| /* |
| * Copyright (C) 2007 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #pragma once |
| |
| #include <compositionengine/LayerFE.h> |
| #include <gui/BufferQueue.h> |
| #include <gui/ISurfaceComposerClient.h> |
| #include <gui/LayerState.h> |
| #include <input/InputWindow.h> |
| #include <layerproto/LayerProtoHeader.h> |
| #include <math/vec4.h> |
| #include <renderengine/Mesh.h> |
| #include <renderengine/Texture.h> |
| #include <sys/types.h> |
| #include <ui/FloatRect.h> |
| #include <ui/FrameStats.h> |
| #include <ui/GraphicBuffer.h> |
| #include <ui/PixelFormat.h> |
| #include <ui/Region.h> |
| #include <ui/Transform.h> |
| #include <utils/RefBase.h> |
| #include <utils/Timers.h> |
| |
| #include <cstdint> |
| #include <list> |
| #include <optional> |
| #include <vector> |
| |
| #include "Client.h" |
| #include "ClientCache.h" |
| #include "DisplayHardware/ComposerHal.h" |
| #include "DisplayHardware/HWComposer.h" |
| #include "FrameTracker.h" |
| #include "LayerVector.h" |
| #include "MonitoredProducer.h" |
| #include "RenderArea.h" |
| #include "SurfaceFlinger.h" |
| #include "TransactionCompletedThread.h" |
| |
| using namespace android::surfaceflinger; |
| |
| namespace android { |
| |
| // --------------------------------------------------------------------------- |
| |
| class Client; |
| class Colorizer; |
| class DisplayDevice; |
| class GraphicBuffer; |
| class SurfaceFlinger; |
| class LayerDebugInfo; |
| |
| namespace compositionengine { |
| class OutputLayer; |
| struct LayerFECompositionState; |
| } |
| |
| namespace impl { |
| class SurfaceInterceptor; |
| } |
| |
| // --------------------------------------------------------------------------- |
| |
| struct LayerCreationArgs { |
| LayerCreationArgs(SurfaceFlinger*, sp<Client>, std::string name, uint32_t w, uint32_t h, |
| uint32_t flags, LayerMetadata); |
| |
| SurfaceFlinger* flinger; |
| const sp<Client> client; |
| std::string name; |
| uint32_t w; |
| uint32_t h; |
| uint32_t flags; |
| LayerMetadata metadata; |
| |
| pid_t callingPid; |
| uid_t callingUid; |
| uint32_t textureName; |
| }; |
| |
| class Layer : public virtual RefBase, compositionengine::LayerFE { |
| static std::atomic<int32_t> sSequence; |
| static constexpr int32_t PRIORITY_UNSET = -1; |
| |
| public: |
| mutable bool contentDirty{false}; |
| Region surfaceDamageRegion; |
| |
| // Layer serial number. This gives layers an explicit ordering, so we |
| // have a stable sort order when their layer stack and Z-order are |
| // the same. |
| int32_t sequence{sSequence++}; |
| |
| enum { // flags for doTransaction() |
| eDontUpdateGeometryState = 0x00000001, |
| eVisibleRegion = 0x00000002, |
| eInputInfoChanged = 0x00000004 |
| }; |
| |
| struct Geometry { |
| uint32_t w; |
| uint32_t h; |
| ui::Transform transform; |
| |
| inline bool operator==(const Geometry& rhs) const { |
| return (w == rhs.w && h == rhs.h) && (transform.tx() == rhs.transform.tx()) && |
| (transform.ty() == rhs.transform.ty()); |
| } |
| inline bool operator!=(const Geometry& rhs) const { return !operator==(rhs); } |
| }; |
| |
| struct RoundedCornerState { |
| RoundedCornerState() = default; |
| RoundedCornerState(FloatRect cropRect, float radius) |
| : cropRect(cropRect), radius(radius) {} |
| |
| // Rounded rectangle in local layer coordinate space. |
| FloatRect cropRect = FloatRect(); |
| // Radius of the rounded rectangle. |
| float radius = 0.0f; |
| }; |
| |
| // FrameRateCompatibility specifies how we should interpret the frame rate associated with |
| // the layer. |
| enum class FrameRateCompatibility { |
| Default, // Layer didn't specify any specific handling strategy |
| |
| ExactOrMultiple, // Layer needs the exact frame rate (or a multiple of it) to present the |
| // content properly. Any other value will result in a pull down. |
| |
| NoVote, // Layer doesn't have any requirements for the refresh rate and |
| // should not be considered when the display refresh rate is determined. |
| }; |
| |
| // Encapsulates the frame rate and compatibility of the layer. This information will be used |
| // when the display refresh rate is determined. |
| struct FrameRate { |
| float rate; |
| FrameRateCompatibility type; |
| |
| FrameRate() : rate(0), type(FrameRateCompatibility::Default) {} |
| FrameRate(float rate, FrameRateCompatibility type) : rate(rate), type(type) {} |
| |
| bool operator==(const FrameRate& other) const { |
| return rate == other.rate && type == other.type; |
| } |
| |
| bool operator!=(const FrameRate& other) const { return !(*this == other); } |
| |
| // Convert an ANATIVEWINDOW_FRAME_RATE_COMPATIBILITY_* value to a |
| // Layer::FrameRateCompatibility. Logs fatal if the compatibility value is invalid. |
| static FrameRateCompatibility convertCompatibility(int8_t compatibility); |
| }; |
| |
| struct State { |
| Geometry active_legacy; |
| Geometry requested_legacy; |
| int32_t z; |
| |
| // The identifier of the layer stack this layer belongs to. A layer can |
| // only be associated to a single layer stack. A layer stack is a |
| // z-ordered group of layers which can be associated to one or more |
| // displays. Using the same layer stack on different displays is a way |
| // to achieve mirroring. |
| uint32_t layerStack; |
| |
| uint8_t flags; |
| uint8_t reserved[2]; |
| int32_t sequence; // changes when visible regions can change |
| bool modified; |
| |
| // Crop is expressed in layer space coordinate. |
| Rect crop_legacy; |
| Rect requestedCrop_legacy; |
| |
| // If set, defers this state update until the identified Layer |
| // receives a frame with the given frameNumber |
| wp<Layer> barrierLayer_legacy; |
| uint64_t frameNumber_legacy; |
| |
| // the transparentRegion hint is a bit special, it's latched only |
| // when we receive a buffer -- this is because it's "content" |
| // dependent. |
| Region activeTransparentRegion_legacy; |
| Region requestedTransparentRegion_legacy; |
| |
| LayerMetadata metadata; |
| |
| // If non-null, a Surface this Surface's Z-order is interpreted relative to. |
| wp<Layer> zOrderRelativeOf; |
| bool isRelativeOf{false}; |
| |
| // A list of surfaces whose Z-order is interpreted relative to ours. |
| SortedVector<wp<Layer>> zOrderRelatives; |
| |
| half4 color; |
| float cornerRadius; |
| int backgroundBlurRadius; |
| |
| bool inputInfoChanged; |
| InputWindowInfo inputInfo; |
| wp<Layer> touchableRegionCrop; |
| |
| // dataspace is only used by BufferStateLayer and EffectLayer |
| ui::Dataspace dataspace; |
| |
| // The fields below this point are only used by BufferStateLayer |
| uint64_t frameNumber; |
| Geometry active; |
| |
| uint32_t transform; |
| bool transformToDisplayInverse; |
| |
| Rect crop; |
| Region transparentRegionHint; |
| |
| sp<GraphicBuffer> buffer; |
| client_cache_t clientCacheId; |
| sp<Fence> acquireFence; |
| HdrMetadata hdrMetadata; |
| Region surfaceDamageRegion; |
| int32_t api; |
| |
| sp<NativeHandle> sidebandStream; |
| mat4 colorTransform; |
| bool hasColorTransform; |
| |
| // pointer to background color layer that, if set, appears below the buffer state layer |
| // and the buffer state layer's children. Z order will be set to |
| // INT_MIN |
| sp<Layer> bgColorLayer; |
| |
| // The deque of callback handles for this frame. The back of the deque contains the most |
| // recent callback handle. |
| std::deque<sp<CallbackHandle>> callbackHandles; |
| bool colorSpaceAgnostic; |
| nsecs_t desiredPresentTime = -1; |
| |
| // Length of the cast shadow. If the radius is > 0, a shadow of length shadowRadius will |
| // be rendered around the layer. |
| float shadowRadius; |
| |
| // Priority of the layer assigned by Window Manager. |
| int32_t frameRateSelectionPriority; |
| |
| FrameRate frameRate; |
| |
| // Indicates whether parents / children of this layer had set FrameRate |
| bool treeHasFrameRateVote; |
| |
| // Set by window manager indicating the layer and all its children are |
| // in a different orientation than the display. The hint suggests that |
| // the graphic producers should receive a transform hint as if the |
| // display was in this orientation. When the display changes to match |
| // the layer orientation, the graphic producer may not need to allocate |
| // a buffer of a different size. ui::Transform::ROT_INVALID means the |
| // a fixed transform hint is not set. |
| ui::Transform::RotationFlags fixedTransformHint; |
| }; |
| |
| explicit Layer(const LayerCreationArgs& args); |
| virtual ~Layer(); |
| |
| void onFirstRef() override; |
| |
| int getWindowType() const { return mWindowType; } |
| |
| void setPrimaryDisplayOnly() { mPrimaryDisplayOnly = true; } |
| bool getPrimaryDisplayOnly() const { return mPrimaryDisplayOnly; } |
| |
| // ------------------------------------------------------------------------ |
| // Geometry setting functions. |
| // |
| // The following group of functions are used to specify the layers |
| // bounds, and the mapping of the texture on to those bounds. According |
| // to various settings changes to them may apply immediately, or be delayed until |
| // a pending resize is completed by the producer submitting a buffer. For example |
| // if we were to change the buffer size, and update the matrix ahead of the |
| // new buffer arriving, then we would be stretching the buffer to a different |
| // aspect before and after the buffer arriving, which probably isn't what we wanted. |
| // |
| // The first set of geometry functions are controlled by the scaling mode, described |
| // in window.h. The scaling mode may be set by the client, as it submits buffers. |
| // This value may be overriden through SurfaceControl, with setOverrideScalingMode. |
| // |
| // Put simply, if our scaling mode is SCALING_MODE_FREEZE, then |
| // matrix updates will not be applied while a resize is pending |
| // and the size and transform will remain in their previous state |
| // until a new buffer is submitted. If the scaling mode is another value |
| // then the old-buffer will immediately be scaled to the pending size |
| // and the new matrix will be immediately applied following this scaling |
| // transformation. |
| |
| // Set the default buffer size for the assosciated Producer, in pixels. This is |
| // also the rendered size of the layer prior to any transformations. Parent |
| // or local matrix transformations will not affect the size of the buffer, |
| // but may affect it's on-screen size or clipping. |
| virtual bool setSize(uint32_t w, uint32_t h); |
| // Set a 2x2 transformation matrix on the layer. This transform |
| // will be applied after parent transforms, but before any final |
| // producer specified transform. |
| virtual bool setMatrix(const layer_state_t::matrix22_t& matrix, |
| bool allowNonRectPreservingTransforms); |
| |
| // This second set of geometry attributes are controlled by |
| // setGeometryAppliesWithResize, and their default mode is to be |
| // immediate. If setGeometryAppliesWithResize is specified |
| // while a resize is pending, then update of these attributes will |
| // be delayed until the resize completes. |
| |
| // setPosition operates in parent buffer space (pre parent-transform) or display |
| // space for top-level layers. |
| virtual bool setPosition(float x, float y); |
| // Buffer space |
| virtual bool setCrop_legacy(const Rect& crop); |
| |
| // TODO(b/38182121): Could we eliminate the various latching modes by |
| // using the layer hierarchy? |
| // ----------------------------------------------------------------------- |
| virtual bool setLayer(int32_t z); |
| virtual bool setRelativeLayer(const sp<IBinder>& relativeToHandle, int32_t relativeZ); |
| |
| virtual bool setAlpha(float alpha); |
| virtual bool setColor(const half3& /*color*/) { return false; }; |
| |
| // Set rounded corner radius for this layer and its children. |
| // |
| // We only support 1 radius per layer in the hierarchy, where parent layers have precedence. |
| // The shape of the rounded corner rectangle is specified by the crop rectangle of the layer |
| // from which we inferred the rounded corner radius. |
| virtual bool setCornerRadius(float cornerRadius); |
| // When non-zero, everything below this layer will be blurred by backgroundBlurRadius, which |
| // is specified in pixels. |
| virtual bool setBackgroundBlurRadius(int backgroundBlurRadius); |
| virtual bool setTransparentRegionHint(const Region& transparent); |
| virtual bool setFlags(uint8_t flags, uint8_t mask); |
| virtual bool setLayerStack(uint32_t layerStack); |
| virtual uint32_t getLayerStack() const; |
| virtual void deferTransactionUntil_legacy(const sp<IBinder>& barrierHandle, |
| uint64_t frameNumber); |
| virtual void deferTransactionUntil_legacy(const sp<Layer>& barrierLayer, uint64_t frameNumber); |
| virtual bool setOverrideScalingMode(int32_t overrideScalingMode); |
| virtual bool setMetadata(const LayerMetadata& data); |
| bool reparentChildren(const sp<IBinder>& newParentHandle); |
| void reparentChildren(const sp<Layer>& newParent); |
| virtual void setChildrenDrawingParent(const sp<Layer>& layer); |
| virtual bool reparent(const sp<IBinder>& newParentHandle); |
| virtual bool detachChildren(); |
| bool attachChildren(); |
| bool isLayerDetached() const { return mLayerDetached; } |
| virtual bool setColorTransform(const mat4& matrix); |
| virtual mat4 getColorTransform() const; |
| virtual bool hasColorTransform() const; |
| virtual bool isColorSpaceAgnostic() const { return mDrawingState.colorSpaceAgnostic; } |
| |
| // Used only to set BufferStateLayer state |
| virtual bool setTransform(uint32_t /*transform*/) { return false; }; |
| virtual bool setTransformToDisplayInverse(bool /*transformToDisplayInverse*/) { return false; }; |
| virtual bool setCrop(const Rect& /*crop*/) { return false; }; |
| virtual bool setFrame(const Rect& /*frame*/) { return false; }; |
| virtual bool setBuffer(const sp<GraphicBuffer>& /*buffer*/, const sp<Fence>& /*acquireFence*/, |
| nsecs_t /*postTime*/, nsecs_t /*desiredPresentTime*/, |
| const client_cache_t& /*clientCacheId*/) { |
| return false; |
| }; |
| virtual bool setAcquireFence(const sp<Fence>& /*fence*/) { return false; }; |
| virtual bool setDataspace(ui::Dataspace /*dataspace*/) { return false; }; |
| virtual bool setHdrMetadata(const HdrMetadata& /*hdrMetadata*/) { return false; }; |
| virtual bool setSurfaceDamageRegion(const Region& /*surfaceDamage*/) { return false; }; |
| virtual bool setApi(int32_t /*api*/) { return false; }; |
| virtual bool setSidebandStream(const sp<NativeHandle>& /*sidebandStream*/) { return false; }; |
| virtual bool setTransactionCompletedListeners( |
| const std::vector<sp<CallbackHandle>>& /*handles*/) { |
| return false; |
| }; |
| virtual void forceSendCallbacks() {} |
| virtual bool addFrameEvent(const sp<Fence>& /*acquireFence*/, nsecs_t /*postedTime*/, |
| nsecs_t /*requestedPresentTime*/) { |
| return false; |
| } |
| virtual bool setBackgroundColor(const half3& color, float alpha, ui::Dataspace dataspace); |
| virtual bool setColorSpaceAgnostic(const bool agnostic); |
| bool setShadowRadius(float shadowRadius); |
| virtual bool setFrameRateSelectionPriority(int32_t priority); |
| virtual bool setFixedTransformHint(ui::Transform::RotationFlags fixedTransformHint); |
| // If the variable is not set on the layer, it traverses up the tree to inherit the frame |
| // rate priority from its parent. |
| virtual int32_t getFrameRateSelectionPriority() const; |
| |
| virtual ui::Dataspace getDataSpace() const { return ui::Dataspace::UNKNOWN; } |
| |
| // Before color management is introduced, contents on Android have to be |
| // desaturated in order to match what they appears like visually. |
| // With color management, these contents will appear desaturated, thus |
| // needed to be saturated so that they match what they are designed for |
| // visually. |
| bool isLegacyDataSpace() const; |
| |
| virtual sp<compositionengine::LayerFE> getCompositionEngineLayerFE() const; |
| virtual compositionengine::LayerFECompositionState* editCompositionState(); |
| |
| // If we have received a new buffer this frame, we will pass its surface |
| // damage down to hardware composer. Otherwise, we must send a region with |
| // one empty rect. |
| virtual void useSurfaceDamage() {} |
| virtual void useEmptyDamage() {} |
| |
| uint32_t getTransactionFlags() const { return mTransactionFlags; } |
| uint32_t getTransactionFlags(uint32_t flags); |
| uint32_t setTransactionFlags(uint32_t flags); |
| |
| // Deprecated, please use compositionengine::Output::belongsInOutput() |
| // instead. |
| // TODO(lpique): Move the remaining callers (screencap) to the new function. |
| bool belongsToDisplay(uint32_t layerStack, bool isPrimaryDisplay) const { |
| return getLayerStack() == layerStack && (!mPrimaryDisplayOnly || isPrimaryDisplay); |
| } |
| |
| FloatRect getBounds(const Region& activeTransparentRegion) const; |
| FloatRect getBounds() const; |
| |
| // Compute bounds for the layer and cache the results. |
| void computeBounds(FloatRect parentBounds, ui::Transform parentTransform, float shadowRadius); |
| |
| // Returns the buffer scale transform if a scaling mode is set. |
| ui::Transform getBufferScaleTransform() const; |
| |
| // Get effective layer transform, taking into account all its parent transform with any |
| // scaling if the parent scaling more is not NATIVE_WINDOW_SCALING_MODE_FREEZE. |
| ui::Transform getTransformWithScale(const ui::Transform& bufferScaleTransform) const; |
| |
| // Returns the bounds of the layer without any buffer scaling. |
| FloatRect getBoundsPreScaling(const ui::Transform& bufferScaleTransform) const; |
| |
| int32_t getSequence() const { return sequence; } |
| |
| // For tracing. |
| // TODO: Replace with raw buffer id from buffer metadata when that becomes available. |
| // GraphicBuffer::getId() does not provide a reliable global identifier. Since the traces |
| // creates its tracks by buffer id and has no way of associating a buffer back to the process |
| // that created it, the current implementation is only sufficient for cases where a buffer is |
| // only used within a single layer. |
| uint64_t getCurrentBufferId() const { return getBuffer() ? getBuffer()->getId() : 0; } |
| |
| // ----------------------------------------------------------------------- |
| // Virtuals |
| |
| // Provide unique string for each class type in the Layer hierarchy |
| virtual const char* getType() const = 0; |
| |
| /* |
| * isOpaque - true if this surface is opaque |
| * |
| * This takes into account the buffer format (i.e. whether or not the |
| * pixel format includes an alpha channel) and the "opaque" flag set |
| * on the layer. It does not examine the current plane alpha value. |
| */ |
| virtual bool isOpaque(const Layer::State&) const { return false; } |
| |
| /* |
| * isSecure - true if this surface is secure, that is if it prevents |
| * screenshots or VNC servers. |
| */ |
| bool isSecure() const; |
| |
| /* |
| * isVisible - true if this layer is visible, false otherwise |
| */ |
| virtual bool isVisible() const = 0; |
| |
| /* |
| * isHiddenByPolicy - true if this layer has been forced invisible. |
| * just because this is false, doesn't mean isVisible() is true. |
| * For example if this layer has no active buffer, it may not be hidden by |
| * policy, but it still can not be visible. |
| */ |
| bool isHiddenByPolicy() const; |
| |
| /* |
| * Returns whether this layer can receive input. |
| */ |
| virtual bool canReceiveInput() const; |
| |
| /* |
| * isProtected - true if the layer may contain protected content in the |
| * GRALLOC_USAGE_PROTECTED sense. |
| */ |
| virtual bool isProtected() const { return false; } |
| |
| /* |
| * isFixedSize - true if content has a fixed size |
| */ |
| virtual bool isFixedSize() const { return true; } |
| |
| /* |
| * usesSourceCrop - true if content should use a source crop |
| */ |
| virtual bool usesSourceCrop() const { return false; } |
| |
| // Most layers aren't created from the main thread, and therefore need to |
| // grab the SF state lock to access HWC, but ContainerLayer does, so we need |
| // to avoid grabbing the lock again to avoid deadlock |
| virtual bool isCreatedFromMainThread() const { return false; } |
| |
| bool isRemovedFromCurrentState() const; |
| |
| LayerProto* writeToProto(LayersProto& layersProto, uint32_t traceFlags, |
| const DisplayDevice*) const; |
| |
| // Write states that are modified by the main thread. This includes drawing |
| // state as well as buffer data. This should be called in the main or tracing |
| // thread. |
| void writeToProtoDrawingState(LayerProto* layerInfo, uint32_t traceFlags, |
| const DisplayDevice*) const; |
| // Write drawing or current state. If writing current state, the caller should hold the |
| // external mStateLock. If writing drawing state, this function should be called on the |
| // main or tracing thread. |
| void writeToProtoCommonState(LayerProto* layerInfo, LayerVector::StateSet stateSet, |
| uint32_t traceFlags = SurfaceTracing::TRACE_ALL) const; |
| |
| virtual Geometry getActiveGeometry(const Layer::State& s) const { return s.active_legacy; } |
| virtual uint32_t getActiveWidth(const Layer::State& s) const { return s.active_legacy.w; } |
| virtual uint32_t getActiveHeight(const Layer::State& s) const { return s.active_legacy.h; } |
| virtual ui::Transform getActiveTransform(const Layer::State& s) const { |
| return s.active_legacy.transform; |
| } |
| virtual Region getActiveTransparentRegion(const Layer::State& s) const { |
| return s.activeTransparentRegion_legacy; |
| } |
| virtual Rect getCrop(const Layer::State& s) const { return s.crop_legacy; } |
| virtual bool needsFiltering(const DisplayDevice*) const { return false; } |
| // True if this layer requires filtering |
| // This method is distinct from needsFiltering() in how the filter |
| // requirement is computed. needsFiltering() compares displayFrame and crop, |
| // where as this method transforms the displayFrame to layer-stack space |
| // first. This method should be used if there is no physical display to |
| // project onto when taking screenshots, as the filtering requirements are |
| // different. |
| // If the parent transform needs to be undone when capturing the layer, then |
| // the inverse parent transform is also required. |
| virtual bool needsFilteringForScreenshots(const DisplayDevice*, const ui::Transform&) const { |
| return false; |
| } |
| |
| // This layer is not a clone, but it's the parent to the cloned hierarchy. The |
| // variable mClonedChild represents the top layer that will be cloned so this |
| // layer will be the parent of mClonedChild. |
| // The layers in the cloned hierarchy will match the lifetime of the real layers. That is |
| // if the real layer is destroyed, then the clone layer will also be destroyed. |
| sp<Layer> mClonedChild; |
| |
| virtual sp<Layer> createClone() = 0; |
| void updateMirrorInfo(); |
| virtual void updateCloneBufferInfo(){}; |
| |
| protected: |
| sp<compositionengine::LayerFE> asLayerFE() const; |
| sp<Layer> getClonedFrom() { return mClonedFrom != nullptr ? mClonedFrom.promote() : nullptr; } |
| bool isClone() { return mClonedFrom != nullptr; } |
| bool isClonedFromAlive() { return getClonedFrom() != nullptr; } |
| |
| virtual void setInitialValuesForClone(const sp<Layer>& clonedFrom); |
| |
| void updateClonedDrawingState(std::map<sp<Layer>, sp<Layer>>& clonedLayersMap); |
| void updateClonedChildren(const sp<Layer>& mirrorRoot, |
| std::map<sp<Layer>, sp<Layer>>& clonedLayersMap); |
| void updateClonedRelatives(const std::map<sp<Layer>, sp<Layer>>& clonedLayersMap); |
| void addChildToDrawing(const sp<Layer>& layer); |
| void updateClonedInputInfo(const std::map<sp<Layer>, sp<Layer>>& clonedLayersMap); |
| virtual std::optional<compositionengine::LayerFE::LayerSettings> prepareClientComposition( |
| compositionengine::LayerFE::ClientCompositionTargetSettings&); |
| virtual std::optional<compositionengine::LayerFE::LayerSettings> prepareShadowClientComposition( |
| const LayerFE::LayerSettings& layerSettings, const Rect& displayViewport, |
| ui::Dataspace outputDataspace); |
| // Modifies the passed in layer settings to clear the contents. If the blackout flag is set, |
| // the settings clears the content with a solid black fill. |
| void prepareClearClientComposition(LayerFE::LayerSettings& layerSettings, bool blackout) const; |
| |
| public: |
| /* |
| * compositionengine::LayerFE overrides |
| */ |
| const compositionengine::LayerFECompositionState* getCompositionState() const override; |
| bool onPreComposition(nsecs_t) override; |
| void prepareCompositionState(compositionengine::LayerFE::StateSubset subset) override; |
| std::vector<compositionengine::LayerFE::LayerSettings> prepareClientCompositionList( |
| compositionengine::LayerFE::ClientCompositionTargetSettings&) override; |
| void onLayerDisplayed(const sp<Fence>& releaseFence) override; |
| const char* getDebugName() const override; |
| |
| protected: |
| void prepareBasicGeometryCompositionState(); |
| void prepareGeometryCompositionState(); |
| virtual void preparePerFrameCompositionState(); |
| void prepareCursorCompositionState(); |
| |
| public: |
| virtual void setDefaultBufferSize(uint32_t /*w*/, uint32_t /*h*/) {} |
| |
| virtual bool isHdrY410() const { return false; } |
| |
| virtual bool shouldPresentNow(nsecs_t /*expectedPresentTime*/) const { return false; } |
| |
| /* |
| * called after composition. |
| * returns true if the layer latched a new buffer this frame. |
| */ |
| virtual bool onPostComposition(const DisplayDevice*, |
| const std::shared_ptr<FenceTime>& /*glDoneFence*/, |
| const std::shared_ptr<FenceTime>& /*presentFence*/, |
| const CompositorTiming&) { |
| return false; |
| } |
| |
| // If a buffer was replaced this frame, release the former buffer |
| virtual void releasePendingBuffer(nsecs_t /*dequeueReadyTime*/) { } |
| |
| virtual void finalizeFrameEventHistory(const std::shared_ptr<FenceTime>& /*glDoneFence*/, |
| const CompositorTiming& /*compositorTiming*/) {} |
| /* |
| * doTransaction - process the transaction. This is a good place to figure |
| * out which attributes of the surface have changed. |
| */ |
| uint32_t doTransaction(uint32_t transactionFlags); |
| |
| /* |
| * latchBuffer - called each time the screen is redrawn and returns whether |
| * the visible regions need to be recomputed (this is a fairly heavy |
| * operation, so this should be set only if needed). Typically this is used |
| * to figure out if the content or size of a surface has changed. |
| */ |
| virtual bool latchBuffer(bool& /*recomputeVisibleRegions*/, nsecs_t /*latchTime*/, |
| nsecs_t /*expectedPresentTime*/) { |
| return false; |
| } |
| |
| virtual bool isBufferLatched() const { return false; } |
| |
| virtual void latchAndReleaseBuffer() {} |
| |
| /* |
| * Remove relative z for the layer if its relative parent is not part of the |
| * provided layer tree. |
| */ |
| void removeRelativeZ(const std::vector<Layer*>& layersInTree); |
| |
| /* |
| * Remove from current state and mark for removal. |
| */ |
| void removeFromCurrentState(); |
| |
| /* |
| * called with the state lock from a binder thread when the layer is |
| * removed from the current list to the pending removal list |
| */ |
| void onRemovedFromCurrentState(); |
| |
| /* |
| * Called when the layer is added back to the current state list. |
| */ |
| void addToCurrentState(); |
| |
| /* |
| * Sets display transform hint on BufferLayerConsumer. |
| */ |
| void updateTransformHint(ui::Transform::RotationFlags); |
| |
| /* |
| * returns the rectangle that crops the content of the layer and scales it |
| * to the layer's size. |
| */ |
| virtual Rect getBufferCrop() const { return Rect(); } |
| |
| /* |
| * Returns the transform applied to the buffer. |
| */ |
| virtual uint32_t getBufferTransform() const { return 0; } |
| |
| virtual sp<GraphicBuffer> getBuffer() const { return nullptr; } |
| |
| virtual ui::Transform::RotationFlags getTransformHint() const { return ui::Transform::ROT_0; } |
| |
| /* |
| * Returns if a frame is ready |
| */ |
| virtual bool hasReadyFrame() const { return false; } |
| |
| virtual int32_t getQueuedFrameCount() const { return 0; } |
| |
| // ----------------------------------------------------------------------- |
| inline const State& getDrawingState() const { return mDrawingState; } |
| inline const State& getCurrentState() const { return mCurrentState; } |
| inline State& getCurrentState() { return mCurrentState; } |
| |
| LayerDebugInfo getLayerDebugInfo(const DisplayDevice*) const; |
| |
| static void miniDumpHeader(std::string& result); |
| void miniDump(std::string& result, const DisplayDevice&) const; |
| void dumpFrameStats(std::string& result) const; |
| void dumpFrameEvents(std::string& result); |
| void dumpCallingUidPid(std::string& result) const; |
| void clearFrameStats(); |
| void logFrameStats(); |
| void getFrameStats(FrameStats* outStats) const; |
| |
| virtual std::vector<OccupancyTracker::Segment> getOccupancyHistory(bool /*forceFlush*/) { |
| return {}; |
| } |
| |
| void onDisconnect(); |
| void addAndGetFrameTimestamps(const NewFrameEventsEntry* newEntry, |
| FrameEventHistoryDelta* outDelta); |
| |
| virtual bool getTransformToDisplayInverse() const { return false; } |
| |
| ui::Transform getTransform() const; |
| |
| // Returns the Alpha of the Surface, accounting for the Alpha |
| // of parent Surfaces in the hierarchy (alpha's will be multiplied |
| // down the hierarchy). |
| half getAlpha() const; |
| half4 getColor() const; |
| int32_t getBackgroundBlurRadius() const; |
| bool drawShadows() const { return mEffectiveShadowRadius > 0.f; }; |
| |
| // Returns the transform hint set by Window Manager on the layer or one of its parents. |
| // This traverses the current state because the data is needed when creating |
| // the layer(off drawing thread) and the hint should be available before the producer |
| // is ready to acquire a buffer. |
| ui::Transform::RotationFlags getFixedTransformHint() const; |
| |
| // Returns how rounded corners should be drawn for this layer. |
| // This will traverse the hierarchy until it reaches its root, finding topmost rounded |
| // corner definition and converting it into current layer's coordinates. |
| // As of now, only 1 corner radius per display list is supported. Subsequent ones will be |
| // ignored. |
| virtual RoundedCornerState getRoundedCornerState() const; |
| |
| renderengine::ShadowSettings getShadowSettings(const Rect& viewport) const; |
| |
| /** |
| * Traverse this layer and it's hierarchy of children directly. Unlike traverseInZOrder |
| * which will not emit children who have relativeZOrder to another layer, this method |
| * just directly emits all children. It also emits them in no particular order. |
| * So this method is not suitable for graphical operations, as it doesn't represent |
| * the scene state, but it's also more efficient than traverseInZOrder and so useful for |
| * book-keeping. |
| */ |
| void traverse(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor); |
| void traverseInReverseZOrder(LayerVector::StateSet stateSet, |
| const LayerVector::Visitor& visitor); |
| void traverseInZOrder(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor); |
| |
| /** |
| * Traverse only children in z order, ignoring relative layers that are not children of the |
| * parent. |
| */ |
| void traverseChildrenInZOrder(LayerVector::StateSet stateSet, |
| const LayerVector::Visitor& visitor); |
| |
| size_t getChildrenCount() const; |
| |
| // ONLY CALL THIS FROM THE LAYER DTOR! |
| // See b/141111965. We need to add current children to offscreen layers in |
| // the layer dtor so as not to dangle layers. Since the layer has not |
| // committed its transaction when the layer is destroyed, we must add |
| // current children. This is safe in the dtor as we will no longer update |
| // the current state, but should not be called anywhere else! |
| LayerVector& getCurrentChildren() { return mCurrentChildren; } |
| |
| void addChild(const sp<Layer>& layer); |
| // Returns index if removed, or negative value otherwise |
| // for symmetry with Vector::remove |
| ssize_t removeChild(const sp<Layer>& layer); |
| sp<Layer> getParent() const { return mCurrentParent.promote(); } |
| bool hasParent() const { return getParent() != nullptr; } |
| Rect getScreenBounds(bool reduceTransparentRegion = true) const; |
| bool setChildLayer(const sp<Layer>& childLayer, int32_t z); |
| bool setChildRelativeLayer(const sp<Layer>& childLayer, |
| const sp<IBinder>& relativeToHandle, int32_t relativeZ); |
| |
| // Copy the current list of children to the drawing state. Called by |
| // SurfaceFlinger to complete a transaction. |
| void commitChildList(); |
| int32_t getZ(LayerVector::StateSet stateSet) const; |
| virtual void pushPendingState(); |
| |
| /** |
| * Returns active buffer size in the correct orientation. Buffer size is determined by undoing |
| * any buffer transformations. If the layer has no buffer then return INVALID_RECT. |
| */ |
| virtual Rect getBufferSize(const Layer::State&) const { return Rect::INVALID_RECT; } |
| |
| /** |
| * Returns the source bounds. If the bounds are not defined, it is inferred from the |
| * buffer size. Failing that, the bounds are determined from the passed in parent bounds. |
| * For the root layer, this is the display viewport size. |
| */ |
| virtual FloatRect computeSourceBounds(const FloatRect& parentBounds) const { |
| return parentBounds; |
| } |
| |
| /** |
| * Returns the cropped buffer size or the layer crop if the layer has no buffer. Return |
| * INVALID_RECT if the layer has no buffer and no crop. |
| * A layer with an invalid buffer size and no crop is considered to be boundless. The layer |
| * bounds are constrained by its parent bounds. |
| */ |
| Rect getCroppedBufferSize(const Layer::State& s) const; |
| |
| bool setFrameRate(FrameRate frameRate); |
| virtual FrameRate getFrameRateForLayerTree() const; |
| static std::string frameRateCompatibilityString(FrameRateCompatibility compatibility); |
| |
| protected: |
| // constant |
| sp<SurfaceFlinger> mFlinger; |
| /* |
| * Trivial class, used to ensure that mFlinger->onLayerDestroyed(mLayer) |
| * is called. |
| */ |
| class LayerCleaner { |
| sp<SurfaceFlinger> mFlinger; |
| sp<Layer> mLayer; |
| |
| protected: |
| ~LayerCleaner() { |
| // destroy client resources |
| mFlinger->onHandleDestroyed(mLayer); |
| } |
| |
| public: |
| LayerCleaner(const sp<SurfaceFlinger>& flinger, const sp<Layer>& layer) |
| : mFlinger(flinger), mLayer(layer) {} |
| }; |
| |
| friend class impl::SurfaceInterceptor; |
| |
| // For unit tests |
| friend class TestableSurfaceFlinger; |
| friend class RefreshRateSelectionTest; |
| friend class SetFrameRateTest; |
| |
| virtual void commitTransaction(const State& stateToCommit); |
| |
| uint32_t getEffectiveUsage(uint32_t usage) const; |
| |
| /** |
| * Setup rounded corners coordinates of this layer, taking into account the layer bounds and |
| * crop coordinates, transforming them into layer space. |
| */ |
| void setupRoundedCornersCropCoordinates(Rect win, const FloatRect& roundedCornersCrop) const; |
| void setParent(const sp<Layer>& layer); |
| LayerVector makeTraversalList(LayerVector::StateSet stateSet, bool* outSkipRelativeZUsers); |
| void addZOrderRelative(const wp<Layer>& relative); |
| void removeZOrderRelative(const wp<Layer>& relative); |
| |
| class SyncPoint { |
| public: |
| explicit SyncPoint(uint64_t frameNumber, wp<Layer> requestedSyncLayer) |
| : mFrameNumber(frameNumber), |
| mFrameIsAvailable(false), |
| mTransactionIsApplied(false), |
| mRequestedSyncLayer(requestedSyncLayer) {} |
| |
| uint64_t getFrameNumber() const { return mFrameNumber; } |
| |
| bool frameIsAvailable() const { return mFrameIsAvailable; } |
| |
| void setFrameAvailable() { mFrameIsAvailable = true; } |
| |
| bool transactionIsApplied() const { return mTransactionIsApplied; } |
| |
| void setTransactionApplied() { mTransactionIsApplied = true; } |
| |
| sp<Layer> getRequestedSyncLayer() { return mRequestedSyncLayer.promote(); } |
| |
| private: |
| const uint64_t mFrameNumber; |
| std::atomic<bool> mFrameIsAvailable; |
| std::atomic<bool> mTransactionIsApplied; |
| wp<Layer> mRequestedSyncLayer; |
| }; |
| |
| // SyncPoints which will be signaled when the correct frame is at the head |
| // of the queue and dropped after the frame has been latched. Protected by |
| // mLocalSyncPointMutex. |
| Mutex mLocalSyncPointMutex; |
| std::list<std::shared_ptr<SyncPoint>> mLocalSyncPoints; |
| |
| // SyncPoints which will be signaled and then dropped when the transaction |
| // is applied |
| std::list<std::shared_ptr<SyncPoint>> mRemoteSyncPoints; |
| |
| // Returns false if the relevant frame has already been latched |
| bool addSyncPoint(const std::shared_ptr<SyncPoint>& point); |
| |
| void popPendingState(State* stateToCommit); |
| virtual bool applyPendingStates(State* stateToCommit); |
| virtual uint32_t doTransactionResize(uint32_t flags, Layer::State* stateToCommit); |
| |
| // Returns mCurrentScaling mode (originating from the |
| // Client) or mOverrideScalingMode mode (originating from |
| // the Surface Controller) if set. |
| virtual uint32_t getEffectiveScalingMode() const { return 0; } |
| |
| public: |
| /* |
| * The layer handle is just a BBinder object passed to the client |
| * (remote process) -- we don't keep any reference on our side such that |
| * the dtor is called when the remote side let go of its reference. |
| * |
| * LayerCleaner ensures that mFlinger->onLayerDestroyed() is called for |
| * this layer when the handle is destroyed. |
| */ |
| class Handle : public BBinder, public LayerCleaner { |
| public: |
| Handle(const sp<SurfaceFlinger>& flinger, const sp<Layer>& layer) |
| : LayerCleaner(flinger, layer), owner(layer) {} |
| |
| wp<Layer> owner; |
| }; |
| |
| // Creates a new handle each time, so we only expect |
| // this to be called once. |
| sp<IBinder> getHandle(); |
| const std::string& getName() const { return mName; } |
| virtual void notifyAvailableFrames(nsecs_t /*expectedPresentTime*/) {} |
| virtual PixelFormat getPixelFormat() const { return PIXEL_FORMAT_NONE; } |
| bool getPremultipledAlpha() const; |
| |
| bool mPendingHWCDestroy{false}; |
| void setInputInfo(const InputWindowInfo& info); |
| |
| InputWindowInfo fillInputInfo(); |
| bool hasInput() const; |
| |
| protected: |
| compositionengine::OutputLayer* findOutputLayerForDisplay(const DisplayDevice*) const; |
| |
| bool usingRelativeZ(LayerVector::StateSet stateSet) const; |
| |
| bool mPremultipliedAlpha{true}; |
| const std::string mName; |
| const std::string mTransactionName{"TX - " + mName}; |
| |
| bool mPrimaryDisplayOnly = false; |
| |
| // These are only accessed by the main thread or the tracing thread. |
| State mDrawingState; |
| // Store a copy of the pending state so that the drawing thread can access the |
| // states without a lock. |
| Vector<State> mPendingStatesSnapshot; |
| |
| // these are protected by an external lock (mStateLock) |
| State mCurrentState; |
| std::atomic<uint32_t> mTransactionFlags{0}; |
| Vector<State> mPendingStates; |
| |
| // Timestamp history for UIAutomation. Thread safe. |
| FrameTracker mFrameTracker; |
| |
| // Timestamp history for the consumer to query. |
| // Accessed by both consumer and producer on main and binder threads. |
| Mutex mFrameEventHistoryMutex; |
| ConsumerFrameEventHistory mFrameEventHistory; |
| FenceTimeline mAcquireTimeline; |
| FenceTimeline mReleaseTimeline; |
| |
| // main thread |
| sp<NativeHandle> mSidebandStream; |
| // False if the buffer and its contents have been previously used for GPU |
| // composition, true otherwise. |
| bool mIsActiveBufferUpdatedForGpu = true; |
| |
| // We encode unset as -1. |
| int32_t mOverrideScalingMode{-1}; |
| std::atomic<uint64_t> mCurrentFrameNumber{0}; |
| // Whether filtering is needed b/c of the drawingstate |
| bool mNeedsFiltering{false}; |
| |
| std::atomic<bool> mRemovedFromCurrentState{false}; |
| |
| // page-flip thread (currently main thread) |
| bool mProtectedByApp{false}; // application requires protected path to external sink |
| |
| // protected by mLock |
| mutable Mutex mLock; |
| |
| const wp<Client> mClientRef; |
| |
| // This layer can be a cursor on some displays. |
| bool mPotentialCursor{false}; |
| |
| // Child list about to be committed/used for editing. |
| LayerVector mCurrentChildren{LayerVector::StateSet::Current}; |
| // Child list used for rendering. |
| LayerVector mDrawingChildren{LayerVector::StateSet::Drawing}; |
| |
| wp<Layer> mCurrentParent; |
| wp<Layer> mDrawingParent; |
| |
| // Can only be accessed with the SF state lock held. |
| bool mLayerDetached{false}; |
| // Can only be accessed with the SF state lock held. |
| bool mChildrenChanged{false}; |
| |
| // Window types from WindowManager.LayoutParams |
| const int mWindowType; |
| |
| private: |
| virtual void setTransformHint(ui::Transform::RotationFlags) {} |
| |
| Hwc2::IComposerClient::Composition getCompositionType(const DisplayDevice&) const; |
| Region getVisibleRegion(const DisplayDevice*) const; |
| |
| /** |
| * Returns an unsorted vector of all layers that are part of this tree. |
| * That includes the current layer and all its descendants. |
| */ |
| std::vector<Layer*> getLayersInTree(LayerVector::StateSet stateSet); |
| /** |
| * Traverses layers that are part of this tree in the correct z order. |
| * layersInTree must be sorted before calling this method. |
| */ |
| void traverseChildrenInZOrderInner(const std::vector<Layer*>& layersInTree, |
| LayerVector::StateSet stateSet, |
| const LayerVector::Visitor& visitor); |
| LayerVector makeChildrenTraversalList(LayerVector::StateSet stateSet, |
| const std::vector<Layer*>& layersInTree); |
| |
| void updateTreeHasFrameRateVote(); |
| |
| // Cached properties computed from drawing state |
| // Effective transform taking into account parent transforms and any parent scaling. |
| ui::Transform mEffectiveTransform; |
| |
| // Bounds of the layer before any transformation is applied and before it has been cropped |
| // by its parents. |
| FloatRect mSourceBounds; |
| |
| // Bounds of the layer in layer space. This is the mSourceBounds cropped by its layer crop and |
| // its parent bounds. |
| FloatRect mBounds; |
| |
| // Layer bounds in screen space. |
| FloatRect mScreenBounds; |
| |
| void setZOrderRelativeOf(const wp<Layer>& relativeOf); |
| |
| bool mGetHandleCalled = false; |
| |
| void removeRemoteSyncPoints(); |
| |
| // Tracks the process and user id of the caller when creating this layer |
| // to help debugging. |
| pid_t mCallingPid; |
| uid_t mCallingUid; |
| |
| // The current layer is a clone of mClonedFrom. This means that this layer will update it's |
| // properties based on mClonedFrom. When mClonedFrom latches a new buffer for BufferLayers, |
| // this layer will update it's buffer. When mClonedFrom updates it's drawing state, children, |
| // and relatives, this layer will update as well. |
| wp<Layer> mClonedFrom; |
| |
| // The inherited shadow radius after taking into account the layer hierarchy. This is the |
| // final shadow radius for this layer. If a shadow is specified for a layer, then effective |
| // shadow radius is the set shadow radius, otherwise its the parent's shadow radius. |
| float mEffectiveShadowRadius = 0.f; |
| |
| // Returns true if the layer can draw shadows on its border. |
| virtual bool canDrawShadows() const { return true; } |
| |
| // Find the root of the cloned hierarchy, this means the first non cloned parent. |
| // This will return null if first non cloned parent is not found. |
| sp<Layer> getClonedRoot(); |
| }; |
| |
| } // namespace android |