->push_back(info); |
| } |
| |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::getDisplayStats(const sp<IBinder>& /* display */, |
| DisplayStatInfo* stats) { |
| if (stats == NULL) { |
| return BAD_VALUE; |
| } |
| |
| // FIXME for now we always return stats for the primary display |
| memset(stats, 0, sizeof(*stats)); |
| stats->vsyncTime = mPrimaryDispSync.computeNextRefresh(0); |
| stats->vsyncPeriod = mPrimaryDispSync.getPeriod(); |
| return NO_ERROR; |
| } |
| |
| int SurfaceFlinger::getActiveConfig(const sp<IBinder>& display) { |
| if (display == NULL) { |
| ALOGE("%s : display is NULL", __func__); |
| return BAD_VALUE; |
| } |
| |
| sp<const DisplayDevice> device(getDisplayDevice(display)); |
| if (device != NULL) { |
| return device->getActiveConfig(); |
| } |
| |
| return BAD_VALUE; |
| } |
| |
| void SurfaceFlinger::setActiveConfigInternal(const sp<DisplayDevice>& hw, int mode) { |
| ALOGD("Set active config mode=%d, type=%d flinger=%p", mode, hw->getDisplayType(), |
| this); |
| int32_t type = hw->getDisplayType(); |
| int currentMode = hw->getActiveConfig(); |
| |
| if (mode == currentMode) { |
| ALOGD("Screen type=%d is already mode=%d", hw->getDisplayType(), mode); |
| return; |
| } |
| |
| if (type >= DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES) { |
| ALOGW("Trying to set config for virtual display"); |
| return; |
| } |
| |
| hw->setActiveConfig(mode); |
| getHwComposer().setActiveConfig(type, mode); |
| } |
| |
| status_t SurfaceFlinger::setActiveConfig(const sp<IBinder>& display, int mode) { |
| class MessageSetActiveConfig: public MessageBase { |
| SurfaceFlinger& mFlinger; |
| sp<IBinder> mDisplay; |
| int mMode; |
| public: |
| MessageSetActiveConfig(SurfaceFlinger& flinger, const sp<IBinder>& disp, |
| int mode) : |
| mFlinger(flinger), mDisplay(disp) { mMode = mode; } |
| virtual bool handler() { |
| Vector<DisplayInfo> configs; |
| mFlinger.getDisplayConfigs(mDisplay, &configs); |
| if (mMode < 0 || mMode >= static_cast<int>(configs.size())) { |
| ALOGE("Attempt to set active config = %d for display with %zu configs", |
| mMode, configs.size()); |
| return true; |
| } |
| sp<DisplayDevice> hw(mFlinger.getDisplayDevice(mDisplay)); |
| if (hw == NULL) { |
| ALOGE("Attempt to set active config = %d for null display %p", |
| mMode, mDisplay.get()); |
| } else if (hw->getDisplayType() >= DisplayDevice::DISPLAY_VIRTUAL) { |
| ALOGW("Attempt to set active config = %d for virtual display", |
| mMode); |
| } else { |
| mFlinger.setActiveConfigInternal(hw, mMode); |
| } |
| return true; |
| } |
| }; |
| sp<MessageBase> msg = new MessageSetActiveConfig(*this, display, mode); |
| postMessageSync(msg); |
| return NO_ERROR; |
| } |
| status_t SurfaceFlinger::getDisplayColorModes(const sp<IBinder>& display, |
| Vector<android_color_mode_t>* outColorModes) { |
| if ((outColorModes == nullptr) || (display.get() == nullptr)) { |
| return BAD_VALUE; |
| } |
| |
| if (!display.get()) { |
| return NAME_NOT_FOUND; |
| } |
| |
| int32_t type = NAME_NOT_FOUND; |
| for (int i=0 ; i<DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES ; i++) { |
| if (display == mBuiltinDisplays[i]) { |
| type = i; |
| break; |
| } |
| } |
| |
| if (type < 0) { |
| return type; |
| } |
| |
| std::vector<android_color_mode_t> modes; |
| { |
| ConditionalLock _l(mStateLock, |
| std::this_thread::get_id() != mMainThreadId); |
| modes = getHwComposer().getColorModes(type); |
| } |
| outColorModes->clear(); |
| std::copy(modes.cbegin(), modes.cend(), std::back_inserter(*outColorModes)); |
| |
| return NO_ERROR; |
| } |
| |
| android_color_mode_t SurfaceFlinger::getActiveColorMode(const sp<IBinder>& display) { |
| sp<const DisplayDevice> device(getDisplayDevice(display)); |
| if (device != nullptr) { |
| return device->getActiveColorMode(); |
| } |
| return static_cast<android_color_mode_t>(BAD_VALUE); |
| } |
| |
| void SurfaceFlinger::setActiveColorModeInternal(const sp<DisplayDevice>& hw, |
| android_color_mode_t mode) { |
| int32_t type = hw->getDisplayType(); |
| android_color_mode_t currentMode = hw->getActiveColorMode(); |
| |
| if (mode == currentMode) { |
| return; |
| } |
| |
| if (type >= DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES) { |
| ALOGW("Trying to set config for virtual display"); |
| return; |
| } |
| |
| ALOGD("Set active color mode: %s (%d), type=%d", decodeColorMode(mode).c_str(), mode, |
| hw->getDisplayType()); |
| |
| hw->setActiveColorMode(mode); |
| getHwComposer().setActiveColorMode(type, mode); |
| } |
| |
| |
| status_t SurfaceFlinger::setActiveColorMode(const sp<IBinder>& display, |
| android_color_mode_t colorMode) { |
| class MessageSetActiveColorMode: public MessageBase { |
| SurfaceFlinger& mFlinger; |
| sp<IBinder> mDisplay; |
| android_color_mode_t mMode; |
| public: |
| MessageSetActiveColorMode(SurfaceFlinger& flinger, const sp<IBinder>& disp, |
| android_color_mode_t mode) : |
| mFlinger(flinger), mDisplay(disp) { mMode = mode; } |
| virtual bool handler() { |
| Vector<android_color_mode_t> modes; |
| mFlinger.getDisplayColorModes(mDisplay, &modes); |
| bool exists = std::find(std::begin(modes), std::end(modes), mMode) != std::end(modes); |
| if (mMode < 0 || !exists) { |
| ALOGE("Attempt to set invalid active color mode %s (%d) for display %p", |
| decodeColorMode(mMode).c_str(), mMode, mDisplay.get()); |
| return true; |
| } |
| sp<DisplayDevice> hw(mFlinger.getDisplayDevice(mDisplay)); |
| if (hw == nullptr) { |
| ALOGE("Attempt to set active color mode %s (%d) for null display %p", |
| decodeColorMode(mMode).c_str(), mMode, mDisplay.get()); |
| } else if (hw->getDisplayType() >= DisplayDevice::DISPLAY_VIRTUAL) { |
| ALOGW("Attempt to set active color mode %s %d for virtual display", |
| decodeColorMode(mMode).c_str(), mMode); |
| } else { |
| mFlinger.setActiveColorModeInternal(hw, mMode); |
| } |
| return true; |
| } |
| }; |
| sp<MessageBase> msg = new MessageSetActiveColorMode(*this, display, colorMode); |
| postMessageSync(msg); |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::clearAnimationFrameStats() { |
| Mutex::Autolock _l(mStateLock); |
| mAnimFrameTracker.clearStats(); |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::getAnimationFrameStats(FrameStats* outStats) const { |
| Mutex::Autolock _l(mStateLock); |
| mAnimFrameTracker.getStats(outStats); |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::getHdrCapabilities(const sp<IBinder>& display, |
| HdrCapabilities* outCapabilities) const { |
| Mutex::Autolock _l(mStateLock); |
| |
| sp<const DisplayDevice> displayDevice(getDisplayDeviceLocked(display)); |
| if (displayDevice == nullptr) { |
| ALOGE("getHdrCapabilities: Invalid display %p", displayDevice.get()); |
| return BAD_VALUE; |
| } |
| |
| std::unique_ptr<HdrCapabilities> capabilities = |
| mHwc->getHdrCapabilities(displayDevice->getHwcDisplayId()); |
| if (capabilities) { |
| std::swap(*outCapabilities, *capabilities); |
| } else { |
| return BAD_VALUE; |
| } |
| |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::enableVSyncInjections(bool enable) { |
| if (enable == mInjectVSyncs) { |
| return NO_ERROR; |
| } |
| |
| if (enable) { |
| mInjectVSyncs = enable; |
| ALOGV("VSync Injections enabled"); |
| if (mVSyncInjector.get() == nullptr) { |
| mVSyncInjector = new InjectVSyncSource(); |
| mInjectorEventThread = new EventThread(mVSyncInjector, *this, false); |
| } |
| mEventQueue.setEventThread(mInjectorEventThread); |
| } else { |
| mInjectVSyncs = enable; |
| ALOGV("VSync Injections disabled"); |
| mEventQueue.setEventThread(mSFEventThread); |
| mVSyncInjector.clear(); |
| } |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::injectVSync(nsecs_t when) { |
| if (!mInjectVSyncs) { |
| ALOGE("VSync Injections not enabled"); |
| return BAD_VALUE; |
| } |
| if (mInjectVSyncs && mInjectorEventThread.get() != nullptr) { |
| ALOGV("Injecting VSync inside SurfaceFlinger"); |
| mVSyncInjector->onInjectSyncEvent(when); |
| } |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::getLayerDebugInfo(std::vector<LayerDebugInfo>* outLayers) const { |
| IPCThreadState* ipc = IPCThreadState::self(); |
| const int pid = ipc->getCallingPid(); |
| const int uid = ipc->getCallingUid(); |
| if ((uid != AID_SHELL) && |
| !PermissionCache::checkPermission(sDump, pid, uid)) { |
| ALOGE("Layer debug info permission denied for pid=%d, uid=%d", pid, uid); |
| return PERMISSION_DENIED; |
| } |
| |
| // Try to acquire a lock for 1s, fail gracefully |
| const status_t err = mStateLock.timedLock(s2ns(1)); |
| const bool locked = (err == NO_ERROR); |
| if (!locked) { |
| ALOGE("LayerDebugInfo: SurfaceFlinger unresponsive (%s [%d]) - exit", strerror(-err), err); |
| return TIMED_OUT; |
| } |
| |
| outLayers->clear(); |
| mCurrentState.traverseInZOrder([&](Layer* layer) { |
| outLayers->push_back(layer->getLayerDebugInfo()); |
| }); |
| |
| mStateLock.unlock(); |
| return NO_ERROR; |
| } |
| |
| // ---------------------------------------------------------------------------- |
| |
| sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection( |
| ISurfaceComposer::VsyncSource vsyncSource) { |
| if (vsyncSource == eVsyncSourceSurfaceFlinger) { |
| return mSFEventThread->createEventConnection(); |
| } else { |
| return mEventThread->createEventConnection(); |
| } |
| } |
| |
| // ---------------------------------------------------------------------------- |
| |
| void SurfaceFlinger::waitForEvent() { |
| mEventQueue.waitMessage(); |
| } |
| |
| void SurfaceFlinger::signalTransaction() { |
| mEventQueue.invalidate(); |
| } |
| |
| void SurfaceFlinger::signalLayerUpdate() { |
| mEventQueue.invalidate(); |
| } |
| |
| void SurfaceFlinger::signalRefresh() { |
| mRefreshPending = true; |
| mEventQueue.refresh(); |
| } |
| |
| status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg, |
| nsecs_t reltime, uint32_t /* flags */) { |
| return mEventQueue.postMessage(msg, reltime); |
| } |
| |
| status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg, |
| nsecs_t reltime, uint32_t /* flags */) { |
| status_t res = mEventQueue.postMessage(msg, reltime); |
| if (res == NO_ERROR) { |
| msg->wait(); |
| } |
| return res; |
| } |
| |
| void SurfaceFlinger::run() { |
| do { |
| waitForEvent(); |
| } while (true); |
| } |
| |
| void SurfaceFlinger::enableHardwareVsync() { |
| Mutex::Autolock _l(mHWVsyncLock); |
| if (!mPrimaryHWVsyncEnabled && mHWVsyncAvailable) { |
| mPrimaryDispSync.beginResync(); |
| //eventControl(HWC_DISPLAY_PRIMARY, SurfaceFlinger::EVENT_VSYNC, true); |
| mEventControlThread->setVsyncEnabled(true); |
| mPrimaryHWVsyncEnabled = true; |
| } |
| } |
| |
| void SurfaceFlinger::resyncToHardwareVsync(bool makeAvailable) { |
| Mutex::Autolock _l(mHWVsyncLock); |
| |
| if (makeAvailable) { |
| mHWVsyncAvailable = true; |
| } else if (!mHWVsyncAvailable) { |
| // Hardware vsync is not currently available, so abort the resync |
| // attempt for now |
| return; |
| } |
| |
| const auto& activeConfig = mHwc->getActiveConfig(HWC_DISPLAY_PRIMARY); |
| const nsecs_t period = activeConfig->getVsyncPeriod(); |
| |
| mPrimaryDispSync.reset(); |
| mPrimaryDispSync.setPeriod(period); |
| |
| if (!mPrimaryHWVsyncEnabled) { |
| mPrimaryDispSync.beginResync(); |
| //eventControl(HWC_DISPLAY_PRIMARY, SurfaceFlinger::EVENT_VSYNC, true); |
| mEventControlThread->setVsyncEnabled(true); |
| mPrimaryHWVsyncEnabled = true; |
| } |
| } |
| |
| void SurfaceFlinger::disableHardwareVsync(bool makeUnavailable) { |
| Mutex::Autolock _l(mHWVsyncLock); |
| if (mPrimaryHWVsyncEnabled) { |
| //eventControl(HWC_DISPLAY_PRIMARY, SurfaceFlinger::EVENT_VSYNC, false); |
| mEventControlThread->setVsyncEnabled(false); |
| mPrimaryDispSync.endResync(); |
| mPrimaryHWVsyncEnabled = false; |
| } |
| if (makeUnavailable) { |
| mHWVsyncAvailable = false; |
| } |
| } |
| |
| void SurfaceFlinger::resyncWithRateLimit() { |
| static constexpr nsecs_t kIgnoreDelay = ms2ns(500); |
| |
| // No explicit locking is needed here since EventThread holds a lock while calling this method |
| static nsecs_t sLastResyncAttempted = 0; |
| const nsecs_t now = systemTime(); |
| if (now - sLastResyncAttempted > kIgnoreDelay) { |
| resyncToHardwareVsync(false); |
| } |
| sLastResyncAttempted = now; |
| } |
| |
| void SurfaceFlinger::onVsyncReceived(int32_t sequenceId, |
| hwc2_display_t displayId, int64_t timestamp) { |
| Mutex::Autolock lock(mStateLock); |
| // Ignore any vsyncs from a previous hardware composer. |
| if (sequenceId != mComposerSequenceId) { |
| return; |
| } |
| |
| int32_t type; |
| if (!mHwc->onVsync(displayId, timestamp, &type)) { |
| return; |
| } |
| |
| bool needsHwVsync = false; |
| |
| { // Scope for the lock |
| Mutex::Autolock _l(mHWVsyncLock); |
| if (type == DisplayDevice::DISPLAY_PRIMARY && mPrimaryHWVsyncEnabled) { |
| needsHwVsync = mPrimaryDispSync.addResyncSample(timestamp); |
| } |
| } |
| |
| if (needsHwVsync) { |
| enableHardwareVsync(); |
| } else { |
| disableHardwareVsync(false); |
| } |
| } |
| |
| void SurfaceFlinger::getCompositorTiming(CompositorTiming* compositorTiming) { |
| std::lock_guard<std::mutex> lock(mCompositorTimingLock); |
| *compositorTiming = mCompositorTiming; |
| } |
| |
| void SurfaceFlinger::createDefaultDisplayDevice() { |
| const DisplayDevice::DisplayType type = DisplayDevice::DISPLAY_PRIMARY; |
| wp<IBinder> token = mBuiltinDisplays[type]; |
| |
| // All non-virtual displays are currently considered secure. |
| const bool isSecure = true; |
| |
| sp<IGraphicBufferProducer> producer; |
| sp<IGraphicBufferConsumer> consumer; |
| BufferQueue::createBufferQueue(&producer, &consumer); |
| |
| sp<FramebufferSurface> fbs = new FramebufferSurface(*mHwc, type, consumer); |
| |
| bool hasWideColorModes = false; |
| std::vector<android_color_mode_t> modes = getHwComposer().getColorModes(type); |
| for (android_color_mode_t colorMode : modes) { |
| switch (colorMode) { |
| case HAL_COLOR_MODE_DISPLAY_P3: |
| case HAL_COLOR_MODE_ADOBE_RGB: |
| case HAL_COLOR_MODE_DCI_P3: |
| hasWideColorModes = true; |
| break; |
| default: |
| break; |
| } |
| } |
| sp<DisplayDevice> hw = new DisplayDevice(this, DisplayDevice::DISPLAY_PRIMARY, type, isSecure, |
| token, fbs, producer, mRenderEngine->getEGLConfig(), |
| hasWideColorModes && hasWideColorDisplay); |
| mDisplays.add(token, hw); |
| android_color_mode defaultColorMode = HAL_COLOR_MODE_NATIVE; |
| if (hasWideColorModes && hasWideColorDisplay) { |
| defaultColorMode = HAL_COLOR_MODE_SRGB; |
| } |
| setActiveColorModeInternal(hw, defaultColorMode); |
| hw->setCompositionDataSpace(HAL_DATASPACE_UNKNOWN); |
| |
| // Add the primary display token to mDrawingState so we don't try to |
| // recreate the DisplayDevice for the primary display. |
| mDrawingState.displays.add(token, DisplayDeviceState(type, true)); |
| |
| // make the GLContext current so that we can create textures when creating |
| // Layers (which may happens before we render something) |
| hw->makeCurrent(mEGLDisplay, mEGLContext); |
| } |
| |
| void SurfaceFlinger::onHotplugReceived(int32_t sequenceId, |
| hwc2_display_t display, HWC2::Connection connection, |
| bool primaryDisplay) { |
| ALOGV("onHotplugReceived(%d, %" PRIu64 ", %s, %s)", |
| sequenceId, display, |
| connection == HWC2::Connection::Connected ? |
| "connected" : "disconnected", |
| primaryDisplay ? "primary" : "external"); |
| |
| // Only lock if we're not on the main thread. This function is normally |
| // called on a hwbinder thread, but for the primary display it's called on |
| // the main thread with the state lock already held, so don't attempt to |
| // acquire it here. |
| ConditionalLock lock(mStateLock, |
| std::this_thread::get_id() != mMainThreadId); |
| |
| if (primaryDisplay) { |
| mHwc->onHotplug(display, connection); |
| if (!mBuiltinDisplays[DisplayDevice::DISPLAY_PRIMARY].get()) { |
| createBuiltinDisplayLocked(DisplayDevice::DISPLAY_PRIMARY); |
| } |
| createDefaultDisplayDevice(); |
| } else { |
| if (sequenceId != mComposerSequenceId) { |
| return; |
| } |
| if (mHwc->isUsingVrComposer()) { |
| ALOGE("External displays are not supported by the vr hardware composer."); |
| return; |
| } |
| mHwc->onHotplug(display, connection); |
| auto type = DisplayDevice::DISPLAY_EXTERNAL; |
| if (connection == HWC2::Connection::Connected) { |
| createBuiltinDisplayLocked(type); |
| } else { |
| mCurrentState.displays.removeItem(mBuiltinDisplays[type]); |
| mBuiltinDisplays[type].clear(); |
| } |
| setTransactionFlags(eDisplayTransactionNeeded); |
| |
| // Defer EventThread notification until SF has updated mDisplays. |
| } |
| } |
| |
| void SurfaceFlinger::onRefreshReceived(int sequenceId, |
| hwc2_display_t /*display*/) { |
| Mutex::Autolock lock(mStateLock); |
| if (sequenceId != mComposerSequenceId) { |
| return; |
| } |
| repaintEverythingLocked(); |
| } |
| |
| void SurfaceFlinger::setVsyncEnabled(int disp, int enabled) { |
| ATRACE_CALL(); |
| Mutex::Autolock lock(mStateLock); |
| getHwComposer().setVsyncEnabled(disp, |
| enabled ? HWC2::Vsync::Enable : HWC2::Vsync::Disable); |
| } |
| |
| // Note: it is assumed the caller holds |mStateLock| when this is called |
| void SurfaceFlinger::resetDisplayState() { |
| disableHardwareVsync(true); |
| // Clear the drawing state so that the logic inside of |
| // handleTransactionLocked will fire. It will determine the delta between |
| // mCurrentState and mDrawingState and re-apply all changes when we make the |
| // transition. |
| mDrawingState.displays.clear(); |
| eglMakeCurrent(mEGLDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT); |
| mDisplays.clear(); |
| } |
| |
| void SurfaceFlinger::updateVrFlinger() { |
| if (!mVrFlinger) |
| return; |
| bool vrFlingerRequestsDisplay = mVrFlingerRequestsDisplay; |
| if (vrFlingerRequestsDisplay == mHwc->isUsingVrComposer()) { |
| return; |
| } |
| |
| if (vrFlingerRequestsDisplay && !mHwc->getComposer()->isRemote()) { |
| ALOGE("Vr flinger is only supported for remote hardware composer" |
| " service connections. Ignoring request to transition to vr" |
| " flinger."); |
| mVrFlingerRequestsDisplay = false; |
| return; |
| } |
| |
| Mutex::Autolock _l(mStateLock); |
| |
| int currentDisplayPowerMode = getDisplayDeviceLocked( |
| mBuiltinDisplays[DisplayDevice::DISPLAY_PRIMARY])->getPowerMode(); |
| |
| if (!vrFlingerRequestsDisplay) { |
| mVrFlinger->SeizeDisplayOwnership(); |
| } |
| |
| resetDisplayState(); |
| mHwc.reset(); // Delete the current instance before creating the new one |
| mHwc.reset(new HWComposer( |
| vrFlingerRequestsDisplay ? "vr" : mHwcServiceName)); |
| mHwc->registerCallback(this, ++mComposerSequenceId); |
| |
| LOG_ALWAYS_FATAL_IF(!mHwc->getComposer()->isRemote(), |
| "Switched to non-remote hardware composer"); |
| |
| if (vrFlingerRequestsDisplay) { |
| mVrFlinger->GrantDisplayOwnership(); |
| } else { |
| enableHardwareVsync(); |
| } |
| |
| mVisibleRegionsDirty = true; |
| invalidateHwcGeometry(); |
| |
| // Re-enable default display. |
| sp<DisplayDevice> hw(getDisplayDeviceLocked( |
| mBuiltinDisplays[DisplayDevice::DISPLAY_PRIMARY])); |
| setPowerModeInternal(hw, currentDisplayPowerMode, /*stateLockHeld*/ true); |
| |
| // Reset the timing values to account for the period of the swapped in HWC |
| const auto& activeConfig = mHwc->getActiveConfig(HWC_DISPLAY_PRIMARY); |
| const nsecs_t period = activeConfig->getVsyncPeriod(); |
| mAnimFrameTracker.setDisplayRefreshPeriod(period); |
| |
| // Use phase of 0 since phase is not known. |
| // Use latency of 0, which will snap to the ideal latency. |
| setCompositorTimingSnapped(0, period, 0); |
| |
| android_atomic_or(1, &mRepaintEverything); |
| setTransactionFlags(eDisplayTransactionNeeded); |
| } |
| |
| void SurfaceFlinger::onMessageReceived(int32_t what) { |
| ATRACE_CALL(); |
| switch (what) { |
| case MessageQueue::INVALIDATE: { |
| bool frameMissed = !mHadClientComposition && |
| mPreviousPresentFence != Fence::NO_FENCE && |
| (mPreviousPresentFence->getSignalTime() == |
| Fence::SIGNAL_TIME_PENDING); |
| ATRACE_INT("FrameMissed", static_cast<int>(frameMissed)); |
| if (mPropagateBackpressure && frameMissed) { |
| signalLayerUpdate(); |
| break; |
| } |
| |
| // Now that we're going to make it to the handleMessageTransaction() |
| // call below it's safe to call updateVrFlinger(), which will |
| // potentially trigger a display handoff. |
| updateVrFlinger(); |
| |
| bool refreshNeeded = handleMessageTransaction(); |
| refreshNeeded |= handleMessageInvalidate(); |
| refreshNeeded |= mRepaintEverything; |
| if (refreshNeeded) { |
| // Signal a refresh if a transaction modified the window state, |
| // a new buffer was latched, or if HWC has requested a full |
| // repaint |
| signalRefresh(); |
| } |
| break; |
| } |
| case MessageQueue::REFRESH: { |
| handleMessageRefresh(); |
| break; |
| } |
| } |
| } |
| |
| bool SurfaceFlinger::handleMessageTransaction() { |
| uint32_t transactionFlags = peekTransactionFlags(); |
| if (transactionFlags) { |
| handleTransaction(transactionFlags); |
| return true; |
| } |
| return false; |
| } |
| |
| bool SurfaceFlinger::handleMessageInvalidate() { |
| ATRACE_CALL(); |
| return handlePageFlip(); |
| } |
| |
| void SurfaceFlinger::handleMessageRefresh() { |
| ATRACE_CALL(); |
| |
| mRefreshPending = false; |
| |
| nsecs_t refreshStartTime = systemTime(SYSTEM_TIME_MONOTONIC); |
| |
| preComposition(refreshStartTime); |
| rebuildLayerStacks(); |
| setUpHWComposer(); |
| doDebugFlashRegions(); |
| doComposition(); |
| postComposition(refreshStartTime); |
| |
| mPreviousPresentFence = mHwc->getPresentFence(HWC_DISPLAY_PRIMARY); |
| |
| mHadClientComposition = false; |
| for (size_t displayId = 0; displayId < mDisplays.size(); ++displayId) { |
| const sp<DisplayDevice>& displayDevice = mDisplays[displayId]; |
| mHadClientComposition = mHadClientComposition || |
| mHwc->hasClientComposition(displayDevice->getHwcDisplayId()); |
| } |
| |
| mLayersWithQueuedFrames.clear(); |
| } |
| |
| void SurfaceFlinger::doDebugFlashRegions() |
| { |
| // is debugging enabled |
| if (CC_LIKELY(!mDebugRegion)) |
| return; |
| |
| const bool repaintEverything = mRepaintEverything; |
| for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) { |
| const sp<DisplayDevice>& hw(mDisplays[dpy]); |
| if (hw->isDisplayOn()) { |
| // transform the dirty region into this screen's coordinate space |
| const Region dirtyRegion(hw->getDirtyRegion(repaintEverything)); |
| if (!dirtyRegion.isEmpty()) { |
| // redraw the whole screen |
| doComposeSurfaces(hw, Region(hw->bounds())); |
| |
| // and draw the dirty region |
| const int32_t height = hw->getHeight(); |
| RenderEngine& engine(getRenderEngine()); |
| engine.fillRegionWithColor(dirtyRegion, height, 1, 0, 1, 1); |
| |
| hw->swapBuffers(getHwComposer()); |
| } |
| } |
| } |
| |
| postFramebuffer(); |
| |
| if (mDebugRegion > 1) { |
| usleep(mDebugRegion * 1000); |
| } |
| |
| for (size_t displayId = 0; displayId < mDisplays.size(); ++displayId) { |
| auto& displayDevice = mDisplays[displayId]; |
| if (!displayDevice->isDisplayOn()) { |
| continue; |
| } |
| |
| status_t result = displayDevice->prepareFrame(*mHwc); |
| ALOGE_IF(result != NO_ERROR, "prepareFrame for display %zd failed:" |
| " %d (%s)", displayId, result, strerror(-result)); |
| } |
| } |
| |
| void SurfaceFlinger::preComposition(nsecs_t refreshStartTime) |
| { |
| ATRACE_CALL(); |
| ALOGV("preComposition"); |
| |
| bool needExtraInvalidate = false; |
| mDrawingState.traverseInZOrder([&](Layer* layer) { |
| if (layer->onPreComposition(refreshStartTime)) { |
| needExtraInvalidate = true; |
| } |
| }); |
| |
| if (needExtraInvalidate) { |
| signalLayerUpdate(); |
| } |
| } |
| |
| void SurfaceFlinger::updateCompositorTiming( |
| nsecs_t vsyncPhase, nsecs_t vsyncInterval, nsecs_t compositeTime, |
| std::shared_ptr<FenceTime>& presentFenceTime) { |
| // Update queue of past composite+present times and determine the |
| // most recently known composite to present latency. |
| mCompositePresentTimes.push({compositeTime, presentFenceTime}); |
| nsecs_t compositeToPresentLatency = -1; |
| while (!mCompositePresentTimes.empty()) { |
| CompositePresentTime& cpt = mCompositePresentTimes.front(); |
| // Cached values should have been updated before calling this method, |
| // which helps avoid duplicate syscalls. |
| nsecs_t displayTime = cpt.display->getCachedSignalTime(); |
| if (displayTime == Fence::SIGNAL_TIME_PENDING) { |
| break; |
| } |
| compositeToPresentLatency = displayTime - cpt.composite; |
| mCompositePresentTimes.pop(); |
| } |
| |
| // Don't let mCompositePresentTimes grow unbounded, just in case. |
| while (mCompositePresentTimes.size() > 16) { |
| mCompositePresentTimes.pop(); |
| } |
| |
| setCompositorTimingSnapped( |
| vsyncPhase, vsyncInterval, compositeToPresentLatency); |
| } |
| |
| void SurfaceFlinger::setCompositorTimingSnapped(nsecs_t vsyncPhase, |
| nsecs_t vsyncInterval, nsecs_t compositeToPresentLatency) { |
| // Integer division and modulo round toward 0 not -inf, so we need to |
| // treat negative and positive offsets differently. |
| nsecs_t idealLatency = (sfVsyncPhaseOffsetNs > 0) ? |
| (vsyncInterval - (sfVsyncPhaseOffsetNs % vsyncInterval)) : |
| ((-sfVsyncPhaseOffsetNs) % vsyncInterval); |
| |
| // Just in case sfVsyncPhaseOffsetNs == -vsyncInterval. |
| if (idealLatency <= 0) { |
| idealLatency = vsyncInterval; |
| } |
| |
| // Snap the latency to a value that removes scheduling jitter from the |
| // composition and present times, which often have >1ms of jitter. |
| // Reducing jitter is important if an app attempts to extrapolate |
| // something (such as user input) to an accurate diasplay time. |
| // Snapping also allows an app to precisely calculate sfVsyncPhaseOffsetNs |
| // with (presentLatency % interval). |
| nsecs_t bias = vsyncInterval / 2; |
| int64_t extraVsyncs = |
| (compositeToPresentLatency - idealLatency + bias) / vsyncInterval; |
| nsecs_t snappedCompositeToPresentLatency = (extraVsyncs > 0) ? |
| idealLatency + (extraVsyncs * vsyncInterval) : idealLatency; |
| |
| std::lock_guard<std::mutex> lock(mCompositorTimingLock); |
| mCompositorTiming.deadline = vsyncPhase - idealLatency; |
| mCompositorTiming.interval = vsyncInterval; |
| mCompositorTiming.presentLatency = snappedCompositeToPresentLatency; |
| } |
| |
| void SurfaceFlinger::postComposition(nsecs_t refreshStartTime) |
| { |
| ATRACE_CALL(); |
| ALOGV("postComposition"); |
| |
| // Release any buffers which were replaced this frame |
| nsecs_t dequeueReadyTime = systemTime(); |
| for (auto& layer : mLayersWithQueuedFrames) { |
| layer->releasePendingBuffer(dequeueReadyTime); |
| } |
| |
| // |mStateLock| not needed as we are on the main thread |
| const sp<const DisplayDevice> hw(getDefaultDisplayDeviceLocked()); |
| |
| mGlCompositionDoneTimeline.updateSignalTimes(); |
| std::shared_ptr<FenceTime> glCompositionDoneFenceTime; |
| if (mHwc->hasClientComposition(HWC_DISPLAY_PRIMARY)) { |
| glCompositionDoneFenceTime = |
| std::make_shared<FenceTime>(hw->getClientTargetAcquireFence()); |
| mGlCompositionDoneTimeline.push(glCompositionDoneFenceTime); |
| } else { |
| glCompositionDoneFenceTime = FenceTime::NO_FENCE; |
| } |
| |
| mDisplayTimeline.updateSignalTimes(); |
| sp<Fence> presentFence = mHwc->getPresentFence(HWC_DISPLAY_PRIMARY); |
| auto presentFenceTime = std::make_shared<FenceTime>(presentFence); |
| mDisplayTimeline.push(presentFenceTime); |
| |
| nsecs_t vsyncPhase = mPrimaryDispSync.computeNextRefresh(0); |
| nsecs_t vsyncInterval = mPrimaryDispSync.getPeriod(); |
| |
| // We use the refreshStartTime which might be sampled a little later than |
| // when we started doing work for this frame, but that should be okay |
| // since updateCompositorTiming has snapping logic. |
| updateCompositorTiming( |
| vsyncPhase, vsyncInterval, refreshStartTime, presentFenceTime); |
| CompositorTiming compositorTiming; |
| { |
| std::lock_guard<std::mutex> lock(mCompositorTimingLock); |
| compositorTiming = mCompositorTiming; |
| } |
| |
| mDrawingState.traverseInZOrder([&](Layer* layer) { |
| bool frameLatched = layer->onPostComposition(glCompositionDoneFenceTime, |
| presentFenceTime, compositorTiming); |
| if (frameLatched) { |
| recordBufferingStats(layer->getName().string(), |
| layer->getOccupancyHistory(false)); |
| } |
| }); |
| |
| if (presentFenceTime->isValid()) { |
| if (mPrimaryDispSync.addPresentFence(presentFenceTime)) { |
| enableHardwareVsync(); |
| } else { |
| disableHardwareVsync(false); |
| } |
| } |
| |
| if (!hasSyncFramework) { |
| if (hw->isDisplayOn()) { |
| enableHardwareVsync(); |
| } |
| } |
| |
| if (mAnimCompositionPending) { |
| mAnimCompositionPending = false; |
| |
| if (presentFenceTime->isValid()) { |
| mAnimFrameTracker.setActualPresentFence( |
| std::move(presentFenceTime)); |
| } else { |
| // The HWC doesn't support present fences, so use the refresh |
| // timestamp instead. |
| nsecs_t presentTime = |
| mHwc->getRefreshTimestamp(HWC_DISPLAY_PRIMARY); |
| mAnimFrameTracker.setActualPresentTime(presentTime); |
| } |
| mAnimFrameTracker.advanceFrame(); |
| } |
| |
| if (hw->getPowerMode() == HWC_POWER_MODE_OFF) { |
| return; |
| } |
| |
| nsecs_t currentTime = systemTime(); |
| if (mHasPoweredOff) { |
| mHasPoweredOff = false; |
| } else { |
| nsecs_t elapsedTime = currentTime - mLastSwapTime; |
| size_t numPeriods = static_cast<size_t>(elapsedTime / vsyncInterval); |
| if (numPeriods < NUM_BUCKETS - 1) { |
| mFrameBuckets[numPeriods] += elapsedTime; |
| } else { |
| mFrameBuckets[NUM_BUCKETS - 1] += elapsedTime; |
| } |
| mTotalTime += elapsedTime; |
| } |
| mLastSwapTime = currentTime; |
| } |
| |
| void SurfaceFlinger::rebuildLayerStacks() { |
| ATRACE_CALL(); |
| ALOGV("rebuildLayerStacks"); |
| |
| // rebuild the visible layer list per screen |
| if (CC_UNLIKELY(mVisibleRegionsDirty)) { |
| ATRACE_CALL(); |
| mVisibleRegionsDirty = false; |
| invalidateHwcGeometry(); |
| |
| for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) { |
| Region opaqueRegion; |
| Region dirtyRegion; |
| Vector<sp<Layer>> layersSortedByZ; |
| Vector<sp<Layer>> layersNeedingFences; |
| const sp<DisplayDevice>& displayDevice(mDisplays[dpy]); |
| const Transform& tr(displayDevice->getTransform()); |
| const Rect bounds(displayDevice->getBounds()); |
| if (displayDevice->isDisplayOn()) { |
| computeVisibleRegions(displayDevice, dirtyRegion, opaqueRegion); |
| |
| mDrawingState.traverseInZOrder([&](Layer* layer) { |
| bool hwcLayerDestroyed = false; |
| if (layer->belongsToDisplay(displayDevice->getLayerStack(), |
| displayDevice->isPrimary())) { |
| Region drawRegion(tr.transform( |
| layer->visibleNonTransparentRegion)); |
| drawRegion.andSelf(bounds); |
| if (!drawRegion.isEmpty()) { |
| layersSortedByZ.add(layer); |
| } else { |
| // Clear out the HWC layer if this layer was |
| // previously visible, but no longer is |
| hwcLayerDestroyed = layer->destroyHwcLayer( |
| displayDevice->getHwcDisplayId()); |
| } |
| } else { |
| // WM changes displayDevice->layerStack upon sleep/awake. |
| // Here we make sure we delete the HWC layers even if |
| // WM changed their layer stack. |
| hwcLayerDestroyed = layer->destroyHwcLayer( |
| displayDevice->getHwcDisplayId()); |
| } |
| |
| // If a layer is not going to get a release fence because |
| // it is invisible, but it is also going to release its |
| // old buffer, add it to the list of layers needing |
| // fences. |
| if (hwcLayerDestroyed) { |
| auto found = std::find(mLayersWithQueuedFrames.cbegin(), |
| mLayersWithQueuedFrames.cend(), layer); |
| if (found != mLayersWithQueuedFrames.cend()) { |
| layersNeedingFences.add(layer); |
| } |
| } |
| }); |
| } |
| displayDevice->setVisibleLayersSortedByZ(layersSortedByZ); |
| displayDevice->setLayersNeedingFences(layersNeedingFences); |
| displayDevice->undefinedRegion.set(bounds); |
| displayDevice->undefinedRegion.subtractSelf( |
| tr.transform(opaqueRegion)); |
| displayDevice->dirtyRegion.orSelf(dirtyRegion); |
| } |
| } |
| } |
| |
| mat4 SurfaceFlinger::computeSaturationMatrix() const { |
| if (mSaturation == 1.0f) { |
| return mat4(); |
| } |
| |
| // Rec.709 luma coefficients |
| float3 luminance{0.213f, 0.715f, 0.072f}; |
| luminance *= 1.0f - mSaturation; |
| return mat4( |
| vec4{luminance.r + mSaturation, luminance.r, luminance.r, 0.0f}, |
| vec4{luminance.g, luminance.g + mSaturation, luminance.g, 0.0f}, |
| vec4{luminance.b, luminance.b, luminance.b + mSaturation, 0.0f}, |
| vec4{0.0f, 0.0f, 0.0f, 1.0f} |
| ); |
| } |
| |
| // pickColorMode translates a given dataspace into the best available color mode. |
| // Currently only support sRGB and Display-P3. |
| android_color_mode SurfaceFlinger::pickColorMode(android_dataspace dataSpace) const { |
| switch (dataSpace) { |
| // treat Unknown as regular SRGB buffer, since that's what the rest of the |
| // system expects. |
| case HAL_DATASPACE_UNKNOWN: |
| case HAL_DATASPACE_SRGB: |
| case HAL_DATASPACE_V0_SRGB: |
| return HAL_COLOR_MODE_SRGB; |
| break; |
| |
| case HAL_DATASPACE_DISPLAY_P3: |
| return HAL_COLOR_MODE_DISPLAY_P3; |
| break; |
| |
| default: |
| // TODO (courtneygo): Do we want to assert an error here? |
| ALOGE("No color mode mapping for %s (%#x)", dataspaceDetails(dataSpace).c_str(), |
| dataSpace); |
| return HAL_COLOR_MODE_SRGB; |
| break; |
| } |
| } |
| |
| android_dataspace SurfaceFlinger::bestTargetDataSpace( |
| android_dataspace a, android_dataspace b) const { |
| // Only support sRGB and Display-P3 right now. |
| if (a == HAL_DATASPACE_DISPLAY_P3 || b == HAL_DATASPACE_DISPLAY_P3) { |
| return HAL_DATASPACE_DISPLAY_P3; |
| } |
| if (a == HAL_DATASPACE_V0_SCRGB_LINEAR || b == HAL_DATASPACE_V0_SCRGB_LINEAR) { |
| return HAL_DATASPACE_DISPLAY_P3; |
| } |
| if (a == HAL_DATASPACE_V0_SCRGB || b == HAL_DATASPACE_V0_SCRGB) { |
| return HAL_DATASPACE_DISPLAY_P3; |
| } |
| |
| return HAL_DATASPACE_V0_SRGB; |
| } |
| |
| void SurfaceFlinger::setUpHWComposer() { |
| ATRACE_CALL(); |
| ALOGV("setUpHWComposer"); |
| |
| for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) { |
| bool dirty = !mDisplays[dpy]->getDirtyRegion(false).isEmpty(); |
| bool empty = mDisplays[dpy]->getVisibleLayersSortedByZ().size() == 0; |
| bool wasEmpty = !mDisplays[dpy]->lastCompositionHadVisibleLayers; |
| |
| // If nothing has changed (!dirty), don't recompose. |
| // If something changed, but we don't currently have any visible layers, |
| // and didn't when we last did a composition, then skip it this time. |
| // The second rule does two things: |
| // - When all layers are removed from a display, we'll emit one black |
| // frame, then nothing more until we get new layers. |
| // - When a display is created with a private layer stack, we won't |
| // emit any black frames until a layer is added to the layer stack. |
| bool mustRecompose = dirty && !(empty && wasEmpty); |
| |
| ALOGV_IF(mDisplays[dpy]->getDisplayType() == DisplayDevice::DISPLAY_VIRTUAL, |
| "dpy[%zu]: %s composition (%sdirty %sempty %swasEmpty)", dpy, |
| mustRecompose ? "doing" : "skipping", |
| dirty ? "+" : "-", |
| empty ? "+" : "-", |
| wasEmpty ? "+" : "-"); |
| |
| mDisplays[dpy]->beginFrame(mustRecompose); |
| |
| if (mustRecompose) { |
| mDisplays[dpy]->lastCompositionHadVisibleLayers = !empty; |
| } |
| } |
| |
| // build the h/w work list |
| if (CC_UNLIKELY(mGeometryInvalid)) { |
| mGeometryInvalid = false; |
| for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) { |
| sp<const DisplayDevice> displayDevice(mDisplays[dpy]); |
| const auto hwcId = displayDevice->getHwcDisplayId(); |
| if (hwcId >= 0) { |
| const Vector<sp<Layer>>& currentLayers( |
| displayDevice->getVisibleLayersSortedByZ()); |
| for (size_t i = 0; i < currentLayers.size(); i++) { |
| const auto& layer = currentLayers[i]; |
| if (!layer->hasHwcLayer(hwcId)) { |
| if (!layer->createHwcLayer(mHwc.get(), hwcId)) { |
| layer->forceClientComposition(hwcId); |
| continue; |
| } |
| } |
| |
| layer->setGeometry(displayDevice, i); |
| if (mDebugDisableHWC || mDebugRegion) { |
| layer->forceClientComposition(hwcId); |
| } |
| } |
| } |
| } |
| } |
| |
| |
| mat4 colorMatrix = mColorMatrix * computeSaturationMatrix() * mDaltonizer(); |
| |
| // Set the per-frame data |
| for (size_t displayId = 0; displayId < mDisplays.size(); ++displayId) { |
| auto& displayDevice = mDisplays[displayId]; |
| const auto hwcId = displayDevice->getHwcDisplayId(); |
| |
| if (hwcId < 0) { |
| continue; |
| } |
| if (colorMatrix != mPreviousColorMatrix) { |
| status_t result = mHwc->setColorTransform(hwcId, colorMatrix); |
| ALOGE_IF(result != NO_ERROR, "Failed to set color transform on " |
| "display %zd: %d", displayId, result); |
| } |
| for (auto& layer : displayDevice->getVisibleLayersSortedByZ()) { |
| layer->setPerFrameData(displayDevice); |
| } |
| |
| if (hasWideColorDisplay) { |
| android_color_mode newColorMode; |
| android_dataspace newDataSpace = HAL_DATASPACE_V0_SRGB; |
| |
| for (auto& layer : displayDevice->getVisibleLayersSortedByZ()) { |
| newDataSpace = bestTargetDataSpace(layer->getDataSpace(), newDataSpace); |
| ALOGV("layer: %s, dataspace: %s (%#x), newDataSpace: %s (%#x)", |
| layer->getName().string(), dataspaceDetails(layer->getDataSpace()).c_str(), |
| layer->getDataSpace(), dataspaceDetails(newDataSpace).c_str(), newDataSpace); |
| } |
| newColorMode = pickColorMode(newDataSpace); |
| |
| setActiveColorModeInternal(displayDevice, newColorMode); |
| } |
| } |
| |
| mPreviousColorMatrix = colorMatrix; |
| |
| for (size_t displayId = 0; displayId < mDisplays.size(); ++displayId) { |
| auto& displayDevice = mDisplays[displayId]; |
| if (!displayDevice->isDisplayOn()) { |
| continue; |
| } |
| |
| status_t result = displayDevice->prepareFrame(*mHwc); |
| ALOGE_IF(result != NO_ERROR, "prepareFrame for display %zd failed:" |
| " %d (%s)", displayId, result, strerror(-result)); |
| } |
| } |
| |
| void SurfaceFlinger::doComposition() { |
| ATRACE_CALL(); |
| ALOGV("doComposition"); |
| |
| const bool repaintEverything = android_atomic_and(0, &mRepaintEverything); |
| for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) { |
| const sp<DisplayDevice>& hw(mDisplays[dpy]); |
| if (hw->isDisplayOn()) { |
| // transform the dirty region into this screen's coordinate space |
| const Region dirtyRegion(hw->getDirtyRegion(repaintEverything)); |
| |
| // repaint the framebuffer (if needed) |
| doDisplayComposition(hw, dirtyRegion); |
| |
| hw->dirtyRegion.clear(); |
| hw->flip(hw->swapRegion); |
| hw->swapRegion.clear(); |
| } |
| } |
| postFramebuffer(); |
| } |
| |
| void SurfaceFlinger::postFramebuffer() |
| { |
| ATRACE_CALL(); |
| ALOGV("postFramebuffer"); |
| |
| const nsecs_t now = systemTime(); |
| mDebugInSwapBuffers = now; |
| |
| for (size_t displayId = 0; displayId < mDisplays.size(); ++displayId) { |
| auto& displayDevice = mDisplays[displayId]; |
| if (!displayDevice->isDisplayOn()) { |
| continue; |
| } |
| const auto hwcId = displayDevice->getHwcDisplayId(); |
| if (hwcId >= 0) { |
| mHwc->presentAndGetReleaseFences(hwcId); |
| } |
| displayDevice->onSwapBuffersCompleted(); |
| displayDevice->makeCurrent(mEGLDisplay, mEGLContext); |
| for (auto& layer : displayDevice->getVisibleLayersSortedByZ()) { |
| // The layer buffer from the previous frame (if any) is released |
| // by HWC only when the release fence from this frame (if any) is |
| // signaled. Always get the release fence from HWC first. |
| auto hwcLayer = layer->getHwcLayer(hwcId); |
| sp<Fence> releaseFence = mHwc->getLayerReleaseFence(hwcId, hwcLayer); |
| |
| // If the layer was client composited in the previous frame, we |
| // need to merge with the previous client target acquire fence. |
| // Since we do not track that, always merge with the current |
| // client target acquire fence when it is available, even though |
| // this is suboptimal. |
| if (layer->getCompositionType(hwcId) == HWC2::Composition::Client) { |
| releaseFence = Fence::merge("LayerRelease", releaseFence, |
| displayDevice->getClientTargetAcquireFence()); |
| } |
| |
| layer->onLayerDisplayed(releaseFence); |
| } |
| |
| // We've got a list of layers needing fences, that are disjoint with |
| // displayDevice->getVisibleLayersSortedByZ. The best we can do is to |
| // supply them with the present fence. |
| if (!displayDevice->getLayersNeedingFences().isEmpty()) { |
| sp<Fence> presentFence = mHwc->getPresentFence(hwcId); |
| for (auto& layer : displayDevice->getLayersNeedingFences()) { |
| layer->onLayerDisplayed(presentFence); |
| } |
| } |
| |
| if (hwcId >= 0) { |
| mHwc->clearReleaseFences(hwcId); |
| } |
| } |
| |
| mLastSwapBufferTime = systemTime() - now; |
| mDebugInSwapBuffers = 0; |
| |
| // |mStateLock| not needed as we are on the main thread |
| uint32_t flipCount = getDefaultDisplayDeviceLocked()->getPageFlipCount(); |
| if (flipCount % LOG_FRAME_STATS_PERIOD == 0) { |
| logFrameStats(); |
| } |
| } |
| |
| void SurfaceFlinger::handleTransaction(uint32_t transactionFlags) |
| { |
| ATRACE_CALL(); |
| |
| // here we keep a copy of the drawing state (that is the state that's |
| // going to be overwritten by handleTransactionLocked()) outside of |
| // mStateLock so that the side-effects of the State assignment |
| // don't happen with mStateLock held (which can cause deadlocks). |
| State drawingState(mDrawingState); |
| |
| Mutex::Autolock _l(mStateLock); |
| const nsecs_t now = systemTime(); |
| mDebugInTransaction = now; |
| |
| // Here we're guaranteed that some transaction flags are set |
| // so we can call handleTransactionLocked() unconditionally. |
| // We call getTransactionFlags(), which will also clear the flags, |
| // with mStateLock held to guarantee that mCurrentState won't change |
| // until the transaction is committed. |
| |
| transactionFlags = getTransactionFlags(eTransactionMask); |
| handleTransactionLocked(transactionFlags); |
| |
| mLastTransactionTime = systemTime() - now; |
| mDebugInTransaction = 0; |
| invalidateHwcGeometry(); |
| // here the transaction has been committed |
| } |
| |
| void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags) |
| { |
| // Notify all layers of available frames |
| mCurrentState.traverseInZOrder([](Layer* layer) { |
| layer->notifyAvailableFrames(); |
| }); |
| |
| /* |
| * Traversal of the children |
| * (perform the transaction for each of them if needed) |
| */ |
| |
| if (transactionFlags & eTraversalNeeded) { |
| mCurrentState.traverseInZOrder([&](Layer* layer) { |
| uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded); |
| if (!trFlags) return; |
| |
| const uint32_t flags = layer->doTransaction(0); |
| if (flags & Layer::eVisibleRegion) |
| mVisibleRegionsDirty = true; |
| }); |
| } |
| |
| /* |
| * Perform display own transactions if needed |
| */ |
| |
| if (transactionFlags & eDisplayTransactionNeeded) { |
| // here we take advantage of Vector's copy-on-write semantics to |
| // improve performance by skipping the transaction entirely when |
| // know that the lists are identical |
| const KeyedVector< wp<IBinder>, DisplayDeviceState>& curr(mCurrentState.displays); |
| const KeyedVector< wp<IBinder>, DisplayDeviceState>& draw(mDrawingState.displays); |
| if (!curr.isIdenticalTo(draw)) { |
| mVisibleRegionsDirty = true; |
| const size_t cc = curr.size(); |
| size_t dc = draw.size(); |
| |
| // find the displays that were removed |
| // (ie: in drawing state but not in current state) |
| // also handle displays that changed |
| // (ie: displays that are in both lists) |
| for (size_t i=0 ; i<dc ;) { |
| const ssize_t j = curr.indexOfKey(draw.keyAt(i)); |
| if (j < 0) { |
| // in drawing state but not in current state |
| if (!draw[i].isMainDisplay()) { |
| // Call makeCurrent() on the primary display so we can |
| // be sure that nothing associated with this display |
| // is current. |
| const sp<const DisplayDevice> defaultDisplay(getDefaultDisplayDeviceLocked()); |
| defaultDisplay->makeCurrent(mEGLDisplay, mEGLContext); |
| sp<DisplayDevice> hw(getDisplayDeviceLocked(draw.keyAt(i))); |
| if (hw != NULL) |
| hw->disconnect(getHwComposer()); |
| if (draw[i].type < DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES) |
| mEventThread->onHotplugReceived(draw[i].type, false); |
| mDisplays.removeItem(draw.keyAt(i)); |
| } else { |
| ALOGW("trying to remove the main display"); |
| } |
| } else { |
| // this display is in both lists. see if something changed. |
| const DisplayDeviceState& state(curr[j]); |
| const wp<IBinder>& display(curr.keyAt(j)); |
| const sp<IBinder> state_binder = IInterface::asBinder(state.surface); |
| const sp<IBinder> draw_binder = IInterface::asBinder(draw[i].surface); |
| if (state_binder != draw_binder) { |
| // changing the surface is like destroying and |
| // recreating the DisplayDevice, so we just remove it |
| // from the drawing state, so that it get re-added |
| // below. |
| sp<DisplayDevice> hw(getDisplayDeviceLocked(display)); |
| if (hw != NULL) |
| hw->disconnect(getHwComposer()); |
| mDisplays.removeItem(display); |
| mDrawingState.displays.removeItemsAt(i); |
| dc--; |
| // at this point we must loop to the next item |
| continue; |
| } |
| |
| const sp<DisplayDevice> disp(getDisplayDeviceLocked(display)); |
| if (disp != NULL) { |
| if (state.layerStack != draw[i].layerStack) { |
| disp->setLayerStack(state.layerStack); |
| } |
| if ((state.orientation != draw[i].orientation) |
| || (state.viewport != draw[i].viewport) |
| || (state.frame != draw[i].frame)) |
| { |
| disp->setProjection(state.orientation, |
| state.viewport, state.frame); |
| } |
| if (state.width != draw[i].width || state.height != draw[i].height) { |
| disp->setDisplaySize(state.width, state.height); |
| } |
| } |
| } |
| ++i; |
| } |
| |
| // find displays that were added |
| // (ie: in current state but not in drawing state) |
| for (size_t i=0 ; i<cc ; i++) { |
| if (draw.indexOfKey(curr.keyAt(i)) < 0) { |
| const DisplayDeviceState& state(curr[i]); |
| |
| sp<DisplaySurface> dispSurface; |
| sp<IGraphicBufferProducer> producer; |
| sp<IGraphicBufferProducer> bqProducer; |
| sp<IGraphicBufferConsumer> bqConsumer; |
| BufferQueue::createBufferQueue(&bqProducer, &bqConsumer); |
| |
| int32_t hwcId = -1; |
| if (state.isVirtualDisplay()) { |
| // Virtual displays without a surface are dormant: |
| // they have external state (layer stack, projection, |
| // etc.) but no internal state (i.e. a DisplayDevice). |
| if (state.surface != NULL) { |
| |
| // Allow VR composer to use virtual displays. |
| if (mUseHwcVirtualDisplays || mHwc->isUsingVrComposer()) { |
| int width = 0; |
| int status = state.surface->query( |
| NATIVE_WINDOW_WIDTH, &width); |
| ALOGE_IF(status != NO_ERROR, |
| "Unable to query width (%d)", status); |
| int height = 0; |
| status = state.surface->query( |
| NATIVE_WINDOW_HEIGHT, &height); |
| ALOGE_IF(status != NO_ERROR, |
| "Unable to query height (%d)", status); |
| int intFormat = 0; |
| status = state.surface->query( |
| NATIVE_WINDOW_FORMAT, &intFormat); |
| ALOGE_IF(status != NO_ERROR, |
| "Unable to query format (%d)", status); |
| auto format = static_cast<android_pixel_format_t>( |
| intFormat); |
| |
| mHwc->allocateVirtualDisplay(width, height, &format, |
| &hwcId); |
| } |
| |
| // TODO: Plumb requested format back up to consumer |
| |
| sp<VirtualDisplaySurface> vds = |
| new VirtualDisplaySurface(*mHwc, |
| hwcId, state.surface, bqProducer, |
| bqConsumer, state.displayName); |
| |
| dispSurface = vds; |
| producer = vds; |
| } |
| } else { |
| ALOGE_IF(state.surface!=NULL, |
| "adding a supported display, but rendering " |
| "surface is provided (%p), ignoring it", |
| state.surface.get()); |
| |
| hwcId = state.type; |
| dispSurface = new FramebufferSurface(*mHwc, hwcId, bqConsumer); |
| producer = bqProducer; |
| } |
| |
| const wp<IBinder>& display(curr.keyAt(i)); |
| if (dispSurface != NULL) { |
| sp<DisplayDevice> hw = |
| new DisplayDevice(this, state.type, hwcId, state.isSecure, display, |
| dispSurface, producer, |
| mRenderEngine->getEGLConfig(), |
| hasWideColorDisplay); |
| hw->setLayerStack(state.layerStack); |
| hw->setProjection(state.orientation, |
| state.viewport, state.frame); |
| hw->setDisplayName(state.displayName); |
| mDisplays.add(display, hw); |
| if (!state.isVirtualDisplay()) { |
| mEventThread->onHotplugReceived(state.type, true); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| if (transactionFlags & (eTraversalNeeded|eDisplayTransactionNeeded)) { |
| // The transform hint might have changed for some layers |
| // (either because a display has changed, or because a layer |
| // as changed). |
| // |
| // Walk through all the layers in currentLayers, |
| // and update their transform hint. |
| // |
| // If a layer is visible only on a single display, then that |
| // display is used to calculate the hint, otherwise we use the |
| // default display. |
| // |
| // NOTE: we do this here, rather than in rebuildLayerStacks() so that |
| // the hint is set before we acquire a buffer from the surface texture. |
| // |
| // NOTE: layer transactions have taken place already, so we use their |
| // drawing state. However, SurfaceFlinger's own transaction has not |
| // happened yet, so we must use the current state layer list |
| // (soon to become the drawing state list). |
| // |
| sp<const DisplayDevice> disp; |
| uint32_t currentlayerStack = 0; |
| bool first = true; |
| mCurrentState.traverseInZOrder([&](Layer* layer) { |
| // NOTE: we rely on the fact that layers are sorted by |
| // layerStack first (so we don't have to traverse the list |
| // of displays for every layer). |
| uint32_t layerStack = layer->getLayerStack(); |
| if (first || currentlayerStack != layerStack) { |
| currentlayerStack = layerStack; |
| // figure out if this layerstack is mirrored |
| // (more than one display) if so, pick the default display, |
| // if not, pick the only display it's on. |
| disp.clear(); |
| for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) { |
| sp<const DisplayDevice> hw(mDisplays[dpy]); |
| if (layer->belongsToDisplay(hw->getLayerStack(), hw->isPrimary())) { |
| if (disp == NULL) { |
| disp = std::move(hw); |
| } else { |
| disp = NULL; |
| break; |
| } |
| } |
| } |
| } |
| if (disp == NULL) { |
| // NOTE: TEMPORARY FIX ONLY. Real fix should cause layers to |
| // redraw after transform hint changes. See bug 8508397. |
| |
| // could be null when this layer is using a layerStack |
| // that is not visible on any display. Also can occur at |
| // screen off/on times. |
| disp = getDefaultDisplayDeviceLocked(); |
| } |
| layer->updateTransformHint(disp); |
| |
| first = false; |
| }); |
| } |
| |
| |
| /* |
| * Perform our own transaction if needed |
| */ |
| |
| if (mLayersAdded) { |
| mLayersAdded = false; |
| // Layers have been added. |
| mVisibleRegionsDirty = true; |
| } |
| |
| // some layers might have been removed, so |
| // we need to update the regions they're exposing. |
| if (mLayersRemoved) { |
| mLayersRemoved = false; |
| mVisibleRegionsDirty = true; |
| mDrawingState.traverseInZOrder([&](Layer* layer) { |
| if (mLayersPendingRemoval.indexOf(layer) >= 0) { |
| // this layer is not visible anymore |
| // TODO: we could traverse the tree from front to back and |
| // compute the actual visible region |
| // TODO: we could cache the transformed region |
| Region visibleReg; |
| visibleReg.set(layer->computeScreenBounds()); |
| invalidateLayerStack(layer, visibleReg); |
| } |
| }); |
| } |
| |
| commitTransaction(); |
| |
| updateCursorAsync(); |
| } |
| |
| void SurfaceFlinger::updateCursorAsync() |
| { |
| for (size_t displayId = 0; displayId < mDisplays.size(); ++displayId) { |
| auto& displayDevice = mDisplays[displayId]; |
| if (displayDevice->getHwcDisplayId() < 0) { |
| continue; |
| } |
| |
| for (auto& layer : displayDevice->getVisibleLayersSortedByZ()) { |
| layer->updateCursorPosition(displayDevice); |
| } |
| } |
| } |
| |
| void SurfaceFlinger::commitTransaction() |
| { |
| if (!mLayersPendingRemoval.isEmpty()) { |
| // Notify removed layers now that they can't be drawn from |
| for (const auto& l : mLayersPendingRemoval) { |
| recordBufferingStats(l->getName().string(), |
| l->getOccupancyHistory(true)); |
| l->onRemoved(); |
| } |
| mLayersPendingRemoval.clear(); |
| } |
| |
| // If this transaction is part of a window animation then the next frame |
| // we composite should be considered an animation as well. |
| mAnimCompositionPending = mAnimTransactionPending; |
| |
| mDrawingState = mCurrentState; |
| mDrawingState.traverseInZOrder([](Layer* layer) { |
| layer->commitChildList(); |
| }); |
| mTransactionPending = false; |
| mAnimTransactionPending = false; |
| mTransactionCV.broadcast(); |
| } |
| |
| void SurfaceFlinger::computeVisibleRegions(const sp<const DisplayDevice>& displayDevice, |
| Region& outDirtyRegion, Region& outOpaqueRegion) |
| { |
| ATRACE_CALL(); |
| ALOGV("computeVisibleRegions"); |
| |
| Region aboveOpaqueLayers; |
| Region aboveCoveredLayers; |
| Region dirty; |
| |
| outDirtyRegion.clear(); |
| |
| mDrawingState.traverseInReverseZOrder([&](Layer* layer) { |
| // start with the whole surface at its current location |
| const Layer::State& s(layer->getDrawingState()); |
| |
| // only consider the layers on the given layer stack |
| if (!layer->belongsToDisplay(displayDevice->getLayerStack(), displayDevice->isPrimary())) |
| return; |
| |
| /* |
| * opaqueRegion: area of a surface that is fully opaque. |
| */ |
| Region opaqueRegion; |
| |
| /* |
| * visibleRegion: area of a surface that is visible on screen |
| * and not fully transparent. This is essentially the layer's |
| * footprint minus the opaque regions above it. |
| * Areas covered by a translucent surface are considered visible. |
| */ |
| Region visibleRegion; |
| |
| /* |
| * coveredRegion: area of a surface that is covered by all |
| * visible regions above it (which includes the translucent areas). |
| */ |
| Region coveredRegion; |
| |
| /* |
| * transparentRegion: area of a surface that is hinted to be completely |
| * transparent. This is only used to tell when the layer has no visible |
| * non-transparent regions and can be removed from the layer list. It |
| * does not affect the visibleRegion of this layer or any layers |
| * beneath it. The hint may not be correct if apps don't respect the |
| * SurfaceView restrictions (which, sadly, some don't). |
| */ |
| Region transparentRegion; |
| |
| |
| // handle hidden surfaces by setting the visible region to empty |
| if (CC_LIKELY(layer->isVisible())) { |
| const bool translucent = !layer->isOpaque(s); |
| Rect bounds(layer->computeScreenBounds()); |
| visibleRegion.set(bounds); |
| Transform tr = layer->getTransform(); |
| if (!visibleRegion.isEmpty()) { |
| // Remove the transparent area from the visible region |
| if (translucent) { |
| if (tr.preserveRects()) { |
| // transform the transparent region |
| transparentRegion = tr.transform(s.activeTransparentRegion); |
| } else { |
| // transformation too complex, can't do the |
| // transparent region optimization. |
| transparentRegion.clear(); |
| } |
| } |
| |
| // compute the opaque region |
| const int32_t layerOrientation = tr.getOrientation(); |
| if (s.alpha == 1.0f && !translucent && |
| ((layerOrientation & Transform::ROT_INVALID) == false)) { |
| // the opaque region is the layer's footprint |
| opaqueRegion = visibleRegion; |
| } |
| } |
| } |
| |
| // Clip the covered region to the visible region |
| coveredRegion = aboveCoveredLayers.intersect(visibleRegion); |
| |
| // Update aboveCoveredLayers for next (lower) layer |
| aboveCoveredLayers.orSelf(visibleRegion); |
| |
| // subtract the opaque region covered by the layers above us |
| visibleRegion.subtractSelf(aboveOpaqueLayers); |
| |
| // compute this layer's dirty region |
| if (layer->contentDirty) { |
| // we need to invalidate the whole region |
| dirty = visibleRegion; |
| // as well, as the old visible region |
| dirty.orSelf(layer->visibleRegion); |
| layer->contentDirty = false; |
| } else { |
| /* compute the exposed region: |
| * the exposed region consists of two components: |
| * 1) what's VISIBLE now and was COVERED before |
| * 2) what's EXPOSED now less what was EXPOSED before |
| * |
| * note that (1) is conservative, we start with the whole |
| * visible region but only keep what used to be covered by |
| * something -- which mean it may have been exposed. |
| * |
| * (2) handles areas that were not covered by anything but got |
| * exposed because of a resize. |
| */ |
| const Region newExposed = visibleRegion - coveredRegion; |
| const Region oldVisibleRegion = layer->visibleRegion; |
| const Region oldCoveredRegion = layer->coveredRegion; |
| const Region oldExposed = oldVisibleRegion - oldCoveredRegion; |
| dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed); |
| } |
| dirty.subtractSelf(aboveOpaqueLayers); |
| |
| // accumulate to the screen dirty region |
| outDirtyRegion.orSelf(dirty); |
| |
| // Update aboveOpaqueLayers for next (lower) layer |
| aboveOpaqueLayers.orSelf(opaqueRegion); |
| |
| // Store the visible region in screen space |
| layer->setVisibleRegion(visibleRegion); |
| layer->setCoveredRegion(coveredRegion); |
| layer->setVisibleNonTransparentRegion( |
| visibleRegion.subtract(transparentRegion)); |
| }); |
| |
| outOpaqueRegion = aboveOpaqueLayers; |
| } |
| |
| void SurfaceFlinger::invalidateLayerStack(const sp<const Layer>& layer, const Region& dirty) { |
| for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) { |
| const sp<DisplayDevice>& hw(mDisplays[dpy]); |
| if (layer->belongsToDisplay(hw->getLayerStack(), hw->isPrimary())) { |
| hw->dirtyRegion.orSelf(dirty); |
| } |
| } |
| } |
| |
| bool SurfaceFlinger::handlePageFlip() |
| { |
| ALOGV("handlePageFlip"); |
| |
| nsecs_t latchTime = systemTime(); |
| |
| bool visibleRegions = false; |
| bool frameQueued = false; |
| bool newDataLatched = false; |
| |
| // Store the set of layers that need updates. This set must not change as |
| // buffers are being latched, as this could result in a deadlock. |
| // Example: Two producers share the same command stream and: |
| // 1.) Layer 0 is latched |
| // 2.) Layer 0 gets a new frame |
| // 2.) Layer 1 gets a new frame |
| // 3.) Layer 1 is latched. |
| // Display is now waiting on Layer 1's frame, which is behind layer 0's |
| // second frame. But layer 0's second frame could be waiting on display. |
| mDrawingState.traverseInZOrder([&](Layer* layer) { |
| if (layer->hasQueuedFrame()) { |
| frameQueued = true; |
| if (layer->shouldPresentNow(mPrimaryDispSync)) { |
| mLayersWithQueuedFrames.push_back(layer); |
| } else { |
| layer->useEmptyDamage(); |
| } |
| } else { |
| layer->useEmptyDamage(); |
| } |
| }); |
| |
| for (auto& layer : mLayersWithQueuedFrames) { |
| const Region dirty(layer->latchBuffer(visibleRegions, latchTime)); |
| layer->useSurfaceDamage(); |
| invalidateLayerStack(layer, dirty); |
| if (layer->isBufferLatched()) { |
| newDataLatched = true; |
| } |
| } |
| |
| mVisibleRegionsDirty |= visibleRegions; |
| |
| // If we will need to wake up at some time in the future to deal with a |
| // queued frame that shouldn't be displayed during this vsync period, wake |
| // up during the next vsync period to check again. |
| if (frameQueued && (mLayersWithQueuedFrames.empty() || !newDataLatched)) { |
| signalLayerUpdate(); |
| } |
| |
| // Only continue with the refresh if there is actually new work to do |
| return !mLayersWithQueuedFrames.empty() && newDataLatched; |
| } |
| |
| void SurfaceFlinger::invalidateHwcGeometry() |
| { |
| mGeometryInvalid = true; |
| } |
| |
| |
| void SurfaceFlinger::doDisplayComposition( |
| const sp<const DisplayDevice>& displayDevice, |
| const Region& inDirtyRegion) |
| { |
| // We only need to actually compose the display if: |
| // 1) It is being handled by hardware composer, which may need this to |
| // keep its virtual display state machine in sync, or |
| // 2) There is work to be done (the dirty region isn't empty) |
| bool isHwcDisplay = displayDevice->getHwcDisplayId() >= 0; |
| if (!isHwcDisplay && inDirtyRegion.isEmpty()) { |
| ALOGV("Skipping display composition"); |
| return; |
| } |
| |
| ALOGV("doDisplayComposition"); |
| |
| Region dirtyRegion(inDirtyRegion); |
| |
| // compute the invalid region |
| displayDevice->swapRegion.orSelf(dirtyRegion); |
| |
| uint32_t flags = displayDevice->getFlags(); |
| if (flags & DisplayDevice::SWAP_RECTANGLE) { |
| // we can redraw only what's dirty, but since SWAP_RECTANGLE only |
| // takes a rectangle, we must make sure to update that whole |
| // rectangle in that case |
| dirtyRegion.set(displayDevice->swapRegion.bounds()); |
| } else { |
| if (flags & DisplayDevice::PARTIAL_UPDATES) { |
| // We need to redraw the rectangle that will be updated |
| // (pushed to the framebuffer). |
| // This is needed because PARTIAL_UPDATES only takes one |
| // rectangle instead of a region (see DisplayDevice::flip()) |
| dirtyRegion.set(displayDevice->swapRegion.bounds()); |
| } else { |
| // we need to redraw everything (the whole screen) |
| dirtyRegion.set(displayDevice->bounds()); |
| displayDevice->swapRegion = dirtyRegion; |
| } |
| } |
| |
| if (!doComposeSurfaces(displayDevice, dirtyRegion)) return; |
| |
| // update the swap region and clear the dirty region |
| displayDevice->swapRegion.orSelf(dirtyRegion); |
| |
| // swap buffers (presentation) |
| displayDevice->swapBuffers(getHwComposer()); |
| } |
| |
| bool SurfaceFlinger::doComposeSurfaces( |
| const sp<const DisplayDevice>& displayDevice, const Region& dirty) |
| { |
| ALOGV("doComposeSurfaces"); |
| |
| const auto hwcId = displayDevice->getHwcDisplayId(); |
| |
| mat4 oldColorMatrix; |
| const bool applyColorMatrix = !mHwc->hasDeviceComposition(hwcId) && |
| !mHwc->hasCapability(HWC2::Capability::SkipClientColorTransform); |
| if (applyColorMatrix) { |
| mat4 colorMatrix = mColorMatrix * mDaltonizer(); |
| oldColorMatrix = getRenderEngine().setupColorTransform(colorMatrix); |
| } |
| |
| bool hasClientComposition = mHwc->hasClientComposition(hwcId); |
| if (hasClientComposition) { |
| ALOGV("hasClientComposition"); |
| |
| #ifdef USE_HWC2 |
| mRenderEngine->setWideColor(displayDevice->getWideColorSupport()); |
| mRenderEngine->setColorMode(displayDevice->getActiveColorMode()); |
| #endif |
| if (!displayDevice->makeCurrent(mEGLDisplay, mEGLContext)) { |
| ALOGW("DisplayDevice::makeCurrent failed. Aborting surface composition for display %s", |
| displayDevice->getDisplayName().string()); |
| eglMakeCurrent(mEGLDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT); |
| |
| // |mStateLock| not needed as we are on the main thread |
| if(!getDefaultDisplayDeviceLocked()->makeCurrent(mEGLDisplay, mEGLContext)) { |
| ALOGE("DisplayDevice::makeCurrent on default display failed. Aborting."); |
| } |
| return false; |
| } |
| |
| // Never touch the framebuffer if we don't have any framebuffer layers |
| const bool hasDeviceComposition = mHwc->hasDeviceComposition(hwcId); |
| if (hasDeviceComposition) { |
| // when using overlays, we assume a fully transparent framebuffer |
| // NOTE: we could reduce how much we need to clear, for instance |
| // remove where there are opaque FB layers. however, on some |
| // GPUs doing a "clean slate" clear might be more efficient. |
| // We'll revisit later if needed. |
| mRenderEngine->clearWithColor(0, 0, 0, 0); |
| } else { |
| // we start with the whole screen area |
| const Region bounds(displayDevice->getBounds()); |
| |
| // we remove the scissor part |
| // we're left with the letterbox region |
| // (common case is that letterbox ends-up being empty) |
| const Region letterbox(bounds.subtract(displayDevice->getScissor())); |
| |
| // compute the area to clear |
| Region region(displayDevice->undefinedRegion.merge(letterbox)); |
| |
| // but limit it to the dirty region |
| region.andSelf(dirty); |
| |
| // screen is already cleared here |
| if (!region.isEmpty()) { |
| // can happen with SurfaceView |
| drawWormhole(displayDevice, region); |
| } |
| } |
| |
| if (displayDevice->getDisplayType() != DisplayDevice::DISPLAY_PRIMARY) { |
| // just to be on the safe side, we don't set the |
| // scissor on the main display. It should never be needed |
| // anyways (though in theory it could since the API allows it). |
| const Rect& bounds(displayDevice->getBounds()); |
| const Rect& scissor(displayDevice->getScissor()); |
| if (scissor != bounds) { |
| // scissor doesn't match the screen's dimensions, so we |
| // need to clear everything outside of it and enable |
| // the GL scissor so we don't draw anything where we shouldn't |
| |
| // enable scissor for this frame |
| const uint32_t height = displayDevice->getHeight(); |
| mRenderEngine->setScissor(scissor.left, height - scissor.bottom, |
| scissor.getWidth(), scissor.getHeight()); |
| } |
| } |
| } |
| |
| /* |
| * and then, render the layers targeted at the framebuffer |
| */ |
| |
| ALOGV("Rendering client layers"); |
| const Transform& displayTransform = displayDevice->getTransform(); |
| if (hwcId >= 0) { |
| // we're using h/w composer |
| bool firstLayer = true; |
| for (auto& layer : displayDevice->getVisibleLayersSortedByZ()) { |
| const Region clip(dirty.intersect( |
| displayTransform.transform(layer->visibleRegion))); |
| ALOGV("Layer: %s", layer->getName().string()); |
| ALOGV(" Composition type: %s", |
| to_string(layer->getCompositionType(hwcId)).c_str()); |
| if (!clip.isEmpty()) { |
| switch (layer->getCompositionType(hwcId)) { |
| case HWC2::Composition::Cursor: |
| case HWC2::Composition::Device: |
| case HWC2::Composition::Sideband: |
| case HWC2::Composition::SolidColor: { |
| const Layer::State& state(layer->getDrawingState()); |
| if (layer->getClearClientTarget(hwcId) && !firstLayer && |
| layer->isOpaque(state) && (state.alpha == 1.0f) |
| && hasClientComposition) { |
| // never clear the very first layer since we're |
| // guaranteed the FB is already cleared |
| layer->clearWithOpenGL(displayDevice); |
| } |
| break; |
| } |
| case HWC2::Composition::Client: { |
| layer->draw(displayDevice, clip); |
| break; |
| } |
| default: |
| break; |
| } |
| } else { |
| ALOGV(" Skipping for empty clip"); |
| } |
| firstLayer = false; |
| } |
| } else { |
| // we're not using h/w composer |
| for (auto& layer : displayDevice->getVisibleLayersSortedByZ()) { |
| const Region clip(dirty.intersect( |
| displayTransform.transform(layer->visibleRegion))); |
| if (!clip.isEmpty()) { |
| layer->draw(displayDevice, clip); |
| } |
| } |
| } |
| |
| if (applyColorMatrix) { |
| getRenderEngine().setupColorTransform(oldColorMatrix); |
| } |
| |
| // disable scissor at the end of the frame |
| mRenderEngine->disableScissor(); |
| return true; |
| } |
| |
| void SurfaceFlinger::drawWormhole(const sp<const DisplayDevice>& displayDevice, const Region& region) const { |
| const int32_t height = displayDevice->getHeight(); |
| RenderEngine& engine(getRenderEngine()); |
| engine.fillRegionWithColor(region, height, 0, 0, 0, 0); |
| } |
| |
| status_t SurfaceFlinger::addClientLayer(const sp<Client>& client, |
| const sp<IBinder>& handle, |
| const sp<IGraphicBufferProducer>& gbc, |
| const sp<Layer>& lbc, |
| const sp<Layer>& parent) |
| { |
| // add this layer to the current state list |
| { |
| Mutex::Autolock _l(mStateLock); |
| if (mNumLayers >= MAX_LAYERS) { |
| ALOGE("AddClientLayer failed, mNumLayers (%zu) >= MAX_LAYERS (%zu)", mNumLayers, |
| MAX_LAYERS); |
| return NO_MEMORY; |
| } |
| if (parent == nullptr) { |
| mCurrentState.layersSortedByZ.add(lbc); |
| } else { |
| if (mCurrentState.layersSortedByZ.indexOf(parent) < 0) { |
| ALOGE("addClientLayer called with a removed parent"); |
| return NAME_NOT_FOUND; |
| } |
| parent->addChild(lbc); |
| } |
| |
| mGraphicBufferProducerList.add(IInterface::asBinder(gbc)); |
| mLayersAdded = true; |
| mNumLayers++; |
| } |
| |
| // attach this layer to the client |
| client->attachLayer(handle, lbc); |
| |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::removeLayer(const sp<Layer>& layer, bool topLevelOnly) { |
| Mutex::Autolock _l(mStateLock); |
| |
| const auto& p = layer->getParent(); |
| ssize_t index; |
| if (p != nullptr) { |
| if (topLevelOnly) { |
| return NO_ERROR; |
| } |
| |
| sp<Layer> ancestor = p; |
| while (ancestor->getParent() != nullptr) { |
| ancestor = ancestor->getParent(); |
| } |
| if (mCurrentState.layersSortedByZ.indexOf(ancestor) < 0) { |
| ALOGE("removeLayer called with a layer whose parent has been removed"); |
| return NAME_NOT_FOUND; |
| } |
| |
| index = p->removeChild(layer); |
| } else { |
| index = mCurrentState.layersSortedByZ.remove(layer); |
| } |
| |
| // As a matter of normal operation, the LayerCleaner will produce a second |
| // attempt to remove the surface. The Layer will be kept alive in mDrawingState |
| // so we will succeed in promoting it, but it's already been removed |
| // from mCurrentState. As long as we can find it in mDrawingState we have no problem |
| // otherwise something has gone wrong and we are leaking the layer. |
| if (index < 0 && mDrawingState.layersSortedByZ.indexOf(layer) < 0) { |
| ALOGE("Failed to find layer (%s) in layer parent (%s).", |
| layer->getName().string(), |
| (p != nullptr) ? p->getName().string() : "no-parent"); |
| return BAD_VALUE; |
| } else if (index < 0) { |
| return NO_ERROR; |
| } |
| |
| layer->onRemovedFromCurrentState(); |
| mLayersPendingRemoval.add(layer); |
| mLayersRemoved = true; |
| mNumLayers -= 1 + layer->getChildrenCount(); |
| setTransactionFlags(eTransactionNeeded); |
| return NO_ERROR; |
| } |
| |
| uint32_t SurfaceFlinger::peekTransactionFlags() { |
| return android_atomic_release_load(&mTransactionFlags); |
| } |
| |
| uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags) { |
| return android_atomic_and(~flags, &mTransactionFlags) & flags; |
| } |
| |
| uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags) { |
| uint32_t old = android_atomic_or(flags, &mTransactionFlags); |
| if ((old & flags)==0) { // wake the server up |
| signalTransaction(); |
| } |
| return old; |
| } |
| |
| void SurfaceFlinger::setTransactionState( |
| const Vector<ComposerState>& state, |
| const Vector<DisplayState>& displays, |
| uint32_t flags) |
| { |
| ATRACE_CALL(); |
| Mutex::Autolock _l(mStateLock); |
| uint32_t transactionFlags = 0; |
| |
| if (flags & eAnimation) { |
| // For window updates that are part of an animation we must wait for |
| // previous animation "frames" to be handled. |
| while (mAnimTransactionPending) { |
| status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5)); |
| if (CC_UNLIKELY(err != NO_ERROR)) { |
| // just in case something goes wrong in SF, return to the |
| // caller after a few seconds. |
| ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out " |
| "waiting for previous animation frame"); |
| mAnimTransactionPending = false; |
| break; |
| } |
| } |
| } |
| |
| size_t count = displays.size(); |
| for (size_t i=0 ; i<count ; i++) { |
| const DisplayState& s(displays[i]); |
| transactionFlags |= setDisplayStateLocked(s); |
| } |
| |
| count = state.size(); |
| for (size_t i=0 ; i<count ; i++) { |
| const ComposerState& s(state[i]); |
| // Here we need to check that the interface we're given is indeed |
| // one of our own. A malicious client could give us a NULL |
| // IInterface, or one of its own or even one of our own but a |
| // different type. All these situations would cause us to crash. |
| // |
| // NOTE: it would be better to use RTTI as we could directly check |
| // that we have a Client*. however, RTTI is disabled in Android. |
| if (s.client != NULL) { |
| sp<IBinder> binder = IInterface::asBinder(s.client); |
| if (binder != NULL) { |
| if (binder->queryLocalInterface(ISurfaceComposerClient::descriptor) != NULL) { |
| sp<Client> client( static_cast<Client *>(s.client.get()) ); |
| transactionFlags |= setClientStateLocked(client, s.state); |
| } |
| } |
| } |
| } |
| |
| // If a synchronous transaction is explicitly requested without any changes, force a transaction |
| // anyway. This can be used as a flush mechanism for previous async transactions. |
| // Empty animation transaction can be used to simulate back-pressure, so also force a |
| // transaction for empty animation transactions. |
| if (transactionFlags == 0 && |
| ((flags & eSynchronous) || (flags & eAnimation))) { |
| transactionFlags = eTransactionNeeded; |
| } |
| |
| if (transactionFlags) { |
| if (mInterceptor.isEnabled()) { |
| mInterceptor.saveTransaction(state, mCurrentState.displays, displays, flags); |
| } |
| |
| // this triggers the transaction |
| setTransactionFlags(transactionFlags); |
| |
| // if this is a synchronous transaction, wait for it to take effect |
| // before returning. |
| if (flags & eSynchronous) { |
| mTransactionPending = true; |
| } |
| if (flags & eAnimation) { |
| mAnimTransactionPending = true; |
| } |
| while (mTransactionPending) { |
| status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5)); |
| if (CC_UNLIKELY(err != NO_ERROR)) { |
| // just in case something goes wrong in SF, return to the |
| // called after a few seconds. |
| ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out!"); |
| mTransactionPending = false; |
| break; |
| } |
| } |
| } |
| } |
| |
| uint32_t SurfaceFlinger::setDisplayStateLocked(const DisplayState& s) |
| { |
| ssize_t dpyIdx = mCurrentState.displays.indexOfKey(s.token); |
| if (dpyIdx < 0) |
| return 0; |
| |
| uint32_t flags = 0; |
| DisplayDeviceState& disp(mCurrentState.displays.editValueAt(dpyIdx)); |
| if (disp.isValid()) { |
| const uint32_t what = s.what; |
| if (what & DisplayState::eSurfaceChanged) { |
| if (IInterface::asBinder(disp.surface) != IInterface::asBinder(s.surface)) { |
| disp.surface = s.surface; |
| flags |= eDisplayTransactionNeeded; |
| } |
| } |
| if (what & DisplayState::eLayerStackChanged) { |
| if (disp.layerStack != s.layerStack) { |
| disp.layerStack = s.layerStack; |
| flags |= eDisplayTransactionNeeded; |
| } |
| } |
| if (what & DisplayState::eDisplayProjectionChanged) { |
| if (disp.orientation != s.orientation) { |
| disp.orientation = s.orientation; |
| flags |= eDisplayTransactionNeeded; |
| } |
| if (disp.frame != s.frame) { |
| disp.frame = s.frame; |
| flags |= eDisplayTransactionNeeded; |
| } |
| if (disp.viewport != s.viewport) { |
| disp.viewport = s.viewport; |
| flags |= eDisplayTransactionNeeded; |
| } |
| } |
| if (what & DisplayState::eDisplaySizeChanged) { |
| if (disp.width != s.width) { |
| disp.width = s.width; |
| flags |= eDisplayTransactionNeeded; |
| } |
| if (disp.height != s.height) { |
| disp.height = s.height; |
| flags |= eDisplayTransactionNeeded; |
| } |
| } |
| } |
| return flags; |
| } |
| |
| uint32_t SurfaceFlinger::setClientStateLocked( |
| const sp<Client>& client, |
| const layer_state_t& s) |
| { |
| uint32_t flags = 0; |
| sp<Layer> layer(client->getLayerUser(s.surface)); |
| if (layer != 0) { |
| const uint32_t what = s.what; |
| bool geometryAppliesWithResize = |
| what & layer_state_t::eGeometryAppliesWithResize; |
| if (what & layer_state_t::ePositionChanged) { |
| if (layer->setPosition(s.x, s.y, !geometryAppliesWithResize)) { |
| flags |= eTraversalNeeded; |
| } |
| } |
| if (what & layer_state_t::eLayerChanged) { |
| // NOTE: index needs to be calculated before we update the state |
| const auto& p = layer->getParent(); |
| if (p == nullptr) { |
| ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer); |
| if (layer->setLayer(s.z) && idx >= 0) { |
| mCurrentState.layersSortedByZ.removeAt(idx); |
| mCurrentState.layersSortedByZ.add(layer); |
| // we need traversal (state changed) |
| // AND transaction (list changed) |
| flags |= eTransactionNeeded|eTraversalNeeded; |
| } |
| } else { |
| if (p->setChildLayer(layer, s.z)) { |
| flags |= eTransactionNeeded|eTraversalNeeded; |
| } |
| } |
| } |
| if (what & layer_state_t::eRelativeLayerChanged) { |
| ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer); |
| if (layer->setRelativeLayer(s.relativeLayerHandle, s.z)) { |
| mCurrentState.layersSortedByZ.removeAt(idx); |
| mCurrentState.layersSortedByZ.add(layer); |
| flags |= eTransactionNeeded|eTraversalNeeded; |
| } |
| } |
| if (what & layer_state_t::eSizeChanged) { |
| if (layer->setSize(s.w, s.h)) { |
| flags |= eTraversalNeeded; |
| } |
| } |
| if (what & layer_state_t::eAlphaChanged) { |
| if (layer->setAlpha(s.alpha)) |
| flags |= eTraversalNeeded; |
| } |
| if (what & layer_state_t::eMatrixChanged) { |
| if (layer->setMatrix(s.matrix)) |
| flags |= eTraversalNeeded; |
| } |
| if (what & layer_state_t::eTransparentRegionChanged) { |
| if (layer->setTransparentRegionHint(s.transparentRegion)) |
| flags |= eTraversalNeeded; |
| } |
| if (what & layer_state_t::eFlagsChanged) { |
| if (layer->setFlags(s.flags, s.mask)) |
| flags |= eTraversalNeeded; |
| } |
| if (what & layer_state_t::eCropChanged) { |
| if (layer->setCrop(s.crop, !geometryAppliesWithResize)) |
| flags |= eTraversalNeeded; |
| } |
| if (what & layer_state_t::eFinalCropChanged) { |
| if (layer->setFinalCrop(s.finalCrop, !geometryAppliesWithResize)) |
| flags |= eTraversalNeeded; |
| } |
| if (what & layer_state_t::eLayerStackChanged) { |
| ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer); |
| // We only allow setting layer stacks for top level layers, |
| // everything else inherits layer stack from its parent. |
| if (layer->hasParent()) { |
| ALOGE("Attempt to set layer stack on layer with parent (%s) is invalid", |
| layer->getName().string()); |
| } else if (idx < 0) { |
| ALOGE("Attempt to set layer stack on layer without parent (%s) that " |
| "that also does not appear in the top level layer list. Something" |
| " has gone wrong.", layer->getName().string()); |
| } else if (layer->setLayerStack(s.layerStack)) { |
| mCurrentState.layersSortedByZ.removeAt(idx); |
| mCurrentState.layersSortedByZ.add(layer); |
| // we need traversal (state changed) |
| // AND transaction (list changed) |
| flags |= eTransactionNeeded|eTraversalNeeded; |
| } |
| } |
| if (what & layer_state_t::eDeferTransaction) { |
| if (s.barrierHandle != nullptr) { |
| layer->deferTransactionUntil(s.barrierHandle, s.frameNumber); |
| } else if (s.barrierGbp != nullptr) { |
| const sp<IGraphicBufferProducer>& gbp = s.barrierGbp; |
| if (authenticateSurfaceTextureLocked(gbp)) { |
| const auto& otherLayer = |
| (static_cast<MonitoredProducer*>(gbp.get()))->getLayer(); |
| layer->deferTransactionUntil(otherLayer, s.frameNumber); |
| } else { |
| ALOGE("Attempt to defer transaction to to an" |
| " unrecognized GraphicBufferProducer"); |
| } |
| } |
| // We don't trigger a traversal here because if no other state is |
| // changed, we don't want this to cause any more work |
| } |
| if (what & layer_state_t::eReparentChildren) { |
| if (layer->reparentChildren(s.reparentHandle)) { |
| flags |= eTransactionNeeded|eTraversalNeeded; |
| } |
| } |
| if (what & layer_state_t::eDetachChildren) { |
| layer->detachChildren(); |
| } |
| if (what & layer_state_t::eOverrideScalingModeChanged) { |
| layer->setOverrideScalingMode(s.overrideScalingMode); |
| // We don't trigger a traversal here because if no other state is |
| // changed, we don't want this to cause any more work |
| } |
| } |
| return flags; |
| } |
| |
| status_t SurfaceFlinger::createLayer( |
| const String8& name, |
| const sp<Client>& client, |
| uint32_t w, uint32_t h, PixelFormat format, uint32_t flags, |
| uint32_t windowType, uint32_t ownerUid, sp<IBinder>* handle, |
| sp<IGraphicBufferProducer>* gbp, sp<Layer>* parent) |
| { |
| if (int32_t(w|h) < 0) { |
| ALOGE("createLayer() failed, w or h is negative (w=%d, h=%d)", |
| int(w), int(h)); |
| return BAD_VALUE; |
| } |
| |
| status_t result = NO_ERROR; |
| |
| sp<Layer> layer; |
| |
| String8 uniqueName = getUniqueLayerName(name); |
| |
| switch (flags & ISurfaceComposerClient::eFXSurfaceMask) { |
| case ISurfaceComposerClient::eFXSurfaceNormal: |
| result = createNormalLayer(client, |
| uniqueName, w, h, flags, format, |
| handle, gbp, &layer); |
| break; |
| case ISurfaceComposerClient::eFXSurfaceDim: |
| result = createDimLayer(client, |
| uniqueName, w, h, flags, |
| handle, gbp, &layer); |
| break; |
| default: |
| result = BAD_VALUE; |
| break; |
| } |
| |
| if (result != NO_ERROR) { |
| return result; |
| } |
| |
| // window type is WINDOW_TYPE_DONT_SCREENSHOT from SurfaceControl.java |
| // TODO b/64227542 |
| if (windowType == 441731) { |
| windowType = 2024; // TYPE_NAVIGATION_BAR_PANEL |
| layer->setPrimaryDisplayOnly(); |
| } |
| |
| layer->setInfo(windowType, ownerUid); |
| |
| result = addClientLayer(client, *handle, *gbp, layer, *parent); |
| if (result != NO_ERROR) { |
| return result; |
| } |
| mInterceptor.saveSurfaceCreation(layer); |
| |
| setTransactionFlags(eTransactionNeeded); |
| return result; |
| } |
| |
| String8 SurfaceFlinger::getUniqueLayerName(const String8& name) |
| { |
| bool matchFound = true; |
| uint32_t dupeCounter = 0; |
| |
| // Tack on our counter whether there is a hit or not, so everyone gets a tag |
| String8 uniqueName = name + "#" + String8(std::to_string(dupeCounter).c_str()); |
| |
| // Loop over layers until we're sure there is no matching name |
| while (matchFound) { |
| matchFound = false; |
| mDrawingState.traverseInZOrder([&](Layer* layer) { |
| if (layer->getName() == uniqueName) { |
| matchFound = true; |
| uniqueName = name + "#" + String8(std::to_string(++dupeCounter).c_str()); |
| } |
| }); |
| } |
| |
| ALOGD_IF(dupeCounter > 0, "duplicate layer name: changing %s to %s", name.c_str(), uniqueName.c_str()); |
| |
| return uniqueName; |
| } |
| |
| status_t SurfaceFlinger::createNormalLayer(const sp<Client>& client, |
| const String8& name, uint32_t w, uint32_t h, uint32_t flags, PixelFormat& format, |
| sp<IBinder>* handle, sp<IGraphicBufferProducer>* gbp, sp<Layer>* outLayer) |
| { |
| // initialize the surfaces |
| switch (format) { |
| case PIXEL_FORMAT_TRANSPARENT: |
| case PIXEL_FORMAT_TRANSLUCENT: |
| format = PIXEL_FORMAT_RGBA_8888; |
| break; |
| case PIXEL_FORMAT_OPAQUE: |
| format = PIXEL_FORMAT_RGBX_8888; |
| break; |
| } |
| |
| *outLayer = new Layer(this, client, name, w, h, flags); |
| status_t err = (*outLayer)->setBuffers(w, h, format, flags); |
| if (err == NO_ERROR) { |
| *handle = (*outLayer)->getHandle(); |
| *gbp = (*outLayer)->getProducer(); |
| } |
| |
| ALOGE_IF(err, "createNormalLayer() failed (%s)", strerror(-err)); |
| return err; |
| } |
| |
| status_t SurfaceFlinger::createDimLayer(const sp<Client>& client, |
| const String8& name, uint32_t w, uint32_t h, uint32_t flags, |
| sp<IBinder>* handle, sp<IGraphicBufferProducer>* gbp, sp<Layer>* outLayer) |
| { |
| *outLayer = new LayerDim(this, client, name, w, h, flags); |
| *handle = (*outLayer)->getHandle(); |
| *gbp = (*outLayer)->getProducer(); |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::onLayerRemoved(const sp<Client>& client, const sp<IBinder>& handle) |
| { |
| // called by a client when it wants to remove a Layer |
| status_t err = NO_ERROR; |
| sp<Layer> l(client->getLayerUser(handle)); |
| if (l != NULL) { |
| mInterceptor.saveSurfaceDeletion(l); |
| err = removeLayer(l); |
| ALOGE_IF(err<0 && err != NAME_NOT_FOUND, |
| "error removing layer=%p (%s)", l.get(), strerror(-err)); |
| } |
| return err; |
| } |
| |
| status_t SurfaceFlinger::onLayerDestroyed(const wp<Layer>& layer) |
| { |
| // called by ~LayerCleaner() when all references to the IBinder (handle) |
| // are gone |
| sp<Layer> l = layer.promote(); |
| if (l == nullptr) { |
| // The layer has already been removed, carry on |
| return NO_ERROR; |
| } |
| // If we have a parent, then we can continue to live as long as it does. |
| return removeLayer(l, true); |
| } |
| |
| // --------------------------------------------------------------------------- |
| |
| void SurfaceFlinger::onInitializeDisplays() { |
| // reset screen orientation and use primary layer stack |
| Vector<ComposerState> state; |
| Vector<DisplayState> displays; |
| DisplayState d; |
| d.what = DisplayState::eDisplayProjectionChanged | |
| DisplayState::eLayerStackChanged; |
| d.token = mBuiltinDisplays[DisplayDevice::DISPLAY_PRIMARY]; |
| d.layerStack = 0; |
| d.orientation = DisplayState::eOrientationDefault; |
| d.frame.makeInvalid(); |
| d.viewport.makeInvalid(); |
| d.width = 0; |
| d.height = 0; |
| displays.add(d); |
| setTransactionState(state, displays, 0); |
| setPowerModeInternal(getDisplayDevice(d.token), HWC_POWER_MODE_NORMAL, |
| /*stateLockHeld*/ false); |
| |
| const auto& activeConfig = mHwc->getActiveConfig(HWC_DISPLAY_PRIMARY); |
| const nsecs_t period = activeConfig->getVsyncPeriod(); |
| mAnimFrameTracker.setDisplayRefreshPeriod(period); |
| |
| // Use phase of 0 since phase is not known. |
| // Use latency of 0, which will snap to the ideal latency. |
| setCompositorTimingSnapped(0, period, 0); |
| } |
| |
| void SurfaceFlinger::initializeDisplays() { |
| class MessageScreenInitialized : public MessageBase { |
| SurfaceFlinger* flinger; |
| public: |
| explicit MessageScreenInitialized(SurfaceFlinger* flinger) : flinger(flinger) { } |
| virtual bool handler() { |
| flinger->onInitializeDisplays(); |
| return true; |
| } |
| }; |
| sp<MessageBase> msg = new MessageScreenInitialized(this); |
| postMessageAsync(msg); // we may be called from main thread, use async message |
| } |
| |
| void SurfaceFlinger::setPowerModeInternal(const sp<DisplayDevice>& hw, |
| int mode, bool stateLockHeld) { |
| ALOGD("Set power mode=%d, type=%d flinger=%p", mode, hw->getDisplayType(), |
| this); |
| int32_t type = hw->getDisplayType(); |
| int currentMode = hw->getPowerMode(); |
| |
| if (mode == currentMode) { |
| return; |
| } |
| |
| hw->setPowerMode(mode); |
| if (type >= DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES) { |
| ALOGW("Trying to set power mode for virtual display"); |
| return; |
| } |
| |
| if (mInterceptor.isEnabled()) { |
| ConditionalLock lock(mStateLock, !stateLockHeld); |
| ssize_t idx = mCurrentState.displays.indexOfKey(hw->getDisplayToken()); |
| if (idx < 0) { |
| ALOGW("Surface Interceptor SavePowerMode: invalid display token"); |
| return; |
| } |
| mInterceptor.savePowerModeUpdate(mCurrentState.displays.valueAt(idx).displayId, mode); |
| } |
| |
| if (currentMode == HWC_POWER_MODE_OFF) { |
| // Turn on the display |
| getHwComposer().setPowerMode(type, mode); |
| if (type == DisplayDevice::DISPLAY_PRIMARY && |
| mode != HWC_POWER_MODE_DOZE_SUSPEND) { |
| // FIXME: eventthread only knows about the main display right now |
| mEventThread->onScreenAcquired(); |
| resyncToHardwareVsync(true); |
| } |
| |
| mVisibleRegionsDirty = true; |
| mHasPoweredOff = true; |
| repaintEverythingLocked(); |
| |
| struct sched_param param = {0}; |
| param.sched_priority = 1; |
| if (sched_setscheduler(0, SCHED_FIFO, ¶m) != 0) { |
| ALOGW("Couldn't set SCHED_FIFO on display on"); |
| } |
| } else if (mode == HWC_POWER_MODE_OFF) { |
| // Turn off the display |
| struct sched_param param = {0}; |
| if (sched_setscheduler(0, SCHED_OTHER, ¶m) != 0) { |
| ALOGW("Couldn't set SCHED_OTHER on display off"); |
| } |
| |
| if (type == DisplayDevice::DISPLAY_PRIMARY) { |
| disableHardwareVsync(true); // also cancels any in-progress resync |
| |
| // FIXME: eventthread only knows about the main display right now |
| mEventThread->onScreenReleased(); |
| } |
| |
| getHwComposer().setPowerMode(type, mode); |
| mVisibleRegionsDirty = true; |
| // from this point on, SF will stop drawing on this display |
| } else if (mode == HWC_POWER_MODE_DOZE || |
| mode == HWC_POWER_MODE_NORMAL) { |
| // Update display while dozing |
| getHwComposer().setPowerMode(type, mode); |
| if (type == DisplayDevice::DISPLAY_PRIMARY) { |
| // FIXME: eventthread only knows about the main display right now |
| mEventThread->onScreenAcquired(); |
| resyncToHardwareVsync(true); |
| } |
| } else if (mode == HWC_POWER_MODE_DOZE_SUSPEND) { |
| // Leave display going to doze |
| if (type == DisplayDevice::DISPLAY_PRIMARY) { |
| disableHardwareVsync(true); // also cancels any in-progress resync |
| // FIXME: eventthread only knows about the main display right now |
| mEventThread->onScreenReleased(); |
| } |
| getHwComposer().setPowerMode(type, mode); |
| } else { |
| ALOGE("Attempting to set unknown power mode: %d\n", mode); |
| getHwComposer().setPowerMode(type, mode); |
| } |
| } |
| |
| void SurfaceFlinger::setPowerMode(const sp<IBinder>& display, int mode) { |
| class MessageSetPowerMode: public MessageBase { |
| SurfaceFlinger& mFlinger; |
| sp<IBinder> mDisplay; |
| int mMode; |
| public: |
| MessageSetPowerMode(SurfaceFlinger& flinger, |
| const sp<IBinder>& disp, int mode) : mFlinger(flinger), |
| mDisplay(disp) { mMode = mode; } |
| virtual bool handler() { |
| sp<DisplayDevice> hw(mFlinger.getDisplayDevice(mDisplay)); |
| if (hw == NULL) { |
| ALOGE("Attempt to set power mode = %d for null display %p", |
| mMode, mDisplay.get()); |
| } else if (hw->getDisplayType() >= DisplayDevice::DISPLAY_VIRTUAL) { |
| ALOGW("Attempt to set power mode = %d for virtual display", |
| mMode); |
| } else { |
| mFlinger.setPowerModeInternal( |
| hw, mMode, /*stateLockHeld*/ false); |
| } |
| return true; |
| } |
| }; |
| sp<MessageBase> msg = new MessageSetPowerMode(*this, display, mode); |
| postMessageSync(msg); |
| } |
| |
| // --------------------------------------------------------------------------- |
| |
| status_t SurfaceFlinger::dump(int fd, const Vector<String16>& args) |
| { |
| String8 result; |
| |
| IPCThreadState* ipc = IPCThreadState::self(); |
| const int pid = ipc->getCallingPid(); |
| const int uid = ipc->getCallingUid(); |
| if ((uid != AID_SHELL) && |
| !PermissionCache::checkPermission(sDump, pid, uid)) { |
| result.appendFormat("Permission Denial: " |
| "can't dump SurfaceFlinger from pid=%d, uid=%d\n", pid, uid); |
| } else { |
| // Try to get the main lock, but give up after one second |
| // (this would indicate SF is stuck, but we want to be able to |
| // print something in dumpsys). |
| status_t err = mStateLock.timedLock(s2ns(1)); |
| bool locked = (err == NO_ERROR); |
| if (!locked) { |
| result.appendFormat( |
| "SurfaceFlinger appears to be unresponsive (%s [%d]), " |
| "dumping anyways (no locks held)\n", strerror(-err), err); |
| } |
| |
| bool dumpAll = true; |
| size_t index = 0; |
| size_t numArgs = args.size(); |
| if (numArgs) { |
| if ((index < numArgs) && |
| (args[index] == String16("--list"))) { |
| index++; |
| listLayersLocked(args, index, result); |
| dumpAll = false; |
| } |
| |
| if ((index < numArgs) && |
| (args[index] == String16("--latency"))) { |
| index++; |
| dumpStatsLocked(args, index, result); |
| dumpAll = false; |
| } |
| |
| if ((index < numArgs) && |
| (args[index] == String16("--latency-clear"))) { |
| index++; |
| clearStatsLocked(args, index, result); |
| dumpAll = false; |
| } |
| |
| if ((index < numArgs) && |
| (args[index] == String16("--dispsync"))) { |
| index++; |
| mPrimaryDispSync.dump(result); |
| dumpAll = false; |
| } |
| |
| if ((index < numArgs) && |
| (args[index] == String16("--static-screen"))) { |
| index++; |
| dumpStaticScreenStats(result); |
| dumpAll = false; |
| } |
| |
| if ((index < numArgs) && |
| (args[index] == String16("--frame-events"))) { |
| index++; |
| dumpFrameEventsLocked(result); |
| dumpAll = false; |
| } |
| |
| if ((index < numArgs) && (args[index] == String16("--wide-color"))) { |
| index++; |
| dumpWideColorInfo(result); |
| dumpAll = false; |
| } |
| } |
| |
| if (dumpAll) { |
| dumpAllLocked(args, index, result); |
| } |
| |
| if (locked) { |
| mStateLock.unlock(); |
| } |
| } |
| write(fd, result.string(), result.size()); |
| return NO_ERROR; |
| } |
| |
| void SurfaceFlinger::listLayersLocked(const Vector<String16>& /* args */, |
| size_t& /* index */, String8& result) const |
| { |
| mCurrentState.traverseInZOrder([&](Layer* layer) { |
| result.appendFormat("%s\n", layer->getName().string()); |
| }); |
| } |
| |
| void SurfaceFlinger::dumpStatsLocked(const Vector<String16>& args, size_t& index, |
| String8& result) const |
| { |
| String8 name; |
| if (index < args.size()) { |
| name = String8(args[index]); |
| index++; |
| } |
| |
| const auto& activeConfig = mHwc->getActiveConfig(HWC_DISPLAY_PRIMARY); |
| const nsecs_t period = activeConfig->getVsyncPeriod(); |
| result.appendFormat("%" PRId64 "\n", period); |
| |
| if (name.isEmpty()) { |
| mAnimFrameTracker.dumpStats(result); |
| } else { |
| mCurrentState.traverseInZOrder([&](Layer* layer) { |
| if (name == layer->getName()) { |
| layer->dumpFrameStats(result); |
| } |
| }); |
| } |
| } |
| |
| void SurfaceFlinger::clearStatsLocked(const Vector<String16>& args, size_t& index, |
| String8& /* result */) |
| { |
| String8 name; |
| if (index < args.size()) { |
| name = String8(args[index]); |
| index++; |
| } |
| |
| mCurrentState.traverseInZOrder([&](Layer* layer) { |
| if (name.isEmpty() || (name == layer->getName())) { |
| layer->clearFrameStats(); |
| } |
| }); |
| |
| mAnimFrameTracker.clearStats(); |
| } |
| |
| // This should only be called from the main thread. Otherwise it would need |
| // the lock and should use mCurrentState rather than mDrawingState. |
| void SurfaceFlinger::logFrameStats() { |
| mDrawingState.traverseInZOrder([&](Layer* layer) { |
| layer->logFrameStats(); |
| }); |
| |
| mAnimFrameTracker.logAndResetStats(String8("<win-anim>")); |
| } |
| |
| void SurfaceFlinger::appendSfConfigString(String8& result) const |
| { |
| result.append(" [sf"); |
| result.appendFormat(" HAS_CONTEXT_PRIORITY=%d", useContextPriority); |
| |
| if (isLayerTripleBufferingDisabled()) |
| result.append(" DISABLE_TRIPLE_BUFFERING"); |
| |
| result.appendFormat(" PRESENT_TIME_OFFSET=%" PRId64 , dispSyncPresentTimeOffset); |
| result.appendFormat(" FORCE_HWC_FOR_RBG_TO_YUV=%d", useHwcForRgbToYuv); |
| result.appendFormat(" MAX_VIRT_DISPLAY_DIM=%" PRIu64, maxVirtualDisplaySize); |
| result.appendFormat(" RUNNING_WITHOUT_SYNC_FRAMEWORK=%d", !hasSyncFramework); |
| result.appendFormat(" NUM_FRAMEBUFFER_SURFACE_BUFFERS=%" PRId64, |
| maxFrameBufferAcquiredBuffers); |
| result.append("]"); |
| } |
| |
| void SurfaceFlinger::dumpStaticScreenStats(String8& result) const |
| { |
| result.appendFormat("Static screen stats:\n"); |
| for (size_t b = 0; b < NUM_BUCKETS - 1; ++b) { |
| float bucketTimeSec = mFrameBuckets[b] / 1e9; |
| float percent = 100.0f * |
| static_cast<float>(mFrameBuckets[b]) / mTotalTime; |
| result.appendFormat(" < %zd frames: %.3f s (%.1f%%)\n", |
| b + 1, bucketTimeSec, percent); |
| } |
| float bucketTimeSec = mFrameBuckets[NUM_BUCKETS - 1] / 1e9; |
| float percent = 100.0f * |
| static_cast<float>(mFrameBuckets[NUM_BUCKETS - 1]) / mTotalTime; |
| result.appendFormat(" %zd+ frames: %.3f s (%.1f%%)\n", |
| NUM_BUCKETS - 1, bucketTimeSec, percent); |
| } |
| |
| void SurfaceFlinger::recordBufferingStats(const char* layerName, |
| std::vector<OccupancyTracker::Segment>&& history) { |
| Mutex::Autolock lock(mBufferingStatsMutex); |
| auto& stats = mBufferingStats[layerName]; |
| for (const auto& segment : history) { |
| if (!segment.usedThirdBuffer) { |
| stats.twoBufferTime += segment.totalTime; |
| } |
| if (segment.occupancyAverage < 1.0f) { |
| stats.doubleBufferedTime += segment.totalTime; |
| } else if (segment.occupancyAverage < 2.0f) { |
| stats.tripleBufferedTime += segment.totalTime; |
| } |
| ++stats.numSegments; |
| stats.totalTime += segment.totalTime; |
| } |
| } |
| |
| void SurfaceFlinger::dumpFrameEventsLocked(String8& result) { |
| result.appendFormat("Layer frame timestamps:\n"); |
| |
| const LayerVector& currentLayers = mCurrentState.layersSortedByZ; |
| const size_t count = currentLayers.size(); |
| for (size_t i=0 ; i<count ; i++) { |
| currentLayers[i]->dumpFrameEvents(result); |
| } |
| } |
| |
| void SurfaceFlinger::dumpBufferingStats(String8& result) const { |
| result.append("Buffering stats:\n"); |
| result.append(" [Layer name] <Active time> <Two buffer> " |
| "<Double buffered> <Triple buffered>\n"); |
| Mutex::Autolock lock(mBufferingStatsMutex); |
| typedef std::tuple<std::string, float, float, float> BufferTuple; |
| std::map<float, BufferTuple, std::greater<float>> sorted; |
| for (const auto& statsPair : mBufferingStats) { |
| const char* name = statsPair.first.c_str(); |
| const BufferingStats& stats = statsPair.second; |
| if (stats.numSegments == 0) { |
| continue; |
| } |
| float activeTime = ns2ms(stats.totalTime) / 1000.0f; |
| float twoBufferRatio = static_cast<float>(stats.twoBufferTime) / |
| stats.totalTime; |
| float doubleBufferRatio = static_cast<float>( |
| stats.doubleBufferedTime) / stats.totalTime; |
| float tripleBufferRatio = static_cast<float>( |
| stats.tripleBufferedTime) / stats.totalTime; |
| sorted.insert({activeTime, {name, twoBufferRatio, |
| doubleBufferRatio, tripleBufferRatio}}); |
| } |
| for (const auto& sortedPair : sorted) { |
| float activeTime = sortedPair.first; |
| const BufferTuple& values = sortedPair.second; |
| result.appendFormat(" [%s] %.2f %.3f %.3f %.3f\n", |
| std::get<0>(values).c_str(), activeTime, |
| std::get<1>(values), std::get<2>(values), |
| std::get<3>(values)); |
| } |
| result.append("\n"); |
| } |
| |
| void SurfaceFlinger::dumpWideColorInfo(String8& result) const { |
| result.appendFormat("hasWideColorDisplay: %d\n", hasWideColorDisplay); |
| |
| // TODO: print out if wide-color mode is active or not |
| |
| for (size_t d = 0; d < mDisplays.size(); d++) { |
| const sp<const DisplayDevice>& displayDevice(mDisplays[d]); |
| int32_t hwcId = displayDevice->getHwcDisplayId(); |
| if (hwcId == DisplayDevice::DISPLAY_ID_INVALID) { |
| continue; |
| } |
| |
| result.appendFormat("Display %d color modes:\n", hwcId); |
| std::vector<android_color_mode_t> modes = getHwComposer().getColorModes(hwcId); |
| for (auto&& mode : modes) { |
| result.appendFormat(" %s (%d)\n", decodeColorMode(mode).c_str(), mode); |
| } |
| |
| android_color_mode_t currentMode = displayDevice->getActiveColorMode(); |
| result.appendFormat(" Current color mode: %s (%d)\n", |
| decodeColorMode(currentMode).c_str(), currentMode); |
| } |
| result.append("\n"); |
| } |
| |
| void SurfaceFlinger::dumpAllLocked(const Vector<String16>& args, size_t& index, |
| String8& result) const |
| { |
| bool colorize = false; |
| if (index < args.size() |
| && (args[index] == String16("--color"))) { |
| colorize = true; |
| index++; |
| } |
| |
| Colorizer colorizer(colorize); |
| |
| // figure out if we're stuck somewhere |
| const nsecs_t now = systemTime(); |
| const nsecs_t inSwapBuffers(mDebugInSwapBuffers); |
| const nsecs_t inTransaction(mDebugInTransaction); |
| nsecs_t inSwapBuffersDuration = (inSwapBuffers) ? now-inSwapBuffers : 0; |
| nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0; |
| |
| /* |
| * Dump library configuration. |
| */ |
| |
| colorizer.bold(result); |
| result.append("Build configuration:"); |
| colorizer.reset(result); |
| appendSfConfigString(result); |
| appendUiConfigString(result); |
| appendGuiConfigString(result); |
| result.append("\n"); |
| |
| result.append("\nWide-Color information:\n"); |
| dumpWideColorInfo(result); |
| |
| colorizer.bold(result); |
| result.append("Sync configuration: "); |
| colorizer.reset(result); |
| result.append(SyncFeatures::getInstance().toString()); |
| result.append("\n"); |
| |
| const auto& activeConfig = mHwc->getActiveConfig(HWC_DISPLAY_PRIMARY); |
| |
| colorizer.bold(result); |
| result.append("DispSync configuration: "); |
| colorizer.reset(result); |
| result.appendFormat("app phase %" PRId64 " ns, sf phase %" PRId64 " ns, " |
| "present offset %" PRId64 " ns (refresh %" PRId64 " ns)", |
| vsyncPhaseOffsetNs, sfVsyncPhaseOffsetNs, |
| dispSyncPresentTimeOffset, activeConfig->getVsyncPeriod()); |
| result.append("\n"); |
| |
| // Dump static screen stats |
| result.append("\n"); |
| dumpStaticScreenStats(result); |
| result.append("\n"); |
| |
| dumpBufferingStats(result); |
| |
| /* |
| * Dump the visible layer list |
| */ |
| colorizer.bold(result); |
| result.appendFormat("Visible layers (count = %zu)\n", mNumLayers); |
| colorizer.reset(result); |
| mCurrentState.traverseInZOrder([&](Layer* layer) { |
| result.append(to_string(layer->getLayerDebugInfo()).c_str()); |
| }); |
| |
| /* |
| * Dump Display state |
| */ |
| |
| colorizer.bold(result); |
| result.appendFormat("Displays (%zu entries)\n", mDisplays.size()); |
| colorizer.reset(result); |
| for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) { |
| const sp<const DisplayDevice>& hw(mDisplays[dpy]); |
| hw->dump(result); |
| } |
| |
| /* |
| * Dump SurfaceFlinger global state |
| */ |
| |
| colorizer.bold(result); |
| result.append("SurfaceFlinger global state:\n"); |
| colorizer.reset(result); |
| |
| HWComposer& hwc(getHwComposer()); |
| sp<const DisplayDevice> hw(getDefaultDisplayDeviceLocked()); |
| |
| colorizer.bold(result); |
| result.appendFormat("EGL implementation : %s\n", |
| eglQueryStringImplementationANDROID(mEGLDisplay, EGL_VERSION)); |
| colorizer.reset(result); |
| result.appendFormat("%s\n", |
| eglQueryStringImplementationANDROID(mEGLDisplay, EGL_EXTENSIONS)); |
| |
| mRenderEngine->dump(result); |
| |
| hw->undefinedRegion.dump(result, "undefinedRegion"); |
| result.appendFormat(" orientation=%d, isDisplayOn=%d\n", |
| hw->getOrientation(), hw->isDisplayOn()); |
| result.appendFormat( |
| " last eglSwapBuffers() time: %f us\n" |
| " last transaction time : %f us\n" |
| " transaction-flags : %08x\n" |
| " refresh-rate : %f fps\n" |
| " x-dpi : %f\n" |
| " y-dpi : %f\n" |
| " gpu_to_cpu_unsupported : %d\n" |
| , |
| mLastSwapBufferTime/1000.0, |
| mLastTransactionTime/1000.0, |
| mTransactionFlags, |
| 1e9 / activeConfig->getVsyncPeriod(), |
| activeConfig->getDpiX(), |
| activeConfig->getDpiY(), |
| !mGpuToCpuSupported); |
| |
| result.appendFormat(" eglSwapBuffers time: %f us\n", |
| inSwapBuffersDuration/1000.0); |
| |
| result.appendFormat(" transaction time: %f us\n", |
| inTransactionDuration/1000.0); |
| |
| /* |
| * VSYNC state |
| */ |
| mEventThread->dump(result); |
| result.append("\n"); |
| |
| /* |
| * HWC layer minidump |
| */ |
| for (size_t d = 0; d < mDisplays.size(); d++) { |
| const sp<const DisplayDevice>& displayDevice(mDisplays[d]); |
| int32_t hwcId = displayDevice->getHwcDisplayId(); |
| if (hwcId == DisplayDevice::DISPLAY_ID_INVALID) { |
| continue; |
| } |
| |
| result.appendFormat("Display %d HWC layers:\n", hwcId); |
| Layer::miniDumpHeader(result); |
| mCurrentState.traverseInZOrder([&](Layer* layer) { |
| layer->miniDump(result, hwcId); |
| }); |
| result.append("\n"); |
| } |
| |
| /* |
| * Dump HWComposer state |
| */ |
| colorizer.bold(result); |
| result.append("h/w composer state:\n"); |
| colorizer.reset(result); |
| bool hwcDisabled = mDebugDisableHWC || mDebugRegion; |
| result.appendFormat(" h/w composer %s\n", |
| hwcDisabled ? "disabled" : "enabled"); |
| hwc.dump(result); |
| |
| /* |
| * Dump gralloc state |
| */ |
| const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get()); |
| alloc.dump(result); |
| |
| /* |
| * Dump VrFlinger state if in use. |
| */ |
| if (mVrFlingerRequestsDisplay && mVrFlinger) { |
| result.append("VrFlinger state:\n"); |
| result.append(mVrFlinger->Dump().c_str()); |
| result.append("\n"); |
| } |
| } |
| |
| const Vector< sp<Layer> >& |
| SurfaceFlinger::getLayerSortedByZForHwcDisplay(int id) { |
| // Note: mStateLock is held here |
| wp<IBinder> dpy; |
| for (size_t i=0 ; i<mDisplays.size() ; i++) { |
| if (mDisplays.valueAt(i)->getHwcDisplayId() == id) { |
| dpy = mDisplays.keyAt(i); |
| break; |
| } |
| } |
| if (dpy == NULL) { |
| ALOGE("getLayerSortedByZForHwcDisplay: invalid hwc display id %d", id); |
| // Just use the primary display so we have something to return |
| dpy = getBuiltInDisplay(DisplayDevice::DISPLAY_PRIMARY); |
| } |
| return getDisplayDeviceLocked(dpy)->getVisibleLayersSortedByZ(); |
| } |
| |
| bool SurfaceFlinger::startDdmConnection() |
| { |
| void* libddmconnection_dso = |
| dlopen("libsurfaceflinger_ddmconnection.so", RTLD_NOW); |
| if (!libddmconnection_dso) { |
| return false; |
| } |
| void (*DdmConnection_start)(const char* name); |
| DdmConnection_start = |
| (decltype(DdmConnection_start))dlsym(libddmconnection_dso, "DdmConnection_start"); |
| if (!DdmConnection_start) { |
| dlclose(libddmconnection_dso); |
| return false; |
| } |
| (*DdmConnection_start)(getServiceName()); |
| return true; |
| } |
| |
| status_t SurfaceFlinger::CheckTransactCodeCredentials(uint32_t code) { |
| switch (code) { |
| case CREATE_CONNECTION: |
| case CREATE_DISPLAY: |
| case BOOT_FINISHED: |
| case CLEAR_ANIMATION_FRAME_STATS: |
| case GET_ANIMATION_FRAME_STATS: |
| case SET_POWER_MODE: |
| case GET_HDR_CAPABILITIES: |
| { |
| // codes that require permission check |
| IPCThreadState* ipc = IPCThreadState::self(); |
| const int pid = ipc->getCallingPid(); |
| const int uid = ipc->getCallingUid(); |
| if ((uid != AID_GRAPHICS && uid != AID_SYSTEM) && |
| !PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)) { |
| ALOGE("Permission Denial: can't access SurfaceFlinger pid=%d, uid=%d", pid, uid); |
| return PERMISSION_DENIED; |
| } |
| break; |
| } |
| /* |
| * Calling setTransactionState is safe, because you need to have been |
| * granted a reference to Client* and Handle* to do anything with it. |
| * |
| * Creating a scoped connection is safe, as per discussion in ISurfaceComposer.h |
| */ |
| case SET_TRANSACTION_STATE: |
| case CREATE_SCOPED_CONNECTION: |
| { |
| return OK; |
| } |
| case CAPTURE_SCREEN: |
| { |
| // codes that require permission check |
| IPCThreadState* ipc = IPCThreadState::self(); |
| const int pid = ipc->getCallingPid(); |
| const int uid = ipc->getCallingUid(); |
| if ((uid != AID_GRAPHICS) && |
| !PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) { |
| ALOGE("Permission Denial: can't read framebuffer pid=%d, uid=%d", pid, uid); |
| return PERMISSION_DENIED; |
| } |
| break; |
| } |
| } |
| return OK; |
| } |
| |
| status_t SurfaceFlinger::onTransact( |
| uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags) |
| { |
| status_t credentialCheck = CheckTransactCodeCredentials(code); |
| if (credentialCheck != OK) { |
| return credentialCheck; |
| } |
| |
| status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags); |
| if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) { |
| CHECK_INTERFACE(ISurfaceComposer, data, reply); |
| IPCThreadState* ipc = IPCThreadState::self(); |
| const int uid = ipc->getCallingUid(); |
| if (CC_UNLIKELY(uid != AID_SYSTEM |
| && !PermissionCache::checkCallingPermission(sHardwareTest))) { |
| const int pid = ipc->getCallingPid(); |
| ALOGE("Permission Denial: " |
| "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid); |
| return PERMISSION_DENIED; |
| } |
| int n; |
| switch (code) { |
| case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE |
| case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE |
| return NO_ERROR; |
| case 1002: // SHOW_UPDATES |
| n = data.readInt32(); |
| mDebugRegion = n ? n : (mDebugRegion ? 0 : 1); |
| invalidateHwcGeometry(); |
| repaintEverything(); |
| return NO_ERROR; |
| case 1004:{ // repaint everything |
| repaintEverything(); |
| return NO_ERROR; |
| } |
| case 1005:{ // force transaction |
| Mutex::Autolock _l(mStateLock); |
| setTransactionFlags( |
| eTransactionNeeded| |
| eDisplayTransactionNeeded| |
| eTraversalNeeded); |
| return NO_ERROR; |
| } |
| case 1006:{ // send empty update |
| signalRefresh(); |
| return NO_ERROR; |
| } |
| case 1008: // toggle use of hw composer |
| n = data.readInt32(); |
| mDebugDisableHWC = n ? 1 : 0; |
| invalidateHwcGeometry(); |
| repaintEverything(); |
| return NO_ERROR; |
| case 1009: // toggle use of transform hint |
| n = data.readInt32(); |
| mDebugDisableTransformHint = n ? 1 : 0; |
| invalidateHwcGeometry(); |
| repaintEverything(); |
| return NO_ERROR; |
| case 1010: // interrogate. |
| reply->writeInt32(0); |
| reply->writeInt32(0); |
| reply->writeInt32(mDebugRegion); |
| reply->writeInt32(0); |
| reply->writeInt32(mDebugDisableHWC); |
| return NO_ERROR; |
| case 1013: { |
| sp<const DisplayDevice> hw(getDefaultDisplayDevice()); |
| reply->writeInt32(hw->getPageFlipCount()); |
| return NO_ERROR; |
| } |
| case 1014: { |
| // daltonize |
| n = data.readInt32(); |
| switch (n % 10) { |
| case 1: |
| mDaltonizer.setType(ColorBlindnessType::Protanomaly); |
| break; |
| case 2: |
| mDaltonizer.setType(ColorBlindnessType::Deuteranomaly); |
| break; |
| case 3: |
| mDaltonizer.setType(ColorBlindnessType::Tritanomaly); |
| break; |
| default: |
| mDaltonizer.setType(ColorBlindnessType::None); |
| break; |
| } |
| if (n >= 10) { |
| mDaltonizer.setMode(ColorBlindnessMode::Correction); |
| } else { |
| mDaltonizer.setMode(ColorBlindnessMode::Simulation); |
| } |
| invalidateHwcGeometry(); |
| repaintEverything(); |
| return NO_ERROR; |
| } |
| case 1015: { |
| // apply a color matrix |
| n = data.readInt32(); |
| if (n) { |
| // color matrix is sent as a column-major mat4 matrix |
| for (size_t i = 0 ; i < 4; i++) { |
| for (size_t j = 0; j < 4; j++) { |
| mColorMatrix[i][j] = data.readFloat(); |
| } |
| } |
| } else { |
| mColorMatrix = mat4(); |
| } |
| |
| // Check that supplied matrix's last row is {0,0,0,1} so we can avoid |
| // the division by w in the fragment shader |
| float4 lastRow(transpose(mColorMatrix)[3]); |
| if (any(greaterThan(abs(lastRow - float4{0, 0, 0, 1}), float4{1e-4f}))) { |
| ALOGE("The color transform's last row must be (0, 0, 0, 1)"); |
| } |
| |
| invalidateHwcGeometry(); |
| repaintEverything(); |
| return NO_ERROR; |
| } |
| // This is an experimental interface |
| // Needs to be shifted to proper binder interface when we productize |
| case 1016: { |
| n = data.readInt32(); |
| mPrimaryDispSync.setRefreshSkipCount(n); |
| return NO_ERROR; |
| } |
| case 1017: { |
| n = data.readInt32(); |
| mForceFullDamage = static_cast<bool>(n); |
| return NO_ERROR; |
| } |
| case 1018: { // Modify Choreographer's phase offset |
| n = data.readInt32(); |
| mEventThread->setPhaseOffset(static_cast<nsecs_t>(n)); |
| return NO_ERROR; |
| } |
| case 1019: { // Modify SurfaceFlinger's phase offset |
| n = data.readInt32(); |
| mSFEventThread->setPhaseOffset(static_cast<nsecs_t>(n)); |
| return NO_ERROR; |
| } |
| case 1020: { // Layer updates interceptor |
| n = data.readInt32(); |
| if (n) { |
| ALOGV("Interceptor enabled"); |
| mInterceptor.enable(mDrawingState.layersSortedByZ, mDrawingState.displays); |
| } |
| else{ |
| ALOGV("Interceptor disabled"); |
| mInterceptor.disable(); |
| } |
| return NO_ERROR; |
| } |
| case 1021: { // Disable HWC virtual displays |
| n = data.readInt32(); |
| mUseHwcVirtualDisplays = !n; |
| return NO_ERROR; |
| } |
| case 1022: { // Set saturation boost |
| mSaturation = std::max(0.0f, std::min(data.readFloat(), 2.0f)); |
| |
| invalidateHwcGeometry(); |
| repaintEverything(); |
| return NO_ERROR; |
| } |
| } |
| } |
| return err; |
| } |
| |
| void SurfaceFlinger::repaintEverythingLocked() { |
| android_atomic_or(1, &mRepaintEverything); |
| signalTransaction(); |
| } |
| |
| void SurfaceFlinger::repaintEverything() { |
| ConditionalLock _l(mStateLock, |
| std::this_thread::get_id() != mMainThreadId); |
| repaintEverythingLocked(); |
| } |
| |
| // Checks that the requested width and height are valid and updates them to the display dimensions |
| // if they are set to 0 |
| static status_t updateDimensionsLocked(const sp<const DisplayDevice>& displayDevice, |
| Transform::orientation_flags rotation, |
| uint32_t* requestedWidth, uint32_t* requestedHeight) { |
| // get screen geometry |
| uint32_t displayWidth = displayDevice->getWidth(); |
| uint32_t displayHeight = displayDevice->getHeight(); |
| |
| if (rotation & Transform::ROT_90) { |
| std::swap(displayWidth, displayHeight); |
| } |
| |
| if ((*requestedWidth > displayWidth) || (*requestedHeight > displayHeight)) { |
| ALOGE("size mismatch (%d, %d) > (%d, %d)", |
| *requestedWidth, *requestedHeight, displayWidth, displayHeight); |
| return BAD_VALUE; |
| } |
| |
| if (*requestedWidth == 0) { |
| *requestedWidth = displayWidth; |
| } |
| if (*requestedHeight == 0) { |
| *requestedHeight = displayHeight; |
| } |
| |
| return NO_ERROR; |
| } |
| |
| // A simple RAII class to disconnect from an ANativeWindow* when it goes out of scope |
| class WindowDisconnector { |
| public: |
| WindowDisconnector(ANativeWindow* window, int api) : mWindow(window), mApi(api) {} |
| ~WindowDisconnector() { |
| native_window_api_disconnect(mWindow, mApi); |
| } |
| |
| private: |
| ANativeWindow* mWindow; |
| const int mApi; |
| }; |
| |
| static status_t getWindowBuffer(ANativeWindow* window, uint32_t requestedWidth, |
| uint32_t requestedHeight, bool hasWideColorDisplay, |
| bool renderEngineUsesWideColor, ANativeWindowBuffer** outBuffer) { |
| const uint32_t usage = GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_SW_WRITE_OFTEN | |
| GRALLOC_USAGE_HW_RENDER | GRALLOC_USAGE_HW_TEXTURE; |
| |
| int err = 0; |
| err = native_window_set_buffers_dimensions(window, requestedWidth, requestedHeight); |
| err |= native_window_set_scaling_mode(window, NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW); |
| err |= native_window_set_buffers_format(window, HAL_PIXEL_FORMAT_RGBA_8888); |
| err |= native_window_set_usage(window, usage); |
| |
| if (hasWideColorDisplay) { |
| err |= native_window_set_buffers_data_space(window, |
| renderEngineUsesWideColor |
| ? HAL_DATASPACE_DISPLAY_P3 |
| : HAL_DATASPACE_V0_SRGB); |
| } |
| |
| if (err != NO_ERROR) { |
| return BAD_VALUE; |
| } |
| |
| /* TODO: Once we have the sync framework everywhere this can use |
| * server-side waits on the fence that dequeueBuffer returns. |
| */ |
| err = native_window_dequeue_buffer_and_wait(window, outBuffer); |
| if (err != NO_ERROR) { |
| return err; |
| } |
| |
| return NO_ERROR; |
| } |
| |
| status_t SurfaceFlinger::captureScreen(const sp<IBinder>& display, |
| const sp<IGraphicBufferProducer>& producer, |
| Rect sourceCrop, uint32_t reqWidth, uint32_t reqHeight, |
| int32_t minLayerZ, int32_t maxLayerZ, |
| bool useIdentityTransform, ISurfaceComposer::Rotation rotation) { |
| ATRACE_CALL(); |
| |
| if (CC_UNLIKELY(display == 0)) |
| return BAD_VALUE; |
| |
| if (CC_UNLIKELY(producer == 0)) |
| return BAD_VALUE; |
| |
| // if we have secure windows on this display, never allow the screen capture |
| // unless the producer interface is local (i.e.: we can take a screenshot for |
| // ourselves). |
| bool isLocalScreenshot = IInterface::asBinder(producer)->localBinder(); |
| |
| // Convert to surfaceflinger's internal rotation type. |
| Transform::orientation_flags rotationFlags; |
| switch (rotation) { |
| case ISurfaceComposer::eRotateNone: |
| rotationFlags = Transform::ROT_0; |
| break; |
| case ISurfaceComposer::eRotate90: |
| rotationFlags = Transform::ROT_90; |
| break; |
| case ISurfaceComposer::eRotate180: |
| rotationFlags = Transform::ROT_180; |
| break; |
| case ISurfaceComposer::eRotate270: |
| rotationFlags = Transform::ROT_270; |
| break; |
| default: |
| rotationFlags = Transform::ROT_0; |
| ALOGE("Invalid rotation passed to captureScreen(): %d\n", rotation); |
| break; |
| } |
| |
| { // Autolock scope |
| Mutex::Autolock lock(mStateLock); |
| sp<const DisplayDevice> displayDevice(getDisplayDeviceLocked(display)); |
| updateDimensionsLocked(displayDevice, rotationFlags, &reqWidth, &reqHeight); |
| } |
| |
| // create a surface (because we're a producer, and we need to |
| // dequeue/queue a buffer) |
| sp<Surface> surface = new Surface(producer, false); |
| |
| // Put the screenshot Surface into async mode so that |
| // Layer::headFenceHasSignaled will always return true and we'll latch the |
| // first buffer regardless of whether or not its acquire fence has |
| // signaled. This is needed to avoid a race condition in the rotation |
| // animation. See b/30209608 |
| surface->setAsyncMode(true); |
| |
| ANativeWindow* window = surface.get(); |
| |
| status_t result = native_window_api_connect(window, NATIVE_WINDOW_API_EGL); |
| if (result != NO_ERROR) { |
| return result; |
| } |
| WindowDisconnector disconnector(window, NATIVE_WINDOW_API_EGL); |
| |
| ANativeWindowBuffer* buffer = nullptr; |
| result = getWindowBuffer(window, reqWidth, reqHeight, hasWideColorDisplay, |
| getRenderEngine().usesWideColor(), &buffer); |
| if (result != NO_ERROR) { |
| return result; |
| } |
| |
| // This mutex protects syncFd and captureResult for communication of the return values from the |
| // main thread back to this Binder thread |
| std::mutex captureMutex; |
| std::condition_variable captureCondition; |
| std::unique_lock<std::mutex> captureLock(captureMutex); |
| int syncFd = -1; |
| std::optional<status_t> captureResult; |
| |
| sp<LambdaMessage> message = new LambdaMessage([&]() { |
| // If there is a refresh pending, bug out early and tell the binder thread to try again |
| // after the refresh. |
| if (mRefreshPending) { |
| ATRACE_NAME("Skipping screenshot for now"); |
| std::unique_lock<std::mutex> captureLock(captureMutex); |
| captureResult = std::make_optional<status_t>(EAGAIN); |
| captureCondition.notify_one(); |
| return; |
| } |
| |
| status_t result = NO_ERROR; |
| int fd = -1; |
| { |
| Mutex::Autolock _l(mStateLock); |
| sp<const DisplayDevice> device(getDisplayDeviceLocked(display)); |
| result = captureScreenImplLocked(device, buffer, sourceCrop, reqWidth, reqHeight, |
| minLayerZ, maxLayerZ, useIdentityTransform, |
| rotationFlags, isLocalScreenshot, &fd); |
| } |
| |
| { |
| std::unique_lock<std::mutex> captureLock(captureMutex); |
| syncFd = fd; |
| captureResult = std::make_optional<status_t>(result); |
| captureCondition.notify_one(); |
| } |
| }); |
| |
| result = postMessageAsync(message); |
| if (result == NO_ERROR) { |
| captureCondition.wait(captureLock, [&]() { return captureResult; }); |
| while (*captureResult == EAGAIN) { |
| captureResult.reset(); |
| result = postMessageAsync(message); |
| if (result != NO_ERROR) { |
| return result; |
| } |
| captureCondition.wait(captureLock, [&]() { return captureResult; }); |
| } |
| result = *captureResult; |
| } |
| |
| if (result == NO_ERROR) { |
| // queueBuffer takes ownership of syncFd |
| result = window->queueBuffer(window, buffer, syncFd); |
| } |
| |
| return result; |
| } |
| |
| |
| void SurfaceFlinger::renderScreenImplLocked( |
| const sp<const DisplayDevice>& hw, |
| Rect sourceCrop, uint32_t reqWidth, uint32_t reqHeight, |
| int32_t minLayerZ, int32_t maxLayerZ, |
| bool yswap, bool useIdentityTransform, Transform::orientation_flags rotation) |
| { |
| ATRACE_CALL(); |
| RenderEngine& engine(getRenderEngine()); |
| |
| // get screen geometry |
| const int32_t hw_w = hw->getWidth(); |
| const int32_t hw_h = hw->getHeight(); |
| const bool filtering = static_cast<int32_t>(reqWidth) != hw_w || |
| static_cast<int32_t>(reqHeight) != hw_h; |
| |
| // if a default or invalid sourceCrop is passed in, set reasonable values |
| if (sourceCrop.width() == 0 || sourceCrop.height() == 0 || |
| !sourceCrop.isValid()) { |
| sourceCrop.setLeftTop(Point(0, 0)); |
| sourceCrop.setRightBottom(Point(hw_w, hw_h)); |
| } |
| |
| // ensure that sourceCrop is inside screen |
| if (sourceCrop.left < 0) { |
| ALOGE("Invalid crop rect: l = %d (< 0)", sourceCrop.left); |
| } |
| if (sourceCrop.right > hw_w) { |
| ALOGE("Invalid crop rect: r = %d (> %d)", sourceCrop.right, hw_w); |
| } |
| if (sourceCrop.top < 0) { |
| ALOGE("Invalid crop rect: t = %d (< 0)", sourceCrop.top); |
| } |
| if (sourceCrop.bottom > hw_h) { |
| ALOGE("Invalid crop rect: b = %d (> %d)", sourceCrop.bottom, hw_h); |
| } |
| |
| #ifdef USE_HWC2 |
| engine.setWideColor(hw->getWideColorSupport()); |
| engine.setColorMode(hw->getActiveColorMode()); |
| #endif |
| |
| // make sure to clear all GL error flags |
| engine.checkErrors(); |
| |
| // set-up our viewport |
| engine.setViewportAndProjection( |
| reqWidth, reqHeight, sourceCrop, hw_h, yswap, rotation); |
| engine.disableTexturing(); |
| |
| // redraw the screen entirely... |
| engine.clearWithColor(0, 0, 0, 1); |
| |
| // We loop through the first level of layers without traversing, |
| // as we need to interpret min/max layer Z in the top level Z space. |
| for (const auto& layer : mDrawingState.layersSortedByZ) { |
| if (!layer->belongsToDisplay(hw->getLayerStack(), false)) { |
| continue; |
| } |
| const Layer::State& state(layer->getDrawingState()); |
| if (state.z < minLayerZ || state.z > maxLayerZ) { |
| continue; |
| } |
| layer->traverseInZOrder(LayerVector::StateSet::Drawing, [&](Layer* layer) { |
| if (!layer->isVisible()) { |
| return; |
| } |
| if (filtering) layer->setFiltering(true); |
| layer->draw(hw, useIdentityTransform); |
| if (filtering) layer->setFiltering(false); |
| }); |
| } |
| |
| hw->setViewportAndProjection(); |
| } |
| |
| // A simple RAII class that holds an EGLImage and destroys it either: |
| // a) When the destroy() method is called |
| // b) When the object goes out of scope |
| class ImageHolder { |
| public: |
| ImageHolder(EGLDisplay display, EGLImageKHR image) : mDisplay(display), mImage(image) {} |
| ~ImageHolder() { destroy(); } |
| |
| void destroy() { |
| if (mImage != EGL_NO_IMAGE_KHR) { |
| eglDestroyImageKHR(mDisplay, mImage); |
| mImage = EGL_NO_IMAGE_KHR; |
| } |
| } |
| |
| private: |
| const EGLDisplay mDisplay; |
| EGLImageKHR mImage; |
| }; |
| |
| status_t SurfaceFlinger::captureScreenImplLocked(const sp<const DisplayDevice>& hw, |
| ANativeWindowBuffer* buffer, Rect sourceCrop, |
| uint32_t reqWidth, uint32_t reqHeight, |
| int32_t minLayerZ, int32_t maxLayerZ, |
| bool useIdentityTransform, |
| Transform::orientation_flags rotation, |
| bool isLocalScreenshot, int* outSyncFd) { |
| ATRACE_CALL(); |
| |
| bool secureLayerIsVisible = false; |
| for (const auto& layer : mDrawingState.layersSortedByZ) { |
| const Layer::State& state(layer->getDrawingState()); |
| if (!layer->belongsToDisplay(hw->getLayerStack(), false) || |
| (state.z < minLayerZ || state.z > maxLayerZ)) { |
| continue; |
| } |
| layer->traverseInZOrder(LayerVector::StateSet::Drawing, [&](Layer *layer) { |
| secureLayerIsVisible = secureLayerIsVisible || (layer->isVisible() && |
| layer->isSecure()); |
| }); |
| } |
| |
| if (!isLocalScreenshot && secureLayerIsVisible) { |
| ALOGW("FB is protected: PERMISSION_DENIED"); |
| return PERMISSION_DENIED; |
| } |
| |
| int syncFd = -1; |
| // create an EGLImage from the buffer so we can later |
| // turn it into a texture |
| EGLImageKHR image = eglCreateImageKHR(mEGLDisplay, EGL_NO_CONTEXT, |
| EGL_NATIVE_BUFFER_ANDROID, buffer, NULL); |
| if (image == EGL_NO_IMAGE_KHR) { |
| return BAD_VALUE; |
| } |
| |
| // This will automatically destroy the image if we return before calling its destroy method |
| ImageHolder imageHolder(mEGLDisplay, image); |
| |
| // this binds the given EGLImage as a framebuffer for the |
| // duration of this scope. |
| RenderEngine::BindImageAsFramebuffer imageBond(getRenderEngine(), image); |
| if (imageBond.getStatus() != NO_ERROR) { |
| ALOGE("got GL_FRAMEBUFFER_COMPLETE_OES error while taking screenshot"); |
| return INVALID_OPERATION; |
| } |
| |
| // this will in fact render into our dequeued buffer |
| // via an FBO, which means we didn't have to create |
| // an EGLSurface and therefore we're not |
| // dependent on the context's EGLConfig. |
| renderScreenImplLocked( |
| hw, sourceCrop, reqWidth, reqHeight, minLayerZ, maxLayerZ, true, |
| useIdentityTransform, rotation); |
| |
| // Attempt to create a sync khr object that can produce a sync point. If that |
| // isn't available, create a non-dupable sync object in the fallback path and |
| // wait on it directly. |
| EGLSyncKHR sync = EGL_NO_SYNC_KHR; |
| if (!DEBUG_SCREENSHOTS) { |
| sync = eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_NATIVE_FENCE_ANDROID, NULL); |
| // native fence fd will not be populated until flush() is done. |
| getRenderEngine().flush(); |
| } |
| |
| if (sync != EGL_NO_SYNC_KHR) { |
| // get the sync fd |
| syncFd = eglDupNativeFenceFDANDROID(mEGLDisplay, sync); |
| if (syncFd == EGL_NO_NATIVE_FENCE_FD_ANDROID) { |
| ALOGW("captureScreen: failed to dup sync khr object"); |
| syncFd = -1; |
| } |
| eglDestroySyncKHR(mEGLDisplay, sync); |
| } else { |
| // fallback path |
| sync = eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_FENCE_KHR, NULL); |
| if (sync != EGL_NO_SYNC_KHR) { |
| EGLint result = eglClientWaitSyncKHR(mEGLDisplay, sync, |
| EGL_SYNC_FLUSH_COMMANDS_BIT_KHR, 2000000000 /*2 sec*/); |
| EGLint eglErr = eglGetError(); |
| if (result == EGL_TIMEOUT_EXPIRED_KHR) { |
| ALOGW("captureScreen: fence wait timed out"); |
| } else { |
| ALOGW_IF(eglErr != EGL_SUCCESS, |
| "captureScreen: error waiting on EGL fence: %#x", eglErr); |
| } |
| eglDestroySyncKHR(mEGLDisplay, sync); |
| } else { |
| ALOGW("captureScreen: error creating EGL fence: %#x", eglGetError()); |
| } |
| } |
| *outSyncFd = syncFd; |
| |
| if (DEBUG_SCREENSHOTS) { |
| uint32_t* pixels = new uint32_t[reqWidth*reqHeight]; |
| getRenderEngine().readPixels(0, 0, reqWidth, reqHeight, pixels); |
| checkScreenshot(reqWidth, reqHeight, reqWidth, pixels, |
| hw, minLayerZ, maxLayerZ); |
| delete [] pixels; |
| } |
| |
| // destroy our image |
| imageHolder.destroy(); |
| |
| return NO_ERROR; |
| } |
| |
| void SurfaceFlinger::checkScreenshot(size_t w, size_t s, size_t h, void const* vaddr, |
| const sp<const DisplayDevice>& hw, int32_t minLayerZ, int32_t maxLayerZ) { |
| if (DEBUG_SCREENSHOTS) { |
| for (size_t y=0 ; y<h ; y++) { |
| uint32_t const * p = (uint32_t const *)vaddr + y*s; |
| for (size_t x=0 ; x<w ; x++) { |
| if (p[x] != 0xFF000000) return; |
| } |
| } |
| ALOGE("*** we just took a black screenshot ***\n" |
| "requested minz=%d, maxz=%d, layerStack=%d", |
| minLayerZ, maxLayerZ, hw->getLayerStack()); |
| |
| size_t i = 0; |
| for (const auto& layer : mDrawingState.layersSortedByZ) { |
| const Layer::State& state(layer->getDrawingState()); |
| if (layer->belongsToDisplay(hw->getLayerStack(), false) && state.z >= minLayerZ && |
| state.z <= maxLayerZ) { |
| layer->traverseInZOrder(LayerVector::StateSet::Drawing, [&](Layer* layer) { |
| ALOGE("%c index=%zu, name=%s, layerStack=%d, z=%d, visible=%d, flags=%x, alpha=%.3f", |
| layer->isVisible() ? '+' : '-', |
| i, layer->getName().string(), layer->getLayerStack(), state.z, |
| layer->isVisible(), state.flags, state.alpha); |
| i++; |
| }); |
| } |
| } |
| } |
| } |
| |
| // --------------------------------------------------------------------------- |
| |
| void SurfaceFlinger::State::traverseInZOrder(const LayerVector::Visitor& visitor) const { |
| layersSortedByZ.traverseInZOrder(stateSet, visitor); |
| } |
| |
| void SurfaceFlinger::State::traverseInReverseZOrder(const LayerVector::Visitor& visitor) const { |
| layersSortedByZ.traverseInReverseZOrder(stateSet, visitor); |
| } |
| |
| }; // namespace android |
| |
| |
| #if defined(__gl_h_) |
| #error "don't include gl/gl.h in this file" |
| #endif |
| |
| #if defined(__gl2_h_) |
| #error "don't include gl2/gl2.h in this file" |
| #endif |