blob: c471e49e2454886f475db1803bdf736511c863b8 [file] [log] [blame]
/*
* Copyright 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#undef LOG_TAG
#define LOG_TAG "VSyncReactor"
//#define LOG_NDEBUG 0
#include "VSyncReactor.h"
#include <log/log.h>
#include "TimeKeeper.h"
#include "VSyncDispatch.h"
#include "VSyncTracker.h"
namespace android::scheduler {
Clock::~Clock() = default;
nsecs_t SystemClock::now() const {
return systemTime(SYSTEM_TIME_MONOTONIC);
}
VSyncReactor::VSyncReactor(std::unique_ptr<Clock> clock, std::unique_ptr<VSyncDispatch> dispatch,
std::unique_ptr<VSyncTracker> tracker, size_t pendingFenceLimit)
: mClock(std::move(clock)),
mTracker(std::move(tracker)),
mDispatch(std::move(dispatch)),
mPendingLimit(pendingFenceLimit) {}
VSyncReactor::~VSyncReactor() = default;
// The DispSync interface has a 'repeat this callback at rate' semantic. This object adapts
// VSyncDispatch's individually-scheduled callbacks so as to meet DispSync's existing semantic
// for now.
class CallbackRepeater {
public:
CallbackRepeater(VSyncDispatch& dispatch, DispSync::Callback* cb, const char* name,
nsecs_t period, nsecs_t offset, nsecs_t notBefore)
: mCallback(cb),
mRegistration(dispatch,
std::bind(&CallbackRepeater::callback, this, std::placeholders::_1),
std::string(name)),
mPeriod(period),
mOffset(offset),
mLastCallTime(notBefore) {}
~CallbackRepeater() {
std::lock_guard<std::mutex> lk(mMutex);
mRegistration.cancel();
}
void start(nsecs_t offset) {
std::lock_guard<std::mutex> lk(mMutex);
mStopped = false;
mOffset = offset;
auto const schedule_result = mRegistration.schedule(calculateWorkload(), mLastCallTime);
LOG_ALWAYS_FATAL_IF((schedule_result != ScheduleResult::Scheduled),
"Error scheduling callback: rc %X", schedule_result);
}
void setPeriod(nsecs_t period) {
std::lock_guard<std::mutex> lk(mMutex);
if (period == mPeriod) {
return;
}
mPeriod = period;
}
void stop() {
std::lock_guard<std::mutex> lk(mMutex);
LOG_ALWAYS_FATAL_IF(mStopped, "DispSyncInterface misuse: callback already stopped");
mStopped = true;
mRegistration.cancel();
}
private:
void callback(nsecs_t vsynctime) {
nsecs_t period = 0;
{
std::lock_guard<std::mutex> lk(mMutex);
period = mPeriod;
mLastCallTime = vsynctime;
}
mCallback->onDispSyncEvent(vsynctime - period);
{
std::lock_guard<std::mutex> lk(mMutex);
auto const schedule_result = mRegistration.schedule(calculateWorkload(), vsynctime);
LOG_ALWAYS_FATAL_IF((schedule_result != ScheduleResult::Scheduled),
"Error rescheduling callback: rc %X", schedule_result);
}
}
// DispSync offsets are defined as time after the vsync before presentation.
// VSyncReactor workloads are defined as time before the intended presentation vsync.
// Note change in sign between the two defnitions.
nsecs_t calculateWorkload() REQUIRES(mMutex) { return mPeriod - mOffset; }
DispSync::Callback* const mCallback;
std::mutex mutable mMutex;
VSyncCallbackRegistration mRegistration GUARDED_BY(mMutex);
bool mStopped GUARDED_BY(mMutex) = false;
nsecs_t mPeriod GUARDED_BY(mMutex);
nsecs_t mOffset GUARDED_BY(mMutex);
nsecs_t mLastCallTime GUARDED_BY(mMutex);
};
bool VSyncReactor::addPresentFence(const std::shared_ptr<FenceTime>& fence) {
if (!fence) {
return false;
}
nsecs_t const signalTime = fence->getCachedSignalTime();
if (signalTime == Fence::SIGNAL_TIME_INVALID) {
return true;
}
std::lock_guard<std::mutex> lk(mMutex);
if (mIgnorePresentFences) {
return true;
}
for (auto it = mUnfiredFences.begin(); it != mUnfiredFences.end();) {
auto const time = (*it)->getCachedSignalTime();
if (time == Fence::SIGNAL_TIME_PENDING) {
it++;
} else if (time == Fence::SIGNAL_TIME_INVALID) {
it = mUnfiredFences.erase(it);
} else {
mTracker->addVsyncTimestamp(time);
it = mUnfiredFences.erase(it);
}
}
if (signalTime == Fence::SIGNAL_TIME_PENDING) {
if (mPendingLimit == mUnfiredFences.size()) {
mUnfiredFences.erase(mUnfiredFences.begin());
}
mUnfiredFences.push_back(fence);
} else {
mTracker->addVsyncTimestamp(signalTime);
}
return false; // TODO(b/144707443): add policy for turning on HWVsync.
}
void VSyncReactor::setIgnorePresentFences(bool ignoration) {
std::lock_guard<std::mutex> lk(mMutex);
mIgnorePresentFences = ignoration;
if (mIgnorePresentFences == true) {
mUnfiredFences.clear();
}
}
nsecs_t VSyncReactor::computeNextRefresh(int periodOffset) const {
auto const now = mClock->now();
auto const currentPeriod = periodOffset ? mTracker->currentPeriod() : 0;
return mTracker->nextAnticipatedVSyncTimeFrom(now + periodOffset * currentPeriod);
}
nsecs_t VSyncReactor::expectedPresentTime() {
return mTracker->nextAnticipatedVSyncTimeFrom(mClock->now());
}
void VSyncReactor::setPeriod(nsecs_t period) {
mTracker->setPeriod(period);
{
std::lock_guard<std::mutex> lk(mMutex);
mPeriodChangeInProgress = true;
for (auto& entry : mCallbacks) {
entry.second->setPeriod(period);
}
}
}
nsecs_t VSyncReactor::getPeriod() {
return mTracker->currentPeriod();
}
void VSyncReactor::beginResync() {}
void VSyncReactor::endResync() {}
bool VSyncReactor::addResyncSample(nsecs_t timestamp, bool* periodFlushed) {
assert(periodFlushed);
mTracker->addVsyncTimestamp(timestamp);
{
std::lock_guard<std::mutex> lk(mMutex);
*periodFlushed = mPeriodChangeInProgress;
mPeriodChangeInProgress = false;
}
return false;
}
status_t VSyncReactor::addEventListener(const char* name, nsecs_t phase,
DispSync::Callback* callback,
nsecs_t /* lastCallbackTime */) {
std::lock_guard<std::mutex> lk(mMutex);
auto it = mCallbacks.find(callback);
if (it == mCallbacks.end()) {
// TODO (b/146557561): resolve lastCallbackTime semantics in DispSync i/f.
static auto constexpr maxListeners = 3;
if (mCallbacks.size() >= maxListeners) {
ALOGE("callback %s not added, exceeded callback limit of %i (currently %zu)", name,
maxListeners, mCallbacks.size());
return NO_MEMORY;
}
auto const period = mTracker->currentPeriod();
auto repeater = std::make_unique<CallbackRepeater>(*mDispatch, callback, name, period,
phase, mClock->now());
it = mCallbacks.emplace(std::pair(callback, std::move(repeater))).first;
}
it->second->start(phase);
return NO_ERROR;
}
status_t VSyncReactor::removeEventListener(DispSync::Callback* callback,
nsecs_t* /* outLastCallback */) {
std::lock_guard<std::mutex> lk(mMutex);
auto const it = mCallbacks.find(callback);
LOG_ALWAYS_FATAL_IF(it == mCallbacks.end(), "callback %p not registered", callback);
it->second->stop();
return NO_ERROR;
}
status_t VSyncReactor::changePhaseOffset(DispSync::Callback* callback, nsecs_t phase) {
std::lock_guard<std::mutex> lk(mMutex);
auto const it = mCallbacks.find(callback);
LOG_ALWAYS_FATAL_IF(it == mCallbacks.end(), "callback was %p not registered", callback);
it->second->start(phase);
return NO_ERROR;
}
void VSyncReactor::dump(std::string& result) const {
result += "VsyncReactor in use\n"; // TODO (b/144927823): add more information!
}
void VSyncReactor::reset() {}
} // namespace android::scheduler