blob: f5b5eda9ec1dda19c955ca539a003690709625ce [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//#define LOG_NDEBUG 0
#undef LOG_TAG
#define LOG_TAG "BufferLayer"
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include "BufferLayer.h"
#include "Colorizer.h"
#include "DisplayDevice.h"
#include "LayerRejecter.h"
#include "clz.h"
#include "RenderEngine/RenderEngine.h"
#include <gui/BufferItem.h>
#include <gui/BufferQueue.h>
#include <gui/LayerDebugInfo.h>
#include <gui/Surface.h>
#include <ui/DebugUtils.h>
#include <utils/Errors.h>
#include <utils/Log.h>
#include <utils/NativeHandle.h>
#include <utils/StopWatch.h>
#include <utils/Trace.h>
#include <cutils/compiler.h>
#include <cutils/native_handle.h>
#include <cutils/properties.h>
#include <math.h>
#include <stdlib.h>
#include <mutex>
namespace android {
BufferLayer::BufferLayer(SurfaceFlinger* flinger, const sp<Client>& client, const String8& name,
uint32_t w, uint32_t h, uint32_t flags)
: Layer(flinger, client, name, w, h, flags),
mConsumer(nullptr),
mTextureName(UINT32_MAX),
mFormat(PIXEL_FORMAT_NONE),
mCurrentScalingMode(NATIVE_WINDOW_SCALING_MODE_FREEZE),
mBufferLatched(false),
mPreviousFrameNumber(0),
mUpdateTexImageFailed(false),
mRefreshPending(false) {
ALOGV("Creating Layer %s", name.string());
mTextureName = mFlinger->getNewTexture();
mTexture.init(Texture::TEXTURE_EXTERNAL, mTextureName);
if (flags & ISurfaceComposerClient::eNonPremultiplied) mPremultipliedAlpha = false;
mCurrentState.requested = mCurrentState.active;
// drawing state & current state are identical
mDrawingState = mCurrentState;
}
BufferLayer::~BufferLayer() {
mFlinger->deleteTextureAsync(mTextureName);
if (!getBE().mHwcLayers.empty()) {
ALOGE("Found stale hardware composer layers when destroying "
"surface flinger layer %s",
mName.string());
destroyAllHwcLayers();
}
}
void BufferLayer::useSurfaceDamage() {
if (mFlinger->mForceFullDamage) {
surfaceDamageRegion = Region::INVALID_REGION;
} else {
surfaceDamageRegion = mConsumer->getSurfaceDamage();
}
}
void BufferLayer::useEmptyDamage() {
surfaceDamageRegion.clear();
}
bool BufferLayer::isProtected() const {
const sp<GraphicBuffer>& buffer(getBE().compositionInfo.mBuffer);
return (buffer != 0) &&
(buffer->getUsage() & GRALLOC_USAGE_PROTECTED);
}
bool BufferLayer::isVisible() const {
return !(isHiddenByPolicy()) && getAlpha() > 0.0f &&
(getBE().compositionInfo.mBuffer != nullptr ||
getBE().compositionInfo.hwc.sidebandStream != nullptr);
}
bool BufferLayer::isFixedSize() const {
return getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE;
}
status_t BufferLayer::setBuffers(uint32_t w, uint32_t h, PixelFormat format, uint32_t flags) {
uint32_t const maxSurfaceDims =
min(mFlinger->getMaxTextureSize(), mFlinger->getMaxViewportDims());
// never allow a surface larger than what our underlying GL implementation
// can handle.
if ((uint32_t(w) > maxSurfaceDims) || (uint32_t(h) > maxSurfaceDims)) {
ALOGE("dimensions too large %u x %u", uint32_t(w), uint32_t(h));
return BAD_VALUE;
}
mFormat = format;
mPotentialCursor = (flags & ISurfaceComposerClient::eCursorWindow) ? true : false;
mProtectedByApp = (flags & ISurfaceComposerClient::eProtectedByApp) ? true : false;
mCurrentOpacity = getOpacityForFormat(format);
mConsumer->setDefaultBufferSize(w, h);
mConsumer->setDefaultBufferFormat(format);
mConsumer->setConsumerUsageBits(getEffectiveUsage(0));
return NO_ERROR;
}
static constexpr mat4 inverseOrientation(uint32_t transform) {
const mat4 flipH(-1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1);
const mat4 flipV(1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1);
const mat4 rot90(0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1);
mat4 tr;
if (transform & NATIVE_WINDOW_TRANSFORM_ROT_90) {
tr = tr * rot90;
}
if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_H) {
tr = tr * flipH;
}
if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_V) {
tr = tr * flipV;
}
return inverse(tr);
}
/*
* onDraw will draw the current layer onto the presentable buffer
*/
void BufferLayer::onDraw(const RenderArea& renderArea, const Region& clip,
bool useIdentityTransform) const {
ATRACE_CALL();
if (CC_UNLIKELY(getBE().compositionInfo.mBuffer == 0)) {
// the texture has not been created yet, this Layer has
// in fact never been drawn into. This happens frequently with
// SurfaceView because the WindowManager can't know when the client
// has drawn the first time.
// If there is nothing under us, we paint the screen in black, otherwise
// we just skip this update.
// figure out if there is something below us
Region under;
bool finished = false;
mFlinger->mDrawingState.traverseInZOrder([&](Layer* layer) {
if (finished || layer == static_cast<BufferLayer const*>(this)) {
finished = true;
return;
}
under.orSelf(renderArea.getTransform().transform(layer->visibleRegion));
});
// if not everything below us is covered, we plug the holes!
Region holes(clip.subtract(under));
if (!holes.isEmpty()) {
clearWithOpenGL(renderArea, 0, 0, 0, 1);
}
return;
}
// Bind the current buffer to the GL texture, and wait for it to be
// ready for us to draw into.
status_t err = mConsumer->bindTextureImage();
if (err != NO_ERROR) {
ALOGW("onDraw: bindTextureImage failed (err=%d)", err);
// Go ahead and draw the buffer anyway; no matter what we do the screen
// is probably going to have something visibly wrong.
}
bool blackOutLayer = isProtected() || (isSecure() && !renderArea.isSecure());
auto& engine(mFlinger->getRenderEngine());
if (!blackOutLayer) {
// TODO: we could be more subtle with isFixedSize()
const bool useFiltering = getFiltering() || needsFiltering(renderArea) || isFixedSize();
// Query the texture matrix given our current filtering mode.
float textureMatrix[16];
mConsumer->setFilteringEnabled(useFiltering);
mConsumer->getTransformMatrix(textureMatrix);
if (getTransformToDisplayInverse()) {
/*
* the code below applies the primary display's inverse transform to
* the texture transform
*/
uint32_t transform = DisplayDevice::getPrimaryDisplayOrientationTransform();
mat4 tr = inverseOrientation(transform);
/**
* TODO(b/36727915): This is basically a hack.
*
* Ensure that regardless of the parent transformation,
* this buffer is always transformed from native display
* orientation to display orientation. For example, in the case
* of a camera where the buffer remains in native orientation,
* we want the pixels to always be upright.
*/
sp<Layer> p = mDrawingParent.promote();
if (p != nullptr) {
const auto parentTransform = p->getTransform();
tr = tr * inverseOrientation(parentTransform.getOrientation());
}
// and finally apply it to the original texture matrix
const mat4 texTransform(mat4(static_cast<const float*>(textureMatrix)) * tr);
memcpy(textureMatrix, texTransform.asArray(), sizeof(textureMatrix));
}
// Set things up for texturing.
mTexture.setDimensions(getBE().compositionInfo.mBuffer->getWidth(),
getBE().compositionInfo.mBuffer->getHeight());
mTexture.setFiltering(useFiltering);
mTexture.setMatrix(textureMatrix);
engine.setupLayerTexturing(mTexture);
} else {
engine.setupLayerBlackedOut();
}
drawWithOpenGL(renderArea, useIdentityTransform);
engine.disableTexturing();
}
void BufferLayer::onLayerDisplayed(const sp<Fence>& releaseFence) {
mConsumer->setReleaseFence(releaseFence);
}
void BufferLayer::abandon() {
mConsumer->abandon();
}
bool BufferLayer::shouldPresentNow(const DispSync& dispSync) const {
if (mSidebandStreamChanged || mAutoRefresh) {
return true;
}
Mutex::Autolock lock(mQueueItemLock);
if (mQueueItems.empty()) {
return false;
}
auto timestamp = mQueueItems[0].mTimestamp;
nsecs_t expectedPresent = mConsumer->computeExpectedPresent(dispSync);
// Ignore timestamps more than a second in the future
bool isPlausible = timestamp < (expectedPresent + s2ns(1));
ALOGW_IF(!isPlausible,
"[%s] Timestamp %" PRId64 " seems implausible "
"relative to expectedPresent %" PRId64,
mName.string(), timestamp, expectedPresent);
bool isDue = timestamp < expectedPresent;
return isDue || !isPlausible;
}
void BufferLayer::setTransformHint(uint32_t orientation) const {
mConsumer->setTransformHint(orientation);
}
bool BufferLayer::onPreComposition(nsecs_t refreshStartTime) {
if (mBufferLatched) {
Mutex::Autolock lock(mFrameEventHistoryMutex);
mFrameEventHistory.addPreComposition(mCurrentFrameNumber,
refreshStartTime);
}
mRefreshPending = false;
return mQueuedFrames > 0 || mSidebandStreamChanged ||
mAutoRefresh;
}
bool BufferLayer::onPostComposition(const std::shared_ptr<FenceTime>& glDoneFence,
const std::shared_ptr<FenceTime>& presentFence,
const CompositorTiming& compositorTiming) {
// mFrameLatencyNeeded is true when a new frame was latched for the
// composition.
if (!mFrameLatencyNeeded) return false;
// Update mFrameEventHistory.
{
Mutex::Autolock lock(mFrameEventHistoryMutex);
mFrameEventHistory.addPostComposition(mCurrentFrameNumber, glDoneFence,
presentFence, compositorTiming);
}
// Update mFrameTracker.
nsecs_t desiredPresentTime = mConsumer->getTimestamp();
mFrameTracker.setDesiredPresentTime(desiredPresentTime);
const std::string layerName(getName().c_str());
mTimeStats.setDesiredTime(layerName, mCurrentFrameNumber, desiredPresentTime);
std::shared_ptr<FenceTime> frameReadyFence = mConsumer->getCurrentFenceTime();
if (frameReadyFence->isValid()) {
mFrameTracker.setFrameReadyFence(std::move(frameReadyFence));
} else {
// There was no fence for this frame, so assume that it was ready
// to be presented at the desired present time.
mFrameTracker.setFrameReadyTime(desiredPresentTime);
}
if (presentFence->isValid()) {
mTimeStats.setPresentFence(layerName, mCurrentFrameNumber, presentFence);
mFrameTracker.setActualPresentFence(std::shared_ptr<FenceTime>(presentFence));
} else {
// The HWC doesn't support present fences, so use the refresh
// timestamp instead.
const nsecs_t actualPresentTime =
mFlinger->getHwComposer().getRefreshTimestamp(HWC_DISPLAY_PRIMARY);
mTimeStats.setPresentTime(layerName, mCurrentFrameNumber, actualPresentTime);
mFrameTracker.setActualPresentTime(actualPresentTime);
}
mFrameTracker.advanceFrame();
mFrameLatencyNeeded = false;
return true;
}
std::vector<OccupancyTracker::Segment> BufferLayer::getOccupancyHistory(bool forceFlush) {
std::vector<OccupancyTracker::Segment> history;
status_t result = mConsumer->getOccupancyHistory(forceFlush, &history);
if (result != NO_ERROR) {
ALOGW("[%s] Failed to obtain occupancy history (%d)", mName.string(), result);
return {};
}
return history;
}
bool BufferLayer::getTransformToDisplayInverse() const {
return mConsumer->getTransformToDisplayInverse();
}
void BufferLayer::releasePendingBuffer(nsecs_t dequeueReadyTime) {
if (!mConsumer->releasePendingBuffer()) {
return;
}
auto releaseFenceTime =
std::make_shared<FenceTime>(mConsumer->getPrevFinalReleaseFence());
mReleaseTimeline.updateSignalTimes();
mReleaseTimeline.push(releaseFenceTime);
Mutex::Autolock lock(mFrameEventHistoryMutex);
if (mPreviousFrameNumber != 0) {
mFrameEventHistory.addRelease(mPreviousFrameNumber, dequeueReadyTime,
std::move(releaseFenceTime));
}
}
Region BufferLayer::latchBuffer(bool& recomputeVisibleRegions, nsecs_t latchTime) {
ATRACE_CALL();
if (android_atomic_acquire_cas(true, false, &mSidebandStreamChanged) == 0) {
// mSidebandStreamChanged was true
mSidebandStream = mConsumer->getSidebandStream();
// replicated in LayerBE until FE/BE is ready to be synchronized
getBE().compositionInfo.hwc.sidebandStream = mSidebandStream;
if (getBE().compositionInfo.hwc.sidebandStream != nullptr) {
setTransactionFlags(eTransactionNeeded);
mFlinger->setTransactionFlags(eTraversalNeeded);
}
recomputeVisibleRegions = true;
const State& s(getDrawingState());
return getTransform().transform(Region(Rect(s.active.w, s.active.h)));
}
Region outDirtyRegion;
if (mQueuedFrames <= 0 && !mAutoRefresh) {
return outDirtyRegion;
}
// if we've already called updateTexImage() without going through
// a composition step, we have to skip this layer at this point
// because we cannot call updateTeximage() without a corresponding
// compositionComplete() call.
// we'll trigger an update in onPreComposition().
if (mRefreshPending) {
return outDirtyRegion;
}
// If the head buffer's acquire fence hasn't signaled yet, return and
// try again later
if (!headFenceHasSignaled()) {
mFlinger->signalLayerUpdate();
return outDirtyRegion;
}
// Capture the old state of the layer for comparisons later
const State& s(getDrawingState());
const bool oldOpacity = isOpaque(s);
sp<GraphicBuffer> oldBuffer = getBE().compositionInfo.mBuffer;
if (!allTransactionsSignaled()) {
mFlinger->signalLayerUpdate();
return outDirtyRegion;
}
// This boolean is used to make sure that SurfaceFlinger's shadow copy
// of the buffer queue isn't modified when the buffer queue is returning
// BufferItem's that weren't actually queued. This can happen in shared
// buffer mode.
bool queuedBuffer = false;
LayerRejecter r(mDrawingState, getCurrentState(), recomputeVisibleRegions,
getProducerStickyTransform() != 0, mName.string(),
mOverrideScalingMode, mFreezeGeometryUpdates);
status_t updateResult =
mConsumer->updateTexImage(&r, mFlinger->mPrimaryDispSync,
&mAutoRefresh, &queuedBuffer,
mLastFrameNumberReceived);
if (updateResult == BufferQueue::PRESENT_LATER) {
// Producer doesn't want buffer to be displayed yet. Signal a
// layer update so we check again at the next opportunity.
mFlinger->signalLayerUpdate();
return outDirtyRegion;
} else if (updateResult == BufferLayerConsumer::BUFFER_REJECTED) {
// If the buffer has been rejected, remove it from the shadow queue
// and return early
if (queuedBuffer) {
Mutex::Autolock lock(mQueueItemLock);
mTimeStats.removeTimeRecord(getName().c_str(), mQueueItems[0].mFrameNumber);
mQueueItems.removeAt(0);
android_atomic_dec(&mQueuedFrames);
}
return outDirtyRegion;
} else if (updateResult != NO_ERROR || mUpdateTexImageFailed) {
// This can occur if something goes wrong when trying to create the
// EGLImage for this buffer. If this happens, the buffer has already
// been released, so we need to clean up the queue and bug out
// early.
if (queuedBuffer) {
Mutex::Autolock lock(mQueueItemLock);
mQueueItems.clear();
android_atomic_and(0, &mQueuedFrames);
mTimeStats.clearLayerRecord(getName().c_str());
}
// Once we have hit this state, the shadow queue may no longer
// correctly reflect the incoming BufferQueue's contents, so even if
// updateTexImage starts working, the only safe course of action is
// to continue to ignore updates.
mUpdateTexImageFailed = true;
return outDirtyRegion;
}
if (queuedBuffer) {
// Autolock scope
auto currentFrameNumber = mConsumer->getFrameNumber();
Mutex::Autolock lock(mQueueItemLock);
// Remove any stale buffers that have been dropped during
// updateTexImage
while (mQueueItems[0].mFrameNumber != currentFrameNumber) {
mTimeStats.removeTimeRecord(getName().c_str(), mQueueItems[0].mFrameNumber);
mQueueItems.removeAt(0);
android_atomic_dec(&mQueuedFrames);
}
const std::string layerName(getName().c_str());
mTimeStats.setAcquireFence(layerName, currentFrameNumber, mQueueItems[0].mFenceTime);
mTimeStats.setLatchTime(layerName, currentFrameNumber, latchTime);
mQueueItems.removeAt(0);
}
// Decrement the queued-frames count. Signal another event if we
// have more frames pending.
if ((queuedBuffer && android_atomic_dec(&mQueuedFrames) > 1) ||
mAutoRefresh) {
mFlinger->signalLayerUpdate();
}
// update the active buffer
getBE().compositionInfo.mBuffer =
mConsumer->getCurrentBuffer(&getBE().compositionInfo.mBufferSlot);
// replicated in LayerBE until FE/BE is ready to be synchronized
mActiveBuffer = getBE().compositionInfo.mBuffer;
if (getBE().compositionInfo.mBuffer == nullptr) {
// this can only happen if the very first buffer was rejected.
return outDirtyRegion;
}
mBufferLatched = true;
mPreviousFrameNumber = mCurrentFrameNumber;
mCurrentFrameNumber = mConsumer->getFrameNumber();
{
Mutex::Autolock lock(mFrameEventHistoryMutex);
mFrameEventHistory.addLatch(mCurrentFrameNumber, latchTime);
}
mRefreshPending = true;
mFrameLatencyNeeded = true;
if (oldBuffer == nullptr) {
// the first time we receive a buffer, we need to trigger a
// geometry invalidation.
recomputeVisibleRegions = true;
}
ui::Dataspace dataSpace = mConsumer->getCurrentDataSpace();
// treat modern dataspaces as legacy dataspaces whenever possible, until
// we can trust the buffer producers
switch (dataSpace) {
case ui::Dataspace::V0_SRGB:
dataSpace = ui::Dataspace::SRGB;
break;
case ui::Dataspace::V0_SRGB_LINEAR:
dataSpace = ui::Dataspace::SRGB_LINEAR;
break;
case ui::Dataspace::V0_JFIF:
dataSpace = ui::Dataspace::JFIF;
break;
case ui::Dataspace::V0_BT601_625:
dataSpace = ui::Dataspace::BT601_625;
break;
case ui::Dataspace::V0_BT601_525:
dataSpace = ui::Dataspace::BT601_525;
break;
case ui::Dataspace::V0_BT709:
dataSpace = ui::Dataspace::BT709;
break;
default:
break;
}
mCurrentDataSpace = dataSpace;
Rect crop(mConsumer->getCurrentCrop());
const uint32_t transform(mConsumer->getCurrentTransform());
const uint32_t scalingMode(mConsumer->getCurrentScalingMode());
if ((crop != mCurrentCrop) ||
(transform != mCurrentTransform) ||
(scalingMode != mCurrentScalingMode)) {
mCurrentCrop = crop;
mCurrentTransform = transform;
mCurrentScalingMode = scalingMode;
recomputeVisibleRegions = true;
}
if (oldBuffer != nullptr) {
uint32_t bufWidth = getBE().compositionInfo.mBuffer->getWidth();
uint32_t bufHeight = getBE().compositionInfo.mBuffer->getHeight();
if (bufWidth != uint32_t(oldBuffer->width) ||
bufHeight != uint32_t(oldBuffer->height)) {
recomputeVisibleRegions = true;
}
}
mCurrentOpacity = getOpacityForFormat(getBE().compositionInfo.mBuffer->format);
if (oldOpacity != isOpaque(s)) {
recomputeVisibleRegions = true;
}
// Remove any sync points corresponding to the buffer which was just
// latched
{
Mutex::Autolock lock(mLocalSyncPointMutex);
auto point = mLocalSyncPoints.begin();
while (point != mLocalSyncPoints.end()) {
if (!(*point)->frameIsAvailable() || !(*point)->transactionIsApplied()) {
// This sync point must have been added since we started
// latching. Don't drop it yet.
++point;
continue;
}
if ((*point)->getFrameNumber() <= mCurrentFrameNumber) {
point = mLocalSyncPoints.erase(point);
} else {
++point;
}
}
}
// FIXME: postedRegion should be dirty & bounds
Region dirtyRegion(Rect(s.active.w, s.active.h));
// transform the dirty region to window-manager space
outDirtyRegion = (getTransform().transform(dirtyRegion));
return outDirtyRegion;
}
void BufferLayer::setDefaultBufferSize(uint32_t w, uint32_t h) {
mConsumer->setDefaultBufferSize(w, h);
}
void BufferLayer::setPerFrameData(const sp<const DisplayDevice>& displayDevice) {
// Apply this display's projection's viewport to the visible region
// before giving it to the HWC HAL.
const Transform& tr = displayDevice->getTransform();
const auto& viewport = displayDevice->getViewport();
Region visible = tr.transform(visibleRegion.intersect(viewport));
auto hwcId = displayDevice->getHwcDisplayId();
if (!hasHwcLayer(hwcId)) {
return;
}
auto& hwcInfo = getBE().mHwcLayers[hwcId];
auto& hwcLayer = hwcInfo.layer;
auto error = hwcLayer->setVisibleRegion(visible);
if (error != HWC2::Error::None) {
ALOGE("[%s] Failed to set visible region: %s (%d)", mName.string(),
to_string(error).c_str(), static_cast<int32_t>(error));
visible.dump(LOG_TAG);
}
error = hwcLayer->setSurfaceDamage(surfaceDamageRegion);
if (error != HWC2::Error::None) {
ALOGE("[%s] Failed to set surface damage: %s (%d)", mName.string(),
to_string(error).c_str(), static_cast<int32_t>(error));
surfaceDamageRegion.dump(LOG_TAG);
}
// Sideband layers
if (getBE().compositionInfo.hwc.sidebandStream.get()) {
setCompositionType(hwcId, HWC2::Composition::Sideband);
ALOGV("[%s] Requesting Sideband composition", mName.string());
error = hwcLayer->setSidebandStream(getBE().compositionInfo.hwc.sidebandStream->handle());
if (error != HWC2::Error::None) {
ALOGE("[%s] Failed to set sideband stream %p: %s (%d)", mName.string(),
getBE().compositionInfo.hwc.sidebandStream->handle(), to_string(error).c_str(),
static_cast<int32_t>(error));
}
return;
}
// Device or Cursor layers
if (mPotentialCursor) {
ALOGV("[%s] Requesting Cursor composition", mName.string());
setCompositionType(hwcId, HWC2::Composition::Cursor);
} else {
ALOGV("[%s] Requesting Device composition", mName.string());
setCompositionType(hwcId, HWC2::Composition::Device);
}
ALOGV("setPerFrameData: dataspace = %d", mCurrentDataSpace);
error = hwcLayer->setDataspace(mCurrentDataSpace);
if (error != HWC2::Error::None) {
ALOGE("[%s] Failed to set dataspace %d: %s (%d)", mName.string(), mCurrentDataSpace,
to_string(error).c_str(), static_cast<int32_t>(error));
}
const HdrMetadata& metadata = mConsumer->getCurrentHdrMetadata();
error = hwcLayer->setPerFrameMetadata(displayDevice->getSupportedPerFrameMetadata(), metadata);
if (error != HWC2::Error::None && error != HWC2::Error::Unsupported) {
ALOGE("[%s] Failed to set hdrMetadata: %s (%d)", mName.string(),
to_string(error).c_str(), static_cast<int32_t>(error));
}
uint32_t hwcSlot = 0;
sp<GraphicBuffer> hwcBuffer;
hwcInfo.bufferCache.getHwcBuffer(getBE().compositionInfo.mBufferSlot,
getBE().compositionInfo.mBuffer, &hwcSlot, &hwcBuffer);
auto acquireFence = mConsumer->getCurrentFence();
error = hwcLayer->setBuffer(hwcSlot, hwcBuffer, acquireFence);
if (error != HWC2::Error::None) {
ALOGE("[%s] Failed to set buffer %p: %s (%d)", mName.string(),
getBE().compositionInfo.mBuffer->handle, to_string(error).c_str(),
static_cast<int32_t>(error));
}
}
bool BufferLayer::isOpaque(const Layer::State& s) const {
// if we don't have a buffer or sidebandStream yet, we're translucent regardless of the
// layer's opaque flag.
if ((getBE().compositionInfo.hwc.sidebandStream == nullptr) && (getBE().compositionInfo.mBuffer == nullptr)) {
return false;
}
// if the layer has the opaque flag, then we're always opaque,
// otherwise we use the current buffer's format.
return ((s.flags & layer_state_t::eLayerOpaque) != 0) || mCurrentOpacity;
}
void BufferLayer::onFirstRef() {
Layer::onFirstRef();
// Creates a custom BufferQueue for SurfaceFlingerConsumer to use
sp<IGraphicBufferProducer> producer;
sp<IGraphicBufferConsumer> consumer;
BufferQueue::createBufferQueue(&producer, &consumer, true);
mProducer = new MonitoredProducer(producer, mFlinger, this);
{
// Grab the SF state lock during this since it's the only safe way to access RenderEngine
Mutex::Autolock lock(mFlinger->mStateLock);
mConsumer = new BufferLayerConsumer(consumer, mFlinger->getRenderEngine(), mTextureName,
this);
}
mConsumer->setConsumerUsageBits(getEffectiveUsage(0));
mConsumer->setContentsChangedListener(this);
mConsumer->setName(mName);
if (mFlinger->isLayerTripleBufferingDisabled()) {
mProducer->setMaxDequeuedBufferCount(2);
}
const sp<const DisplayDevice> hw(mFlinger->getDefaultDisplayDevice());
updateTransformHint(hw);
}
// ---------------------------------------------------------------------------
// Interface implementation for SurfaceFlingerConsumer::ContentsChangedListener
// ---------------------------------------------------------------------------
void BufferLayer::onFrameAvailable(const BufferItem& item) {
// Add this buffer from our internal queue tracker
{ // Autolock scope
Mutex::Autolock lock(mQueueItemLock);
mFlinger->mInterceptor->saveBufferUpdate(this, item.mGraphicBuffer->getWidth(),
item.mGraphicBuffer->getHeight(),
item.mFrameNumber);
// Reset the frame number tracker when we receive the first buffer after
// a frame number reset
if (item.mFrameNumber == 1) {
mLastFrameNumberReceived = 0;
}
// Ensure that callbacks are handled in order
while (item.mFrameNumber != mLastFrameNumberReceived + 1) {
status_t result = mQueueItemCondition.waitRelative(mQueueItemLock,
ms2ns(500));
if (result != NO_ERROR) {
ALOGE("[%s] Timed out waiting on callback", mName.string());
}
}
mQueueItems.push_back(item);
android_atomic_inc(&mQueuedFrames);
// Wake up any pending callbacks
mLastFrameNumberReceived = item.mFrameNumber;
mQueueItemCondition.broadcast();
}
mFlinger->signalLayerUpdate();
}
void BufferLayer::onFrameReplaced(const BufferItem& item) {
{ // Autolock scope
Mutex::Autolock lock(mQueueItemLock);
// Ensure that callbacks are handled in order
while (item.mFrameNumber != mLastFrameNumberReceived + 1) {
status_t result = mQueueItemCondition.waitRelative(mQueueItemLock,
ms2ns(500));
if (result != NO_ERROR) {
ALOGE("[%s] Timed out waiting on callback", mName.string());
}
}
if (mQueueItems.empty()) {
ALOGE("Can't replace a frame on an empty queue");
return;
}
mQueueItems.editItemAt(mQueueItems.size() - 1) = item;
// Wake up any pending callbacks
mLastFrameNumberReceived = item.mFrameNumber;
mQueueItemCondition.broadcast();
}
}
void BufferLayer::onSidebandStreamChanged() {
if (android_atomic_release_cas(false, true, &mSidebandStreamChanged) == 0) {
// mSidebandStreamChanged was false
mFlinger->signalLayerUpdate();
}
}
bool BufferLayer::needsFiltering(const RenderArea& renderArea) const {
return mNeedsFiltering || renderArea.needsFiltering();
}
// As documented in libhardware header, formats in the range
// 0x100 - 0x1FF are specific to the HAL implementation, and
// are known to have no alpha channel
// TODO: move definition for device-specific range into
// hardware.h, instead of using hard-coded values here.
#define HARDWARE_IS_DEVICE_FORMAT(f) ((f) >= 0x100 && (f) <= 0x1FF)
bool BufferLayer::getOpacityForFormat(uint32_t format) {
if (HARDWARE_IS_DEVICE_FORMAT(format)) {
return true;
}
switch (format) {
case HAL_PIXEL_FORMAT_RGBA_8888:
case HAL_PIXEL_FORMAT_BGRA_8888:
case HAL_PIXEL_FORMAT_RGBA_FP16:
case HAL_PIXEL_FORMAT_RGBA_1010102:
return false;
}
// in all other case, we have no blending (also for unknown formats)
return true;
}
bool BufferLayer::isHdrY410() const {
// pixel format is HDR Y410 masquerading as RGBA_1010102
return (mCurrentDataSpace == ui::Dataspace::BT2020_ITU_PQ &&
mConsumer->getCurrentApi() == NATIVE_WINDOW_API_MEDIA &&
getBE().compositionInfo.mBuffer->getPixelFormat() == HAL_PIXEL_FORMAT_RGBA_1010102);
}
void BufferLayer::drawWithOpenGL(const RenderArea& renderArea, bool useIdentityTransform) const {
ATRACE_CALL();
const State& s(getDrawingState());
computeGeometry(renderArea, getBE().mMesh, useIdentityTransform);
/*
* NOTE: the way we compute the texture coordinates here produces
* different results than when we take the HWC path -- in the later case
* the "source crop" is rounded to texel boundaries.
* This can produce significantly different results when the texture
* is scaled by a large amount.
*
* The GL code below is more logical (imho), and the difference with
* HWC is due to a limitation of the HWC API to integers -- a question
* is suspend is whether we should ignore this problem or revert to
* GL composition when a buffer scaling is applied (maybe with some
* minimal value)? Or, we could make GL behave like HWC -- but this feel
* like more of a hack.
*/
const Rect bounds{computeBounds()}; // Rounds from FloatRect
Transform t = getTransform();
Rect win = bounds;
if (!s.finalCrop.isEmpty()) {
win = t.transform(win);
if (!win.intersect(s.finalCrop, &win)) {
win.clear();
}
win = t.inverse().transform(win);
if (!win.intersect(bounds, &win)) {
win.clear();
}
}
float left = float(win.left) / float(s.active.w);
float top = float(win.top) / float(s.active.h);
float right = float(win.right) / float(s.active.w);
float bottom = float(win.bottom) / float(s.active.h);
// TODO: we probably want to generate the texture coords with the mesh
// here we assume that we only have 4 vertices
Mesh::VertexArray<vec2> texCoords(getBE().mMesh.getTexCoordArray<vec2>());
texCoords[0] = vec2(left, 1.0f - top);
texCoords[1] = vec2(left, 1.0f - bottom);
texCoords[2] = vec2(right, 1.0f - bottom);
texCoords[3] = vec2(right, 1.0f - top);
auto& engine(mFlinger->getRenderEngine());
engine.setupLayerBlending(mPremultipliedAlpha, isOpaque(s), false /* disableTexture */,
getColor());
engine.setSourceDataSpace(mCurrentDataSpace);
if (isHdrY410()) {
engine.setSourceY410BT2020(true);
}
engine.drawMesh(getBE().mMesh);
engine.disableBlending();
engine.setSourceY410BT2020(false);
}
uint32_t BufferLayer::getProducerStickyTransform() const {
int producerStickyTransform = 0;
int ret = mProducer->query(NATIVE_WINDOW_STICKY_TRANSFORM, &producerStickyTransform);
if (ret != OK) {
ALOGW("%s: Error %s (%d) while querying window sticky transform.", __FUNCTION__,
strerror(-ret), ret);
return 0;
}
return static_cast<uint32_t>(producerStickyTransform);
}
bool BufferLayer::latchUnsignaledBuffers() {
static bool propertyLoaded = false;
static bool latch = false;
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
if (!propertyLoaded) {
char value[PROPERTY_VALUE_MAX] = {};
property_get("debug.sf.latch_unsignaled", value, "0");
latch = atoi(value);
propertyLoaded = true;
}
return latch;
}
uint64_t BufferLayer::getHeadFrameNumber() const {
Mutex::Autolock lock(mQueueItemLock);
if (!mQueueItems.empty()) {
return mQueueItems[0].mFrameNumber;
} else {
return mCurrentFrameNumber;
}
}
bool BufferLayer::headFenceHasSignaled() const {
if (latchUnsignaledBuffers()) {
return true;
}
Mutex::Autolock lock(mQueueItemLock);
if (mQueueItems.empty()) {
return true;
}
if (mQueueItems[0].mIsDroppable) {
// Even though this buffer's fence may not have signaled yet, it could
// be replaced by another buffer before it has a chance to, which means
// that it's possible to get into a situation where a buffer is never
// able to be latched. To avoid this, grab this buffer anyway.
return true;
}
return mQueueItems[0].mFenceTime->getSignalTime() !=
Fence::SIGNAL_TIME_PENDING;
}
uint32_t BufferLayer::getEffectiveScalingMode() const {
if (mOverrideScalingMode >= 0) {
return mOverrideScalingMode;
}
return mCurrentScalingMode;
}
// ----------------------------------------------------------------------------
// transaction
// ----------------------------------------------------------------------------
void BufferLayer::notifyAvailableFrames() {
auto headFrameNumber = getHeadFrameNumber();
bool headFenceSignaled = headFenceHasSignaled();
Mutex::Autolock lock(mLocalSyncPointMutex);
for (auto& point : mLocalSyncPoints) {
if (headFrameNumber >= point->getFrameNumber() && headFenceSignaled) {
point->setFrameAvailable();
}
}
}
sp<IGraphicBufferProducer> BufferLayer::getProducer() const {
return mProducer;
}
// ---------------------------------------------------------------------------
// h/w composer set-up
// ---------------------------------------------------------------------------
bool BufferLayer::allTransactionsSignaled() {
auto headFrameNumber = getHeadFrameNumber();
bool matchingFramesFound = false;
bool allTransactionsApplied = true;
Mutex::Autolock lock(mLocalSyncPointMutex);
for (auto& point : mLocalSyncPoints) {
if (point->getFrameNumber() > headFrameNumber) {
break;
}
matchingFramesFound = true;
if (!point->frameIsAvailable()) {
// We haven't notified the remote layer that the frame for
// this point is available yet. Notify it now, and then
// abort this attempt to latch.
point->setFrameAvailable();
allTransactionsApplied = false;
break;
}
allTransactionsApplied = allTransactionsApplied && point->transactionIsApplied();
}
return !matchingFramesFound || allTransactionsApplied;
}
} // namespace android
#if defined(__gl_h_)
#error "don't include gl/gl.h in this file"
#endif
#if defined(__gl2_h_)
#error "don't include gl2/gl2.h in this file"
#endif