blob: b5a3825fc351288541d28a1aa9bbe395d49a3e72 [file] [log] [blame]
/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "InputDispatcher"
#define ATRACE_TAG ATRACE_TAG_INPUT
#define LOG_NDEBUG 1
#include <android-base/chrono_utils.h>
#include <android-base/properties.h>
#include <android-base/stringprintf.h>
#include <android/os/IInputConstants.h>
#include <binder/Binder.h>
#include <ftl/enum.h>
#include <gui/SurfaceComposerClient.h>
#include <input/InputDevice.h>
#include <log/log.h>
#include <log/log_event_list.h>
#include <powermanager/PowerManager.h>
#include <unistd.h>
#include <utils/Trace.h>
#include <cerrno>
#include <cinttypes>
#include <climits>
#include <cstddef>
#include <ctime>
#include <queue>
#include <sstream>
#include "Connection.h"
#include "InputDispatcher.h"
#define INDENT " "
#define INDENT2 " "
#define INDENT3 " "
#define INDENT4 " "
using android::base::HwTimeoutMultiplier;
using android::base::Result;
using android::base::StringPrintf;
using android::gui::DisplayInfo;
using android::gui::FocusRequest;
using android::gui::TouchOcclusionMode;
using android::gui::WindowInfo;
using android::gui::WindowInfoHandle;
using android::os::BlockUntrustedTouchesMode;
using android::os::IInputConstants;
using android::os::InputEventInjectionResult;
using android::os::InputEventInjectionSync;
namespace android::inputdispatcher {
namespace {
/**
* Log detailed debug messages about each inbound event notification to the dispatcher.
* Enable this via "adb shell setprop log.tag.InputDispatcherInboundEvent DEBUG" (requires restart)
*/
const bool DEBUG_INBOUND_EVENT_DETAILS =
__android_log_is_loggable(ANDROID_LOG_DEBUG, LOG_TAG "InboundEvent", ANDROID_LOG_INFO);
/**
* Log detailed debug messages about each outbound event processed by the dispatcher.
* Enable this via "adb shell setprop log.tag.InputDispatcherOutboundEvent DEBUG" (requires restart)
*/
const bool DEBUG_OUTBOUND_EVENT_DETAILS =
__android_log_is_loggable(ANDROID_LOG_DEBUG, LOG_TAG "OutboundEvent", ANDROID_LOG_INFO);
/**
* Log debug messages about the dispatch cycle.
* Enable this via "adb shell setprop log.tag.InputDispatcherDispatchCycle DEBUG" (requires restart)
*/
const bool DEBUG_DISPATCH_CYCLE =
__android_log_is_loggable(ANDROID_LOG_DEBUG, LOG_TAG "DispatchCycle", ANDROID_LOG_INFO);
/**
* Log debug messages about channel creation
* Enable this via "adb shell setprop log.tag.InputDispatcherChannelCreation DEBUG" (requires
* restart)
*/
const bool DEBUG_CHANNEL_CREATION =
__android_log_is_loggable(ANDROID_LOG_DEBUG, LOG_TAG "ChannelCreation", ANDROID_LOG_INFO);
/**
* Log debug messages about input event injection.
* Enable this via "adb shell setprop log.tag.InputDispatcherInjection DEBUG" (requires restart)
*/
const bool DEBUG_INJECTION =
__android_log_is_loggable(ANDROID_LOG_DEBUG, LOG_TAG "Injection", ANDROID_LOG_INFO);
/**
* Log debug messages about input focus tracking.
* Enable this via "adb shell setprop log.tag.InputDispatcherFocus DEBUG" (requires restart)
*/
const bool DEBUG_FOCUS =
__android_log_is_loggable(ANDROID_LOG_DEBUG, LOG_TAG "Focus", ANDROID_LOG_INFO);
/**
* Log debug messages about touch mode event
* Enable this via "adb shell setprop log.tag.InputDispatcherTouchMode DEBUG" (requires restart)
*/
const bool DEBUG_TOUCH_MODE =
__android_log_is_loggable(ANDROID_LOG_DEBUG, LOG_TAG "TouchMode", ANDROID_LOG_INFO);
/**
* Log debug messages about touch occlusion
* Enable this via "adb shell setprop log.tag.InputDispatcherTouchOcclusion DEBUG" (requires
* restart)
*/
const bool DEBUG_TOUCH_OCCLUSION =
__android_log_is_loggable(ANDROID_LOG_DEBUG, LOG_TAG "TouchOcclusion", ANDROID_LOG_INFO);
/**
* Log debug messages about the app switch latency optimization.
* Enable this via "adb shell setprop log.tag.InputDispatcherAppSwitch DEBUG" (requires restart)
*/
const bool DEBUG_APP_SWITCH =
__android_log_is_loggable(ANDROID_LOG_DEBUG, LOG_TAG "AppSwitch", ANDROID_LOG_INFO);
/**
* Log debug messages about hover events.
* Enable this via "adb shell setprop log.tag.InputDispatcherHover DEBUG" (requires restart)
*/
const bool DEBUG_HOVER =
__android_log_is_loggable(ANDROID_LOG_DEBUG, LOG_TAG "Hover", ANDROID_LOG_INFO);
// Temporarily releases a held mutex for the lifetime of the instance.
// Named to match std::scoped_lock
class scoped_unlock {
public:
explicit scoped_unlock(std::mutex& mutex) : mMutex(mutex) { mMutex.unlock(); }
~scoped_unlock() { mMutex.lock(); }
private:
std::mutex& mMutex;
};
// Default input dispatching timeout if there is no focused application or paused window
// from which to determine an appropriate dispatching timeout.
const std::chrono::duration DEFAULT_INPUT_DISPATCHING_TIMEOUT = std::chrono::milliseconds(
android::os::IInputConstants::UNMULTIPLIED_DEFAULT_DISPATCHING_TIMEOUT_MILLIS *
HwTimeoutMultiplier());
// Amount of time to allow for all pending events to be processed when an app switch
// key is on the way. This is used to preempt input dispatch and drop input events
// when an application takes too long to respond and the user has pressed an app switch key.
constexpr nsecs_t APP_SWITCH_TIMEOUT = 500 * 1000000LL; // 0.5sec
const std::chrono::duration STALE_EVENT_TIMEOUT = std::chrono::seconds(10) * HwTimeoutMultiplier();
// Log a warning when an event takes longer than this to process, even if an ANR does not occur.
constexpr nsecs_t SLOW_EVENT_PROCESSING_WARNING_TIMEOUT = 2000 * 1000000LL; // 2sec
// Log a warning when an interception call takes longer than this to process.
constexpr std::chrono::milliseconds SLOW_INTERCEPTION_THRESHOLD = 50ms;
// Additional key latency in case a connection is still processing some motion events.
// This will help with the case when a user touched a button that opens a new window,
// and gives us the chance to dispatch the key to this new window.
constexpr std::chrono::nanoseconds KEY_WAITING_FOR_EVENTS_TIMEOUT = 500ms;
// Number of recent events to keep for debugging purposes.
constexpr size_t RECENT_QUEUE_MAX_SIZE = 10;
// Event log tags. See EventLogTags.logtags for reference.
constexpr int LOGTAG_INPUT_INTERACTION = 62000;
constexpr int LOGTAG_INPUT_FOCUS = 62001;
constexpr int LOGTAG_INPUT_CANCEL = 62003;
inline nsecs_t now() {
return systemTime(SYSTEM_TIME_MONOTONIC);
}
inline const char* toString(bool value) {
return value ? "true" : "false";
}
inline const std::string toString(const sp<IBinder>& binder) {
if (binder == nullptr) {
return "<null>";
}
return StringPrintf("%p", binder.get());
}
inline int32_t getMotionEventActionPointerIndex(int32_t action) {
return (action & AMOTION_EVENT_ACTION_POINTER_INDEX_MASK) >>
AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT;
}
bool isValidKeyAction(int32_t action) {
switch (action) {
case AKEY_EVENT_ACTION_DOWN:
case AKEY_EVENT_ACTION_UP:
return true;
default:
return false;
}
}
bool validateKeyEvent(int32_t action) {
if (!isValidKeyAction(action)) {
ALOGE("Key event has invalid action code 0x%x", action);
return false;
}
return true;
}
bool isValidMotionAction(int32_t action, int32_t actionButton, int32_t pointerCount) {
switch (action & AMOTION_EVENT_ACTION_MASK) {
case AMOTION_EVENT_ACTION_DOWN:
case AMOTION_EVENT_ACTION_UP:
case AMOTION_EVENT_ACTION_CANCEL:
case AMOTION_EVENT_ACTION_MOVE:
case AMOTION_EVENT_ACTION_OUTSIDE:
case AMOTION_EVENT_ACTION_HOVER_ENTER:
case AMOTION_EVENT_ACTION_HOVER_MOVE:
case AMOTION_EVENT_ACTION_HOVER_EXIT:
case AMOTION_EVENT_ACTION_SCROLL:
return true;
case AMOTION_EVENT_ACTION_POINTER_DOWN:
case AMOTION_EVENT_ACTION_POINTER_UP: {
int32_t index = getMotionEventActionPointerIndex(action);
return index >= 0 && index < pointerCount;
}
case AMOTION_EVENT_ACTION_BUTTON_PRESS:
case AMOTION_EVENT_ACTION_BUTTON_RELEASE:
return actionButton != 0;
default:
return false;
}
}
int64_t millis(std::chrono::nanoseconds t) {
return std::chrono::duration_cast<std::chrono::milliseconds>(t).count();
}
bool validateMotionEvent(int32_t action, int32_t actionButton, size_t pointerCount,
const PointerProperties* pointerProperties) {
if (!isValidMotionAction(action, actionButton, pointerCount)) {
ALOGE("Motion event has invalid action code 0x%x", action);
return false;
}
if (pointerCount < 1 || pointerCount > MAX_POINTERS) {
ALOGE("Motion event has invalid pointer count %zu; value must be between 1 and %zu.",
pointerCount, MAX_POINTERS);
return false;
}
BitSet32 pointerIdBits;
for (size_t i = 0; i < pointerCount; i++) {
int32_t id = pointerProperties[i].id;
if (id < 0 || id > MAX_POINTER_ID) {
ALOGE("Motion event has invalid pointer id %d; value must be between 0 and %d", id,
MAX_POINTER_ID);
return false;
}
if (pointerIdBits.hasBit(id)) {
ALOGE("Motion event has duplicate pointer id %d", id);
return false;
}
pointerIdBits.markBit(id);
}
return true;
}
std::string dumpRegion(const Region& region) {
if (region.isEmpty()) {
return "<empty>";
}
std::string dump;
bool first = true;
Region::const_iterator cur = region.begin();
Region::const_iterator const tail = region.end();
while (cur != tail) {
if (first) {
first = false;
} else {
dump += "|";
}
dump += StringPrintf("[%d,%d][%d,%d]", cur->left, cur->top, cur->right, cur->bottom);
cur++;
}
return dump;
}
std::string dumpQueue(const std::deque<DispatchEntry*>& queue, nsecs_t currentTime) {
constexpr size_t maxEntries = 50; // max events to print
constexpr size_t skipBegin = maxEntries / 2;
const size_t skipEnd = queue.size() - maxEntries / 2;
// skip from maxEntries / 2 ... size() - maxEntries/2
// only print from 0 .. skipBegin and then from skipEnd .. size()
std::string dump;
for (size_t i = 0; i < queue.size(); i++) {
const DispatchEntry& entry = *queue[i];
if (i >= skipBegin && i < skipEnd) {
dump += StringPrintf(INDENT4 "<skipped %zu entries>\n", skipEnd - skipBegin);
i = skipEnd - 1; // it will be incremented to "skipEnd" by 'continue'
continue;
}
dump.append(INDENT4);
dump += entry.eventEntry->getDescription();
dump += StringPrintf(", seq=%" PRIu32
", targetFlags=0x%08x, resolvedAction=%d, age=%" PRId64 "ms",
entry.seq, entry.targetFlags, entry.resolvedAction,
ns2ms(currentTime - entry.eventEntry->eventTime));
if (entry.deliveryTime != 0) {
// This entry was delivered, so add information on how long we've been waiting
dump += StringPrintf(", wait=%" PRId64 "ms", ns2ms(currentTime - entry.deliveryTime));
}
dump.append("\n");
}
return dump;
}
/**
* Find the entry in std::unordered_map by key, and return it.
* If the entry is not found, return a default constructed entry.
*
* Useful when the entries are vectors, since an empty vector will be returned
* if the entry is not found.
* Also useful when the entries are sp<>. If an entry is not found, nullptr is returned.
*/
template <typename K, typename V>
V getValueByKey(const std::unordered_map<K, V>& map, K key) {
auto it = map.find(key);
return it != map.end() ? it->second : V{};
}
bool haveSameToken(const sp<WindowInfoHandle>& first, const sp<WindowInfoHandle>& second) {
if (first == second) {
return true;
}
if (first == nullptr || second == nullptr) {
return false;
}
return first->getToken() == second->getToken();
}
bool haveSameApplicationToken(const WindowInfo* first, const WindowInfo* second) {
if (first == nullptr || second == nullptr) {
return false;
}
return first->applicationInfo.token != nullptr &&
first->applicationInfo.token == second->applicationInfo.token;
}
std::unique_ptr<DispatchEntry> createDispatchEntry(const InputTarget& inputTarget,
std::shared_ptr<EventEntry> eventEntry,
int32_t inputTargetFlags) {
if (inputTarget.useDefaultPointerTransform()) {
const ui::Transform& transform = inputTarget.getDefaultPointerTransform();
return std::make_unique<DispatchEntry>(eventEntry, inputTargetFlags, transform,
inputTarget.displayTransform,
inputTarget.globalScaleFactor);
}
ALOG_ASSERT(eventEntry->type == EventEntry::Type::MOTION);
const MotionEntry& motionEntry = static_cast<const MotionEntry&>(*eventEntry);
std::vector<PointerCoords> pointerCoords;
pointerCoords.resize(motionEntry.pointerCount);
// Use the first pointer information to normalize all other pointers. This could be any pointer
// as long as all other pointers are normalized to the same value and the final DispatchEntry
// uses the transform for the normalized pointer.
const ui::Transform& firstPointerTransform =
inputTarget.pointerTransforms[inputTarget.pointerIds.firstMarkedBit()];
ui::Transform inverseFirstTransform = firstPointerTransform.inverse();
// Iterate through all pointers in the event to normalize against the first.
for (uint32_t pointerIndex = 0; pointerIndex < motionEntry.pointerCount; pointerIndex++) {
const PointerProperties& pointerProperties = motionEntry.pointerProperties[pointerIndex];
uint32_t pointerId = uint32_t(pointerProperties.id);
const ui::Transform& currTransform = inputTarget.pointerTransforms[pointerId];
pointerCoords[pointerIndex].copyFrom(motionEntry.pointerCoords[pointerIndex]);
// First, apply the current pointer's transform to update the coordinates into
// window space.
pointerCoords[pointerIndex].transform(currTransform);
// Next, apply the inverse transform of the normalized coordinates so the
// current coordinates are transformed into the normalized coordinate space.
pointerCoords[pointerIndex].transform(inverseFirstTransform);
}
std::unique_ptr<MotionEntry> combinedMotionEntry =
std::make_unique<MotionEntry>(motionEntry.id, motionEntry.eventTime,
motionEntry.deviceId, motionEntry.source,
motionEntry.displayId, motionEntry.policyFlags,
motionEntry.action, motionEntry.actionButton,
motionEntry.flags, motionEntry.metaState,
motionEntry.buttonState, motionEntry.classification,
motionEntry.edgeFlags, motionEntry.xPrecision,
motionEntry.yPrecision, motionEntry.xCursorPosition,
motionEntry.yCursorPosition, motionEntry.downTime,
motionEntry.pointerCount, motionEntry.pointerProperties,
pointerCoords.data());
if (motionEntry.injectionState) {
combinedMotionEntry->injectionState = motionEntry.injectionState;
combinedMotionEntry->injectionState->refCount += 1;
}
std::unique_ptr<DispatchEntry> dispatchEntry =
std::make_unique<DispatchEntry>(std::move(combinedMotionEntry), inputTargetFlags,
firstPointerTransform, inputTarget.displayTransform,
inputTarget.globalScaleFactor);
return dispatchEntry;
}
status_t openInputChannelPair(const std::string& name, std::shared_ptr<InputChannel>& serverChannel,
std::unique_ptr<InputChannel>& clientChannel) {
std::unique_ptr<InputChannel> uniqueServerChannel;
status_t result = InputChannel::openInputChannelPair(name, uniqueServerChannel, clientChannel);
serverChannel = std::move(uniqueServerChannel);
return result;
}
template <typename T>
bool sharedPointersEqual(const std::shared_ptr<T>& lhs, const std::shared_ptr<T>& rhs) {
if (lhs == nullptr && rhs == nullptr) {
return true;
}
if (lhs == nullptr || rhs == nullptr) {
return false;
}
return *lhs == *rhs;
}
KeyEvent createKeyEvent(const KeyEntry& entry) {
KeyEvent event;
event.initialize(entry.id, entry.deviceId, entry.source, entry.displayId, INVALID_HMAC,
entry.action, entry.flags, entry.keyCode, entry.scanCode, entry.metaState,
entry.repeatCount, entry.downTime, entry.eventTime);
return event;
}
bool shouldReportMetricsForConnection(const Connection& connection) {
// Do not keep track of gesture monitors. They receive every event and would disproportionately
// affect the statistics.
if (connection.monitor) {
return false;
}
// If the connection is experiencing ANR, let's skip it. We have separate ANR metrics
if (!connection.responsive) {
return false;
}
return true;
}
bool shouldReportFinishedEvent(const DispatchEntry& dispatchEntry, const Connection& connection) {
const EventEntry& eventEntry = *dispatchEntry.eventEntry;
const int32_t& inputEventId = eventEntry.id;
if (inputEventId != dispatchEntry.resolvedEventId) {
// Event was transmuted
return false;
}
if (inputEventId == android::os::IInputConstants::INVALID_INPUT_EVENT_ID) {
return false;
}
// Only track latency for events that originated from hardware
if (eventEntry.isSynthesized()) {
return false;
}
const EventEntry::Type& inputEventEntryType = eventEntry.type;
if (inputEventEntryType == EventEntry::Type::KEY) {
const KeyEntry& keyEntry = static_cast<const KeyEntry&>(eventEntry);
if (keyEntry.flags & AKEY_EVENT_FLAG_CANCELED) {
return false;
}
} else if (inputEventEntryType == EventEntry::Type::MOTION) {
const MotionEntry& motionEntry = static_cast<const MotionEntry&>(eventEntry);
if (motionEntry.action == AMOTION_EVENT_ACTION_CANCEL ||
motionEntry.action == AMOTION_EVENT_ACTION_HOVER_EXIT) {
return false;
}
} else {
// Not a key or a motion
return false;
}
if (!shouldReportMetricsForConnection(connection)) {
return false;
}
return true;
}
/**
* Connection is responsive if it has no events in the waitQueue that are older than the
* current time.
*/
bool isConnectionResponsive(const Connection& connection) {
const nsecs_t currentTime = now();
for (const DispatchEntry* entry : connection.waitQueue) {
if (entry->timeoutTime < currentTime) {
return false;
}
}
return true;
}
// Returns true if the event type passed as argument represents a user activity.
bool isUserActivityEvent(const EventEntry& eventEntry) {
switch (eventEntry.type) {
case EventEntry::Type::FOCUS:
case EventEntry::Type::POINTER_CAPTURE_CHANGED:
case EventEntry::Type::DRAG:
case EventEntry::Type::TOUCH_MODE_CHANGED:
case EventEntry::Type::SENSOR:
case EventEntry::Type::CONFIGURATION_CHANGED:
return false;
case EventEntry::Type::DEVICE_RESET:
case EventEntry::Type::KEY:
case EventEntry::Type::MOTION:
return true;
}
}
// Returns true if the given window can accept pointer events at the given display location.
bool windowAcceptsTouchAt(const WindowInfo& windowInfo, int32_t displayId, int32_t x, int32_t y,
bool isStylus) {
const auto inputConfig = windowInfo.inputConfig;
if (windowInfo.displayId != displayId ||
inputConfig.test(WindowInfo::InputConfig::NOT_VISIBLE)) {
return false;
}
const bool windowCanInterceptTouch = isStylus && windowInfo.interceptsStylus();
if (inputConfig.test(WindowInfo::InputConfig::NOT_TOUCHABLE) && !windowCanInterceptTouch) {
return false;
}
if (!windowInfo.touchableRegionContainsPoint(x, y)) {
return false;
}
return true;
}
bool isPointerFromStylus(const MotionEntry& entry, int32_t pointerIndex) {
return isFromSource(entry.source, AINPUT_SOURCE_STYLUS) &&
(entry.pointerProperties[pointerIndex].toolType == AMOTION_EVENT_TOOL_TYPE_STYLUS ||
entry.pointerProperties[pointerIndex].toolType == AMOTION_EVENT_TOOL_TYPE_ERASER);
}
// Determines if the given window can be targeted as InputTarget::FLAG_FOREGROUND.
// Foreground events are only sent to "foreground targetable" windows, but not all gestures sent to
// such window are necessarily targeted with the flag. For example, an event with ACTION_OUTSIDE can
// be sent to such a window, but it is not a foreground event and doesn't use
// InputTarget::FLAG_FOREGROUND.
bool canReceiveForegroundTouches(const WindowInfo& info) {
// A non-touchable window can still receive touch events (e.g. in the case of
// STYLUS_INTERCEPTOR), so prevent such windows from receiving foreground events for touches.
return !info.inputConfig.test(gui::WindowInfo::InputConfig::NOT_TOUCHABLE) && !info.isSpy();
}
bool isWindowOwnedBy(const sp<WindowInfoHandle>& windowHandle, int32_t pid, int32_t uid) {
if (windowHandle == nullptr) {
return false;
}
const WindowInfo* windowInfo = windowHandle->getInfo();
if (pid == windowInfo->ownerPid && uid == windowInfo->ownerUid) {
return true;
}
return false;
}
// Checks targeted injection using the window's owner's uid.
// Returns an empty string if an entry can be sent to the given window, or an error message if the
// entry is a targeted injection whose uid target doesn't match the window owner.
std::optional<std::string> verifyTargetedInjection(const sp<WindowInfoHandle>& window,
const EventEntry& entry) {
if (entry.injectionState == nullptr || !entry.injectionState->targetUid) {
// The event was not injected, or the injected event does not target a window.
return {};
}
const int32_t uid = *entry.injectionState->targetUid;
if (window == nullptr) {
return StringPrintf("No valid window target for injection into uid %d.", uid);
}
if (entry.injectionState->targetUid != window->getInfo()->ownerUid) {
return StringPrintf("Injected event targeted at uid %d would be dispatched to window '%s' "
"owned by uid %d.",
uid, window->getName().c_str(), window->getInfo()->ownerUid);
}
return {};
}
} // namespace
// --- InputDispatcher ---
InputDispatcher::InputDispatcher(const sp<InputDispatcherPolicyInterface>& policy)
: InputDispatcher(policy, STALE_EVENT_TIMEOUT) {}
InputDispatcher::InputDispatcher(const sp<InputDispatcherPolicyInterface>& policy,
std::chrono::nanoseconds staleEventTimeout)
: mPolicy(policy),
mPendingEvent(nullptr),
mLastDropReason(DropReason::NOT_DROPPED),
mIdGenerator(IdGenerator::Source::INPUT_DISPATCHER),
mAppSwitchSawKeyDown(false),
mAppSwitchDueTime(LONG_LONG_MAX),
mNextUnblockedEvent(nullptr),
mMonitorDispatchingTimeout(DEFAULT_INPUT_DISPATCHING_TIMEOUT),
mDispatchEnabled(false),
mDispatchFrozen(false),
mInputFilterEnabled(false),
// mInTouchMode will be initialized by the WindowManager to the default device config.
// To avoid leaking stack in case that call never comes, and for tests,
// initialize it here anyways.
mInTouchMode(kDefaultInTouchMode),
mMaximumObscuringOpacityForTouch(1.0f),
mFocusedDisplayId(ADISPLAY_ID_DEFAULT),
mWindowTokenWithPointerCapture(nullptr),
mStaleEventTimeout(staleEventTimeout),
mLatencyAggregator(),
mLatencyTracker(&mLatencyAggregator) {
mLooper = new Looper(false);
mReporter = createInputReporter();
mWindowInfoListener = new DispatcherWindowListener(*this);
SurfaceComposerClient::getDefault()->addWindowInfosListener(mWindowInfoListener);
mKeyRepeatState.lastKeyEntry = nullptr;
policy->getDispatcherConfiguration(&mConfig);
}
InputDispatcher::~InputDispatcher() {
std::scoped_lock _l(mLock);
resetKeyRepeatLocked();
releasePendingEventLocked();
drainInboundQueueLocked();
mCommandQueue.clear();
while (!mConnectionsByToken.empty()) {
sp<Connection> connection = mConnectionsByToken.begin()->second;
removeInputChannelLocked(connection->inputChannel->getConnectionToken(),
false /* notify */);
}
}
status_t InputDispatcher::start() {
if (mThread) {
return ALREADY_EXISTS;
}
mThread = std::make_unique<InputThread>(
"InputDispatcher", [this]() { dispatchOnce(); }, [this]() { mLooper->wake(); });
return OK;
}
status_t InputDispatcher::stop() {
if (mThread && mThread->isCallingThread()) {
ALOGE("InputDispatcher cannot be stopped from its own thread!");
return INVALID_OPERATION;
}
mThread.reset();
return OK;
}
void InputDispatcher::dispatchOnce() {
nsecs_t nextWakeupTime = LONG_LONG_MAX;
{ // acquire lock
std::scoped_lock _l(mLock);
mDispatcherIsAlive.notify_all();
// Run a dispatch loop if there are no pending commands.
// The dispatch loop might enqueue commands to run afterwards.
if (!haveCommandsLocked()) {
dispatchOnceInnerLocked(&nextWakeupTime);
}
// Run all pending commands if there are any.
// If any commands were run then force the next poll to wake up immediately.
if (runCommandsLockedInterruptable()) {
nextWakeupTime = LONG_LONG_MIN;
}
// If we are still waiting for ack on some events,
// we might have to wake up earlier to check if an app is anr'ing.
const nsecs_t nextAnrCheck = processAnrsLocked();
nextWakeupTime = std::min(nextWakeupTime, nextAnrCheck);
// We are about to enter an infinitely long sleep, because we have no commands or
// pending or queued events
if (nextWakeupTime == LONG_LONG_MAX) {
mDispatcherEnteredIdle.notify_all();
}
} // release lock
// Wait for callback or timeout or wake. (make sure we round up, not down)
nsecs_t currentTime = now();
int timeoutMillis = toMillisecondTimeoutDelay(currentTime, nextWakeupTime);
mLooper->pollOnce(timeoutMillis);
}
/**
* Raise ANR if there is no focused window.
* Before the ANR is raised, do a final state check:
* 1. The currently focused application must be the same one we are waiting for.
* 2. Ensure we still don't have a focused window.
*/
void InputDispatcher::processNoFocusedWindowAnrLocked() {
// Check if the application that we are waiting for is still focused.
std::shared_ptr<InputApplicationHandle> focusedApplication =
getValueByKey(mFocusedApplicationHandlesByDisplay, mAwaitedApplicationDisplayId);
if (focusedApplication == nullptr ||
focusedApplication->getApplicationToken() !=
mAwaitedFocusedApplication->getApplicationToken()) {
// Unexpected because we should have reset the ANR timer when focused application changed
ALOGE("Waited for a focused window, but focused application has already changed to %s",
focusedApplication->getName().c_str());
return; // The focused application has changed.
}
const sp<WindowInfoHandle>& focusedWindowHandle =
getFocusedWindowHandleLocked(mAwaitedApplicationDisplayId);
if (focusedWindowHandle != nullptr) {
return; // We now have a focused window. No need for ANR.
}
onAnrLocked(mAwaitedFocusedApplication);
}
/**
* Check if any of the connections' wait queues have events that are too old.
* If we waited for events to be ack'ed for more than the window timeout, raise an ANR.
* Return the time at which we should wake up next.
*/
nsecs_t InputDispatcher::processAnrsLocked() {
const nsecs_t currentTime = now();
nsecs_t nextAnrCheck = LONG_LONG_MAX;
// Check if we are waiting for a focused window to appear. Raise ANR if waited too long
if (mNoFocusedWindowTimeoutTime.has_value() && mAwaitedFocusedApplication != nullptr) {
if (currentTime >= *mNoFocusedWindowTimeoutTime) {
processNoFocusedWindowAnrLocked();
mAwaitedFocusedApplication.reset();
mNoFocusedWindowTimeoutTime = std::nullopt;
return LONG_LONG_MIN;
} else {
// Keep waiting. We will drop the event when mNoFocusedWindowTimeoutTime comes.
nextAnrCheck = *mNoFocusedWindowTimeoutTime;
}
}
// Check if any connection ANRs are due
nextAnrCheck = std::min(nextAnrCheck, mAnrTracker.firstTimeout());
if (currentTime < nextAnrCheck) { // most likely scenario
return nextAnrCheck; // everything is normal. Let's check again at nextAnrCheck
}
// If we reached here, we have an unresponsive connection.
sp<Connection> connection = getConnectionLocked(mAnrTracker.firstToken());
if (connection == nullptr) {
ALOGE("Could not find connection for entry %" PRId64, mAnrTracker.firstTimeout());
return nextAnrCheck;
}
connection->responsive = false;
// Stop waking up for this unresponsive connection
mAnrTracker.eraseToken(connection->inputChannel->getConnectionToken());
onAnrLocked(connection);
return LONG_LONG_MIN;
}
std::chrono::nanoseconds InputDispatcher::getDispatchingTimeoutLocked(
const sp<Connection>& connection) {
if (connection->monitor) {
return mMonitorDispatchingTimeout;
}
const sp<WindowInfoHandle> window =
getWindowHandleLocked(connection->inputChannel->getConnectionToken());
if (window != nullptr) {
return window->getDispatchingTimeout(DEFAULT_INPUT_DISPATCHING_TIMEOUT);
}
return DEFAULT_INPUT_DISPATCHING_TIMEOUT;
}
void InputDispatcher::dispatchOnceInnerLocked(nsecs_t* nextWakeupTime) {
nsecs_t currentTime = now();
// Reset the key repeat timer whenever normal dispatch is suspended while the
// device is in a non-interactive state. This is to ensure that we abort a key
// repeat if the device is just coming out of sleep.
if (!mDispatchEnabled) {
resetKeyRepeatLocked();
}
// If dispatching is frozen, do not process timeouts or try to deliver any new events.
if (mDispatchFrozen) {
if (DEBUG_FOCUS) {
ALOGD("Dispatch frozen. Waiting some more.");
}
return;
}
// Optimize latency of app switches.
// Essentially we start a short timeout when an app switch key (HOME / ENDCALL) has
// been pressed. When it expires, we preempt dispatch and drop all other pending events.
bool isAppSwitchDue = mAppSwitchDueTime <= currentTime;
if (mAppSwitchDueTime < *nextWakeupTime) {
*nextWakeupTime = mAppSwitchDueTime;
}
// Ready to start a new event.
// If we don't already have a pending event, go grab one.
if (!mPendingEvent) {
if (mInboundQueue.empty()) {
if (isAppSwitchDue) {
// The inbound queue is empty so the app switch key we were waiting
// for will never arrive. Stop waiting for it.
resetPendingAppSwitchLocked(false);
isAppSwitchDue = false;
}
// Synthesize a key repeat if appropriate.
if (mKeyRepeatState.lastKeyEntry) {
if (currentTime >= mKeyRepeatState.nextRepeatTime) {
mPendingEvent = synthesizeKeyRepeatLocked(currentTime);
} else {
if (mKeyRepeatState.nextRepeatTime < *nextWakeupTime) {
*nextWakeupTime = mKeyRepeatState.nextRepeatTime;
}
}
}
// Nothing to do if there is no pending event.
if (!mPendingEvent) {
return;
}
} else {
// Inbound queue has at least one entry.
mPendingEvent = mInboundQueue.front();
mInboundQueue.pop_front();
traceInboundQueueLengthLocked();
}
// Poke user activity for this event.
if (mPendingEvent->policyFlags & POLICY_FLAG_PASS_TO_USER) {
pokeUserActivityLocked(*mPendingEvent);
}
}
// Now we have an event to dispatch.
// All events are eventually dequeued and processed this way, even if we intend to drop them.
ALOG_ASSERT(mPendingEvent != nullptr);
bool done = false;
DropReason dropReason = DropReason::NOT_DROPPED;
if (!(mPendingEvent->policyFlags & POLICY_FLAG_PASS_TO_USER)) {
dropReason = DropReason::POLICY;
} else if (!mDispatchEnabled) {
dropReason = DropReason::DISABLED;
}
if (mNextUnblockedEvent == mPendingEvent) {
mNextUnblockedEvent = nullptr;
}
switch (mPendingEvent->type) {
case EventEntry::Type::CONFIGURATION_CHANGED: {
const ConfigurationChangedEntry& typedEntry =
static_cast<const ConfigurationChangedEntry&>(*mPendingEvent);
done = dispatchConfigurationChangedLocked(currentTime, typedEntry);
dropReason = DropReason::NOT_DROPPED; // configuration changes are never dropped
break;
}
case EventEntry::Type::DEVICE_RESET: {
const DeviceResetEntry& typedEntry =
static_cast<const DeviceResetEntry&>(*mPendingEvent);
done = dispatchDeviceResetLocked(currentTime, typedEntry);
dropReason = DropReason::NOT_DROPPED; // device resets are never dropped
break;
}
case EventEntry::Type::FOCUS: {
std::shared_ptr<FocusEntry> typedEntry =
std::static_pointer_cast<FocusEntry>(mPendingEvent);
dispatchFocusLocked(currentTime, typedEntry);
done = true;
dropReason = DropReason::NOT_DROPPED; // focus events are never dropped
break;
}
case EventEntry::Type::TOUCH_MODE_CHANGED: {
const auto typedEntry = std::static_pointer_cast<TouchModeEntry>(mPendingEvent);
dispatchTouchModeChangeLocked(currentTime, typedEntry);
done = true;
dropReason = DropReason::NOT_DROPPED; // touch mode events are never dropped
break;
}
case EventEntry::Type::POINTER_CAPTURE_CHANGED: {
const auto typedEntry =
std::static_pointer_cast<PointerCaptureChangedEntry>(mPendingEvent);
dispatchPointerCaptureChangedLocked(currentTime, typedEntry, dropReason);
done = true;
break;
}
case EventEntry::Type::DRAG: {
std::shared_ptr<DragEntry> typedEntry =
std::static_pointer_cast<DragEntry>(mPendingEvent);
dispatchDragLocked(currentTime, typedEntry);
done = true;
break;
}
case EventEntry::Type::KEY: {
std::shared_ptr<KeyEntry> keyEntry = std::static_pointer_cast<KeyEntry>(mPendingEvent);
if (isAppSwitchDue) {
if (isAppSwitchKeyEvent(*keyEntry)) {
resetPendingAppSwitchLocked(true);
isAppSwitchDue = false;
} else if (dropReason == DropReason::NOT_DROPPED) {
dropReason = DropReason::APP_SWITCH;
}
}
if (dropReason == DropReason::NOT_DROPPED && isStaleEvent(currentTime, *keyEntry)) {
dropReason = DropReason::STALE;
}
if (dropReason == DropReason::NOT_DROPPED && mNextUnblockedEvent) {
dropReason = DropReason::BLOCKED;
}
done = dispatchKeyLocked(currentTime, keyEntry, &dropReason, nextWakeupTime);
break;
}
case EventEntry::Type::MOTION: {
std::shared_ptr<MotionEntry> motionEntry =
std::static_pointer_cast<MotionEntry>(mPendingEvent);
if (dropReason == DropReason::NOT_DROPPED && isAppSwitchDue) {
dropReason = DropReason::APP_SWITCH;
}
if (dropReason == DropReason::NOT_DROPPED && isStaleEvent(currentTime, *motionEntry)) {
dropReason = DropReason::STALE;
}
if (dropReason == DropReason::NOT_DROPPED && mNextUnblockedEvent) {
dropReason = DropReason::BLOCKED;
}
done = dispatchMotionLocked(currentTime, motionEntry, &dropReason, nextWakeupTime);
break;
}
case EventEntry::Type::SENSOR: {
std::shared_ptr<SensorEntry> sensorEntry =
std::static_pointer_cast<SensorEntry>(mPendingEvent);
if (dropReason == DropReason::NOT_DROPPED && isAppSwitchDue) {
dropReason = DropReason::APP_SWITCH;
}
// Sensor timestamps use SYSTEM_TIME_BOOTTIME time base, so we can't use
// 'currentTime' here, get SYSTEM_TIME_BOOTTIME instead.
nsecs_t bootTime = systemTime(SYSTEM_TIME_BOOTTIME);
if (dropReason == DropReason::NOT_DROPPED && isStaleEvent(bootTime, *sensorEntry)) {
dropReason = DropReason::STALE;
}
dispatchSensorLocked(currentTime, sensorEntry, &dropReason, nextWakeupTime);
done = true;
break;
}
}
if (done) {
if (dropReason != DropReason::NOT_DROPPED) {
dropInboundEventLocked(*mPendingEvent, dropReason);
}
mLastDropReason = dropReason;
releasePendingEventLocked();
*nextWakeupTime = LONG_LONG_MIN; // force next poll to wake up immediately
}
}
bool InputDispatcher::isStaleEvent(nsecs_t currentTime, const EventEntry& entry) {
return std::chrono::nanoseconds(currentTime - entry.eventTime) >= mStaleEventTimeout;
}
/**
* Return true if the events preceding this incoming motion event should be dropped
* Return false otherwise (the default behaviour)
*/
bool InputDispatcher::shouldPruneInboundQueueLocked(const MotionEntry& motionEntry) {
const bool isPointerDownEvent = motionEntry.action == AMOTION_EVENT_ACTION_DOWN &&
isFromSource(motionEntry.source, AINPUT_SOURCE_CLASS_POINTER);
// Optimize case where the current application is unresponsive and the user
// decides to touch a window in a different application.
// If the application takes too long to catch up then we drop all events preceding
// the touch into the other window.
if (isPointerDownEvent && mAwaitedFocusedApplication != nullptr) {
int32_t displayId = motionEntry.displayId;
int32_t x = static_cast<int32_t>(
motionEntry.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X));
int32_t y = static_cast<int32_t>(
motionEntry.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y));
const bool isStylus = isPointerFromStylus(motionEntry, 0 /*pointerIndex*/);
sp<WindowInfoHandle> touchedWindowHandle =
findTouchedWindowAtLocked(displayId, x, y, nullptr, isStylus);
if (touchedWindowHandle != nullptr &&
touchedWindowHandle->getApplicationToken() !=
mAwaitedFocusedApplication->getApplicationToken()) {
// User touched a different application than the one we are waiting on.
ALOGI("Pruning input queue because user touched a different application while waiting "
"for %s",
mAwaitedFocusedApplication->getName().c_str());
return true;
}
// Alternatively, maybe there's a spy window that could handle this event.
const std::vector<sp<WindowInfoHandle>> touchedSpies =
findTouchedSpyWindowsAtLocked(displayId, x, y, isStylus);
for (const auto& windowHandle : touchedSpies) {
const sp<Connection> connection = getConnectionLocked(windowHandle->getToken());
if (connection != nullptr && connection->responsive) {
// This spy window could take more input. Drop all events preceding this
// event, so that the spy window can get a chance to receive the stream.
ALOGW("Pruning the input queue because %s is unresponsive, but we have a "
"responsive spy window that may handle the event.",
mAwaitedFocusedApplication->getName().c_str());
return true;
}
}
}
// Prevent getting stuck: if we have a pending key event, and some motion events that have not
// yet been processed by some connections, the dispatcher will wait for these motion
// events to be processed before dispatching the key event. This is because these motion events
// may cause a new window to be launched, which the user might expect to receive focus.
// To prevent waiting forever for such events, just send the key to the currently focused window
if (isPointerDownEvent && mKeyIsWaitingForEventsTimeout) {
ALOGD("Received a new pointer down event, stop waiting for events to process and "
"just send the pending key event to the focused window.");
mKeyIsWaitingForEventsTimeout = now();
}
return false;
}
bool InputDispatcher::enqueueInboundEventLocked(std::unique_ptr<EventEntry> newEntry) {
bool needWake = mInboundQueue.empty();
mInboundQueue.push_back(std::move(newEntry));
EventEntry& entry = *(mInboundQueue.back());
traceInboundQueueLengthLocked();
switch (entry.type) {
case EventEntry::Type::KEY: {
LOG_ALWAYS_FATAL_IF((entry.policyFlags & POLICY_FLAG_TRUSTED) == 0,
"Unexpected untrusted event.");
// Optimize app switch latency.
// If the application takes too long to catch up then we drop all events preceding
// the app switch key.
const KeyEntry& keyEntry = static_cast<const KeyEntry&>(entry);
if (isAppSwitchKeyEvent(keyEntry)) {
if (keyEntry.action == AKEY_EVENT_ACTION_DOWN) {
mAppSwitchSawKeyDown = true;
} else if (keyEntry.action == AKEY_EVENT_ACTION_UP) {
if (mAppSwitchSawKeyDown) {
if (DEBUG_APP_SWITCH) {
ALOGD("App switch is pending!");
}
mAppSwitchDueTime = keyEntry.eventTime + APP_SWITCH_TIMEOUT;
mAppSwitchSawKeyDown = false;
needWake = true;
}
}
}
// If a new up event comes in, and the pending event with same key code has been asked
// to try again later because of the policy. We have to reset the intercept key wake up
// time for it may have been handled in the policy and could be dropped.
if (keyEntry.action == AKEY_EVENT_ACTION_UP && mPendingEvent &&
mPendingEvent->type == EventEntry::Type::KEY) {
KeyEntry& pendingKey = static_cast<KeyEntry&>(*mPendingEvent);
if (pendingKey.keyCode == keyEntry.keyCode &&
pendingKey.interceptKeyResult ==
KeyEntry::INTERCEPT_KEY_RESULT_TRY_AGAIN_LATER) {
pendingKey.interceptKeyResult = KeyEntry::INTERCEPT_KEY_RESULT_UNKNOWN;
pendingKey.interceptKeyWakeupTime = 0;
needWake = true;
}
}
break;
}
case EventEntry::Type::MOTION: {
LOG_ALWAYS_FATAL_IF((entry.policyFlags & POLICY_FLAG_TRUSTED) == 0,
"Unexpected untrusted event.");
if (shouldPruneInboundQueueLocked(static_cast<MotionEntry&>(entry))) {
mNextUnblockedEvent = mInboundQueue.back();
needWake = true;
}
break;
}
case EventEntry::Type::FOCUS: {
LOG_ALWAYS_FATAL("Focus events should be inserted using enqueueFocusEventLocked");
break;
}
case EventEntry::Type::TOUCH_MODE_CHANGED:
case EventEntry::Type::CONFIGURATION_CHANGED:
case EventEntry::Type::DEVICE_RESET:
case EventEntry::Type::SENSOR:
case EventEntry::Type::POINTER_CAPTURE_CHANGED:
case EventEntry::Type::DRAG: {
// nothing to do
break;
}
}
return needWake;
}
void InputDispatcher::addRecentEventLocked(std::shared_ptr<EventEntry> entry) {
// Do not store sensor event in recent queue to avoid flooding the queue.
if (entry->type != EventEntry::Type::SENSOR) {
mRecentQueue.push_back(entry);
}
if (mRecentQueue.size() > RECENT_QUEUE_MAX_SIZE) {
mRecentQueue.pop_front();
}
}
sp<WindowInfoHandle> InputDispatcher::findTouchedWindowAtLocked(int32_t displayId, int32_t x,
int32_t y, TouchState* touchState,
bool isStylus,
bool addOutsideTargets,
bool ignoreDragWindow) {
if (addOutsideTargets && touchState == nullptr) {
LOG_ALWAYS_FATAL("Must provide a valid touch state if adding outside targets");
}
// Traverse windows from front to back to find touched window.
const auto& windowHandles = getWindowHandlesLocked(displayId);
for (const sp<WindowInfoHandle>& windowHandle : windowHandles) {
if (ignoreDragWindow && haveSameToken(windowHandle, mDragState->dragWindow)) {
continue;
}
const WindowInfo& info = *windowHandle->getInfo();
if (!info.isSpy() && windowAcceptsTouchAt(info, displayId, x, y, isStylus)) {
return windowHandle;
}
if (addOutsideTargets &&
info.inputConfig.test(WindowInfo::InputConfig::WATCH_OUTSIDE_TOUCH)) {
touchState->addOrUpdateWindow(windowHandle, InputTarget::FLAG_DISPATCH_AS_OUTSIDE,
BitSet32(0));
}
}
return nullptr;
}
std::vector<sp<WindowInfoHandle>> InputDispatcher::findTouchedSpyWindowsAtLocked(
int32_t displayId, int32_t x, int32_t y, bool isStylus) const {
// Traverse windows from front to back and gather the touched spy windows.
std::vector<sp<WindowInfoHandle>> spyWindows;
const auto& windowHandles = getWindowHandlesLocked(displayId);
for (const sp<WindowInfoHandle>& windowHandle : windowHandles) {
const WindowInfo& info = *windowHandle->getInfo();
if (!windowAcceptsTouchAt(info, displayId, x, y, isStylus)) {
continue;
}
if (!info.isSpy()) {
// The first touched non-spy window was found, so return the spy windows touched so far.
return spyWindows;
}
spyWindows.push_back(windowHandle);
}
return spyWindows;
}
void InputDispatcher::dropInboundEventLocked(const EventEntry& entry, DropReason dropReason) {
const char* reason;
switch (dropReason) {
case DropReason::POLICY:
if (DEBUG_INBOUND_EVENT_DETAILS) {
ALOGD("Dropped event because policy consumed it.");
}
reason = "inbound event was dropped because the policy consumed it";
break;
case DropReason::DISABLED:
if (mLastDropReason != DropReason::DISABLED) {
ALOGI("Dropped event because input dispatch is disabled.");
}
reason = "inbound event was dropped because input dispatch is disabled";
break;
case DropReason::APP_SWITCH:
ALOGI("Dropped event because of pending overdue app switch.");
reason = "inbound event was dropped because of pending overdue app switch";
break;
case DropReason::BLOCKED:
ALOGI("Dropped event because the current application is not responding and the user "
"has started interacting with a different application.");
reason = "inbound event was dropped because the current application is not responding "
"and the user has started interacting with a different application";
break;
case DropReason::STALE:
ALOGI("Dropped event because it is stale.");
reason = "inbound event was dropped because it is stale";
break;
case DropReason::NO_POINTER_CAPTURE:
ALOGI("Dropped event because there is no window with Pointer Capture.");
reason = "inbound event was dropped because there is no window with Pointer Capture";
break;
case DropReason::NOT_DROPPED: {
LOG_ALWAYS_FATAL("Should not be dropping a NOT_DROPPED event");
return;
}
}
switch (entry.type) {
case EventEntry::Type::KEY: {
CancelationOptions options(CancelationOptions::CANCEL_NON_POINTER_EVENTS, reason);
synthesizeCancelationEventsForAllConnectionsLocked(options);
break;
}
case EventEntry::Type::MOTION: {
const MotionEntry& motionEntry = static_cast<const MotionEntry&>(entry);
if (motionEntry.source & AINPUT_SOURCE_CLASS_POINTER) {
CancelationOptions options(CancelationOptions::CANCEL_POINTER_EVENTS, reason);
synthesizeCancelationEventsForAllConnectionsLocked(options);
} else {
CancelationOptions options(CancelationOptions::CANCEL_NON_POINTER_EVENTS, reason);
synthesizeCancelationEventsForAllConnectionsLocked(options);
}
break;
}
case EventEntry::Type::SENSOR: {
break;
}
case EventEntry::Type::POINTER_CAPTURE_CHANGED:
case EventEntry::Type::DRAG: {
break;
}
case EventEntry::Type::FOCUS:
case EventEntry::Type::TOUCH_MODE_CHANGED:
case EventEntry::Type::CONFIGURATION_CHANGED:
case EventEntry::Type::DEVICE_RESET: {
LOG_ALWAYS_FATAL("Should not drop %s events", ftl::enum_string(entry.type).c_str());
break;
}
}
}
static bool isAppSwitchKeyCode(int32_t keyCode) {
return keyCode == AKEYCODE_HOME || keyCode == AKEYCODE_ENDCALL ||
keyCode == AKEYCODE_APP_SWITCH;
}
bool InputDispatcher::isAppSwitchKeyEvent(const KeyEntry& keyEntry) {
return !(keyEntry.flags & AKEY_EVENT_FLAG_CANCELED) && isAppSwitchKeyCode(keyEntry.keyCode) &&
(keyEntry.policyFlags & POLICY_FLAG_TRUSTED) &&
(keyEntry.policyFlags & POLICY_FLAG_PASS_TO_USER);
}
bool InputDispatcher::isAppSwitchPendingLocked() {
return mAppSwitchDueTime != LONG_LONG_MAX;
}
void InputDispatcher::resetPendingAppSwitchLocked(bool handled) {
mAppSwitchDueTime = LONG_LONG_MAX;
if (DEBUG_APP_SWITCH) {
if (handled) {
ALOGD("App switch has arrived.");
} else {
ALOGD("App switch was abandoned.");
}
}
}
bool InputDispatcher::haveCommandsLocked() const {
return !mCommandQueue.empty();
}
bool InputDispatcher::runCommandsLockedInterruptable() {
if (mCommandQueue.empty()) {
return false;
}
do {
auto command = std::move(mCommandQueue.front());
mCommandQueue.pop_front();
// Commands are run with the lock held, but may release and re-acquire the lock from within.
command();
} while (!mCommandQueue.empty());
return true;
}
void InputDispatcher::postCommandLocked(Command&& command) {
mCommandQueue.push_back(command);
}
void InputDispatcher::drainInboundQueueLocked() {
while (!mInboundQueue.empty()) {
std::shared_ptr<EventEntry> entry = mInboundQueue.front();
mInboundQueue.pop_front();
releaseInboundEventLocked(entry);
}
traceInboundQueueLengthLocked();
}
void InputDispatcher::releasePendingEventLocked() {
if (mPendingEvent) {
releaseInboundEventLocked(mPendingEvent);
mPendingEvent = nullptr;
}
}
void InputDispatcher::releaseInboundEventLocked(std::shared_ptr<EventEntry> entry) {
InjectionState* injectionState = entry->injectionState;
if (injectionState && injectionState->injectionResult == InputEventInjectionResult::PENDING) {
if (DEBUG_DISPATCH_CYCLE) {
ALOGD("Injected inbound event was dropped.");
}
setInjectionResult(*entry, InputEventInjectionResult::FAILED);
}
if (entry == mNextUnblockedEvent) {
mNextUnblockedEvent = nullptr;
}
addRecentEventLocked(entry);
}
void InputDispatcher::resetKeyRepeatLocked() {
if (mKeyRepeatState.lastKeyEntry) {
mKeyRepeatState.lastKeyEntry = nullptr;
}
}
std::shared_ptr<KeyEntry> InputDispatcher::synthesizeKeyRepeatLocked(nsecs_t currentTime) {
std::shared_ptr<KeyEntry> entry = mKeyRepeatState.lastKeyEntry;
uint32_t policyFlags = entry->policyFlags &
(POLICY_FLAG_RAW_MASK | POLICY_FLAG_PASS_TO_USER | POLICY_FLAG_TRUSTED);
std::shared_ptr<KeyEntry> newEntry =
std::make_unique<KeyEntry>(mIdGenerator.nextId(), currentTime, entry->deviceId,
entry->source, entry->displayId, policyFlags, entry->action,
entry->flags, entry->keyCode, entry->scanCode,
entry->metaState, entry->repeatCount + 1, entry->downTime);
newEntry->syntheticRepeat = true;
mKeyRepeatState.lastKeyEntry = newEntry;
mKeyRepeatState.nextRepeatTime = currentTime + mConfig.keyRepeatDelay;
return newEntry;
}
bool InputDispatcher::dispatchConfigurationChangedLocked(nsecs_t currentTime,
const ConfigurationChangedEntry& entry) {
if (DEBUG_OUTBOUND_EVENT_DETAILS) {
ALOGD("dispatchConfigurationChanged - eventTime=%" PRId64, entry.eventTime);
}
// Reset key repeating in case a keyboard device was added or removed or something.
resetKeyRepeatLocked();
// Enqueue a command to run outside the lock to tell the policy that the configuration changed.
auto command = [this, eventTime = entry.eventTime]() REQUIRES(mLock) {
scoped_unlock unlock(mLock);
mPolicy->notifyConfigurationChanged(eventTime);
};
postCommandLocked(std::move(command));
return true;
}
bool InputDispatcher::dispatchDeviceResetLocked(nsecs_t currentTime,
const DeviceResetEntry& entry) {
if (DEBUG_OUTBOUND_EVENT_DETAILS) {
ALOGD("dispatchDeviceReset - eventTime=%" PRId64 ", deviceId=%d", entry.eventTime,
entry.deviceId);
}
// Reset key repeating in case a keyboard device was disabled or enabled.
if (mKeyRepeatState.lastKeyEntry && mKeyRepeatState.lastKeyEntry->deviceId == entry.deviceId) {
resetKeyRepeatLocked();
}
CancelationOptions options(CancelationOptions::CANCEL_ALL_EVENTS, "device was reset");
options.deviceId = entry.deviceId;
synthesizeCancelationEventsForAllConnectionsLocked(options);
return true;
}
void InputDispatcher::enqueueFocusEventLocked(const sp<IBinder>& windowToken, bool hasFocus,
const std::string& reason) {
if (mPendingEvent != nullptr) {
// Move the pending event to the front of the queue. This will give the chance
// for the pending event to get dispatched to the newly focused window
mInboundQueue.push_front(mPendingEvent);
mPendingEvent = nullptr;
}
std::unique_ptr<FocusEntry> focusEntry =
std::make_unique<FocusEntry>(mIdGenerator.nextId(), now(), windowToken, hasFocus,
reason);
// This event should go to the front of the queue, but behind all other focus events
// Find the last focus event, and insert right after it
std::deque<std::shared_ptr<EventEntry>>::reverse_iterator it =
std::find_if(mInboundQueue.rbegin(), mInboundQueue.rend(),
[](const std::shared_ptr<EventEntry>& event) {
return event->type == EventEntry::Type::FOCUS;
});
// Maintain the order of focus events. Insert the entry after all other focus events.
mInboundQueue.insert(it.base(), std::move(focusEntry));
}
void InputDispatcher::dispatchFocusLocked(nsecs_t currentTime, std::shared_ptr<FocusEntry> entry) {
std::shared_ptr<InputChannel> channel = getInputChannelLocked(entry->connectionToken);
if (channel == nullptr) {
return; // Window has gone away
}
InputTarget target;
target.inputChannel = channel;
target.flags = InputTarget::FLAG_DISPATCH_AS_IS;
entry->dispatchInProgress = true;
std::string message = std::string("Focus ") + (entry->hasFocus ? "entering " : "leaving ") +
channel->getName();
std::string reason = std::string("reason=").append(entry->reason);
android_log_event_list(LOGTAG_INPUT_FOCUS) << message << reason << LOG_ID_EVENTS;
dispatchEventLocked(currentTime, entry, {target});
}
void InputDispatcher::dispatchPointerCaptureChangedLocked(
nsecs_t currentTime, const std::shared_ptr<PointerCaptureChangedEntry>& entry,
DropReason& dropReason) {
dropReason = DropReason::NOT_DROPPED;
const bool haveWindowWithPointerCapture = mWindowTokenWithPointerCapture != nullptr;
sp<IBinder> token;
if (entry->pointerCaptureRequest.enable) {
// Enable Pointer Capture.
if (haveWindowWithPointerCapture &&
(entry->pointerCaptureRequest == mCurrentPointerCaptureRequest)) {
// This can happen if pointer capture is disabled and re-enabled before we notify the
// app of the state change, so there is no need to notify the app.
ALOGI("Skipping dispatch of Pointer Capture being enabled: no state change.");
return;
}
if (!mCurrentPointerCaptureRequest.enable) {
// This can happen if a window requests capture and immediately releases capture.
ALOGW("No window requested Pointer Capture.");
dropReason = DropReason::NO_POINTER_CAPTURE;
return;
}
if (entry->pointerCaptureRequest.seq != mCurrentPointerCaptureRequest.seq) {
ALOGI("Skipping dispatch of Pointer Capture being enabled: sequence number mismatch.");
return;
}
token = mFocusResolver.getFocusedWindowToken(mFocusedDisplayId);
LOG_ALWAYS_FATAL_IF(!token, "Cannot find focused window for Pointer Capture.");
mWindowTokenWithPointerCapture = token;
} else {
// Disable Pointer Capture.
// We do not check if the sequence number matches for requests to disable Pointer Capture
// for two reasons:
// 1. Pointer Capture can be disabled by a focus change, which means we can get two entries
// to disable capture with the same sequence number: one generated by
// disablePointerCaptureForcedLocked() and another as an acknowledgement of Pointer
// Capture being disabled in InputReader.
// 2. We respect any request to disable Pointer Capture generated by InputReader, since the
// actual Pointer Capture state that affects events being generated by input devices is
// in InputReader.
if (!haveWindowWithPointerCapture) {
// Pointer capture was already forcefully disabled because of focus change.
dropReason = DropReason::NOT_DROPPED;
return;
}
token = mWindowTokenWithPointerCapture;
mWindowTokenWithPointerCapture = nullptr;
if (mCurrentPointerCaptureRequest.enable) {
setPointerCaptureLocked(false);
}
}
auto channel = getInputChannelLocked(token);
if (channel == nullptr) {
// Window has gone away, clean up Pointer Capture state.
mWindowTokenWithPointerCapture = nullptr;
if (mCurrentPointerCaptureRequest.enable) {
setPointerCaptureLocked(false);
}
return;
}
InputTarget target;
target.inputChannel = channel;
target.flags = InputTarget::FLAG_DISPATCH_AS_IS;
entry->dispatchInProgress = true;
dispatchEventLocked(currentTime, entry, {target});
dropReason = DropReason::NOT_DROPPED;
}
void InputDispatcher::dispatchTouchModeChangeLocked(nsecs_t currentTime,
const std::shared_ptr<TouchModeEntry>& entry) {
const std::vector<sp<WindowInfoHandle>>& windowHandles =
getWindowHandlesLocked(mFocusedDisplayId);
if (windowHandles.empty()) {
return;
}
const std::vector<InputTarget> inputTargets =
getInputTargetsFromWindowHandlesLocked(windowHandles);
if (inputTargets.empty()) {
return;
}
entry->dispatchInProgress = true;
dispatchEventLocked(currentTime, entry, inputTargets);
}
std::vector<InputTarget> InputDispatcher::getInputTargetsFromWindowHandlesLocked(
const std::vector<sp<WindowInfoHandle>>& windowHandles) const {
std::vector<InputTarget> inputTargets;
for (const sp<WindowInfoHandle>& handle : windowHandles) {
// TODO(b/193718270): Due to performance concerns, consider notifying visible windows only.
const sp<IBinder>& token = handle->getToken();
if (token == nullptr) {
continue;
}
std::shared_ptr<InputChannel> channel = getInputChannelLocked(token);
if (channel == nullptr) {
continue; // Window has gone away
}
InputTarget target;
target.inputChannel = channel;
target.flags = InputTarget::FLAG_DISPATCH_AS_IS;
inputTargets.push_back(target);
}
return inputTargets;
}
bool InputDispatcher::dispatchKeyLocked(nsecs_t currentTime, std::shared_ptr<KeyEntry> entry,
DropReason* dropReason, nsecs_t* nextWakeupTime) {
// Preprocessing.
if (!entry->dispatchInProgress) {
if (entry->repeatCount == 0 && entry->action == AKEY_EVENT_ACTION_DOWN &&
(entry->policyFlags & POLICY_FLAG_TRUSTED) &&
(!(entry->policyFlags & POLICY_FLAG_DISABLE_KEY_REPEAT))) {
if (mKeyRepeatState.lastKeyEntry &&
mKeyRepeatState.lastKeyEntry->keyCode == entry->keyCode &&
// We have seen two identical key downs in a row which indicates that the device
// driver is automatically generating key repeats itself. We take note of the
// repeat here, but we disable our own next key repeat timer since it is clear that
// we will not need to synthesize key repeats ourselves.
mKeyRepeatState.lastKeyEntry->deviceId == entry->deviceId) {
// Make sure we don't get key down from a different device. If a different
// device Id has same key pressed down, the new device Id will replace the
// current one to hold the key repeat with repeat count reset.
// In the future when got a KEY_UP on the device id, drop it and do not
// stop the key repeat on current device.
entry->repeatCount = mKeyRepeatState.lastKeyEntry->repeatCount + 1;
resetKeyRepeatLocked();
mKeyRepeatState.nextRepeatTime = LONG_LONG_MAX; // don't generate repeats ourselves
} else {
// Not a repeat. Save key down state in case we do see a repeat later.
resetKeyRepeatLocked();
mKeyRepeatState.nextRepeatTime = entry->eventTime + mConfig.keyRepeatTimeout;
}
mKeyRepeatState.lastKeyEntry = entry;
} else if (entry->action == AKEY_EVENT_ACTION_UP && mKeyRepeatState.lastKeyEntry &&
mKeyRepeatState.lastKeyEntry->deviceId != entry->deviceId) {
// The key on device 'deviceId' is still down, do not stop key repeat
if (DEBUG_INBOUND_EVENT_DETAILS) {
ALOGD("deviceId=%d got KEY_UP as stale", entry->deviceId);
}
} else if (!entry->syntheticRepeat) {
resetKeyRepeatLocked();
}
if (entry->repeatCount == 1) {
entry->flags |= AKEY_EVENT_FLAG_LONG_PRESS;
} else {
entry->flags &= ~AKEY_EVENT_FLAG_LONG_PRESS;
}
entry->dispatchInProgress = true;
logOutboundKeyDetails("dispatchKey - ", *entry);
}
// Handle case where the policy asked us to try again later last time.
if (entry->interceptKeyResult == KeyEntry::INTERCEPT_KEY_RESULT_TRY_AGAIN_LATER) {
if (currentTime < entry->interceptKeyWakeupTime) {
if (entry->interceptKeyWakeupTime < *nextWakeupTime) {
*nextWakeupTime = entry->interceptKeyWakeupTime;
}
return false; // wait until next wakeup
}
entry->interceptKeyResult = KeyEntry::INTERCEPT_KEY_RESULT_UNKNOWN;
entry->interceptKeyWakeupTime = 0;
}
// Give the policy a chance to intercept the key.
if (entry->interceptKeyResult == KeyEntry::INTERCEPT_KEY_RESULT_UNKNOWN) {
if (entry->policyFlags & POLICY_FLAG_PASS_TO_USER) {
sp<IBinder> focusedWindowToken =
mFocusResolver.getFocusedWindowToken(getTargetDisplayId(*entry));
auto command = [this, focusedWindowToken, entry]() REQUIRES(mLock) {
doInterceptKeyBeforeDispatchingCommand(focusedWindowToken, *entry);
};
postCommandLocked(std::move(command));
return false; // wait for the command to run
} else {
entry->interceptKeyResult = KeyEntry::INTERCEPT_KEY_RESULT_CONTINUE;
}
} else if (entry->interceptKeyResult == KeyEntry::INTERCEPT_KEY_RESULT_SKIP) {
if (*dropReason == DropReason::NOT_DROPPED) {
*dropReason = DropReason::POLICY;
}
}
// Clean up if dropping the event.
if (*dropReason != DropReason::NOT_DROPPED) {
setInjectionResult(*entry,
*dropReason == DropReason::POLICY ? InputEventInjectionResult::SUCCEEDED
: InputEventInjectionResult::FAILED);
mReporter->reportDroppedKey(entry->id);
return true;
}
// Identify targets.
std::vector<InputTarget> inputTargets;
InputEventInjectionResult injectionResult =
findFocusedWindowTargetsLocked(currentTime, *entry, inputTargets, nextWakeupTime);
if (injectionResult == InputEventInjectionResult::PENDING) {
return false;
}
setInjectionResult(*entry, injectionResult);
if (injectionResult != InputEventInjectionResult::SUCCEEDED) {
return true;
}
// Add monitor channels from event's or focused display.
addGlobalMonitoringTargetsLocked(inputTargets, getTargetDisplayId(*entry));
// Dispatch the key.
dispatchEventLocked(currentTime, entry, inputTargets);
return true;
}
void InputDispatcher::logOutboundKeyDetails(const char* prefix, const KeyEntry& entry) {
if (DEBUG_OUTBOUND_EVENT_DETAILS) {
ALOGD("%seventTime=%" PRId64 ", deviceId=%d, source=0x%x, displayId=%" PRId32 ", "
"policyFlags=0x%x, action=0x%x, flags=0x%x, keyCode=0x%x, scanCode=0x%x, "
"metaState=0x%x, repeatCount=%d, downTime=%" PRId64,
prefix, entry.eventTime, entry.deviceId, entry.source, entry.displayId,
entry.policyFlags, entry.action, entry.flags, entry.keyCode, entry.scanCode,
entry.metaState, entry.repeatCount, entry.downTime);
}
}
void InputDispatcher::dispatchSensorLocked(nsecs_t currentTime,
const std::shared_ptr<SensorEntry>& entry,
DropReason* dropReason, nsecs_t* nextWakeupTime) {
if (DEBUG_OUTBOUND_EVENT_DETAILS) {
ALOGD("notifySensorEvent eventTime=%" PRId64 ", hwTimestamp=%" PRId64 ", deviceId=%d, "
"source=0x%x, sensorType=%s",
entry->eventTime, entry->hwTimestamp, entry->deviceId, entry->source,
ftl::enum_string(entry->sensorType).c_str());
}
auto command = [this, entry]() REQUIRES(mLock) {
scoped_unlock unlock(mLock);
if (entry->accuracyChanged) {
mPolicy->notifySensorAccuracy(entry->deviceId, entry->sensorType, entry->accuracy);
}
mPolicy->notifySensorEvent(entry->deviceId, entry->sensorType, entry->accuracy,
entry->hwTimestamp, entry->values);
};
postCommandLocked(std::move(command));
}
bool InputDispatcher::flushSensor(int deviceId, InputDeviceSensorType sensorType) {
if (DEBUG_OUTBOUND_EVENT_DETAILS) {
ALOGD("flushSensor deviceId=%d, sensorType=%s", deviceId,
ftl::enum_string(sensorType).c_str());
}
{ // acquire lock
std::scoped_lock _l(mLock);
for (auto it = mInboundQueue.begin(); it != mInboundQueue.end(); it++) {
std::shared_ptr<EventEntry> entry = *it;
if (entry->type == EventEntry::Type::SENSOR) {
it = mInboundQueue.erase(it);
releaseInboundEventLocked(entry);
}
}
}
return true;
}
bool InputDispatcher::dispatchMotionLocked(nsecs_t currentTime, std::shared_ptr<MotionEntry> entry,
DropReason* dropReason, nsecs_t* nextWakeupTime) {
ATRACE_CALL();
// Preprocessing.
if (!entry->dispatchInProgress) {
entry->dispatchInProgress = true;
logOutboundMotionDetails("dispatchMotion - ", *entry);
}
// Clean up if dropping the event.
if (*dropReason != DropReason::NOT_DROPPED) {
setInjectionResult(*entry,
*dropReason == DropReason::POLICY ? InputEventInjectionResult::SUCCEEDED
: InputEventInjectionResult::FAILED);
return true;
}
const bool isPointerEvent = isFromSource(entry->source, AINPUT_SOURCE_CLASS_POINTER);
// Identify targets.
std::vector<InputTarget> inputTargets;
bool conflictingPointerActions = false;
InputEventInjectionResult injectionResult;
if (isPointerEvent) {
// Pointer event. (eg. touchscreen)
injectionResult =
findTouchedWindowTargetsLocked(currentTime, *entry, inputTargets, nextWakeupTime,
&conflictingPointerActions);
} else {
// Non touch event. (eg. trackball)
injectionResult =
findFocusedWindowTargetsLocked(currentTime, *entry, inputTargets, nextWakeupTime);
}
if (injectionResult == InputEventInjectionResult::PENDING) {
return false;
}
setInjectionResult(*entry, injectionResult);
if (injectionResult == InputEventInjectionResult::TARGET_MISMATCH) {
return true;
}
if (injectionResult != InputEventInjectionResult::SUCCEEDED) {
CancelationOptions::Mode mode(isPointerEvent
? CancelationOptions::CANCEL_POINTER_EVENTS
: CancelationOptions::CANCEL_NON_POINTER_EVENTS);
CancelationOptions options(mode, "input event injection failed");
synthesizeCancelationEventsForMonitorsLocked(options);
return true;
}
// Add monitor channels from event's or focused display.
addGlobalMonitoringTargetsLocked(inputTargets, getTargetDisplayId(*entry));
// Dispatch the motion.
if (conflictingPointerActions) {
CancelationOptions options(CancelationOptions::CANCEL_POINTER_EVENTS,
"conflicting pointer actions");
synthesizeCancelationEventsForAllConnectionsLocked(options);
}
dispatchEventLocked(currentTime, entry, inputTargets);
return true;
}
void InputDispatcher::enqueueDragEventLocked(const sp<WindowInfoHandle>& windowHandle,
bool isExiting, const int32_t rawX,
const int32_t rawY) {
const vec2 xy = windowHandle->getInfo()->transform.transform(vec2(rawX, rawY));
std::unique_ptr<DragEntry> dragEntry =
std::make_unique<DragEntry>(mIdGenerator.nextId(), now(), windowHandle->getToken(),
isExiting, xy.x, xy.y);
enqueueInboundEventLocked(std::move(dragEntry));
}
void InputDispatcher::dispatchDragLocked(nsecs_t currentTime, std::shared_ptr<DragEntry> entry) {
std::shared_ptr<InputChannel> channel = getInputChannelLocked(entry->connectionToken);
if (channel == nullptr) {
return; // Window has gone away
}
InputTarget target;
target.inputChannel = channel;
target.flags = InputTarget::FLAG_DISPATCH_AS_IS;
entry->dispatchInProgress = true;
dispatchEventLocked(currentTime, entry, {target});
}
void InputDispatcher::logOutboundMotionDetails(const char* prefix, const MotionEntry& entry) {
if (DEBUG_OUTBOUND_EVENT_DETAILS) {
ALOGD("%seventTime=%" PRId64 ", deviceId=%d, source=0x%x, displayId=%" PRId32
", policyFlags=0x%x, "
"action=%s, actionButton=0x%x, flags=0x%x, "
"metaState=0x%x, buttonState=0x%x,"
"edgeFlags=0x%x, xPrecision=%f, yPrecision=%f, downTime=%" PRId64,
prefix, entry.eventTime, entry.deviceId, entry.source, entry.displayId,
entry.policyFlags, MotionEvent::actionToString(entry.action).c_str(),
entry.actionButton, entry.flags, entry.metaState, entry.buttonState, entry.edgeFlags,
entry.xPrecision, entry.yPrecision, entry.downTime);
for (uint32_t i = 0; i < entry.pointerCount; i++) {
ALOGD(" Pointer %d: id=%d, toolType=%d, "
"x=%f, y=%f, pressure=%f, size=%f, "
"touchMajor=%f, touchMinor=%f, toolMajor=%f, toolMinor=%f, "
"orientation=%f",
i, entry.pointerProperties[i].id, entry.pointerProperties[i].toolType,
entry.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_X),
entry.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_Y),
entry.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_PRESSURE),
entry.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_SIZE),
entry.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR),
entry.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR),
entry.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR),
entry.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR),
entry.pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_ORIENTATION));
}
}
}
void InputDispatcher::dispatchEventLocked(nsecs_t currentTime,
std::shared_ptr<EventEntry> eventEntry,
const std::vector<InputTarget>& inputTargets) {
ATRACE_CALL();
if (DEBUG_DISPATCH_CYCLE) {
ALOGD("dispatchEventToCurrentInputTargets");
}
updateInteractionTokensLocked(*eventEntry, inputTargets);
ALOG_ASSERT(eventEntry->dispatchInProgress); // should already have been set to true
pokeUserActivityLocked(*eventEntry);
for (const InputTarget& inputTarget : inputTargets) {
sp<Connection> connection =
getConnectionLocked(inputTarget.inputChannel->getConnectionToken());
if (connection != nullptr) {
prepareDispatchCycleLocked(currentTime, connection, eventEntry, inputTarget);
} else {
if (DEBUG_FOCUS) {
ALOGD("Dropping event delivery to target with channel '%s' because it "
"is no longer registered with the input dispatcher.",
inputTarget.inputChannel->getName().c_str());
}
}
}
}
void InputDispatcher::cancelEventsForAnrLocked(const sp<Connection>& connection) {
// We will not be breaking any connections here, even if the policy wants us to abort dispatch.
// If the policy decides to close the app, we will get a channel removal event via
// unregisterInputChannel, and will clean up the connection that way. We are already not
// sending new pointers to the connection when it blocked, but focused events will continue to
// pile up.
ALOGW("Canceling events for %s because it is unresponsive",
connection->inputChannel->getName().c_str());
if (connection->status == Connection::Status::NORMAL) {
CancelationOptions options(CancelationOptions::CANCEL_ALL_EVENTS,
"application not responding");
synthesizeCancelationEventsForConnectionLocked(connection, options);
}
}
void InputDispatcher::resetNoFocusedWindowTimeoutLocked() {
if (DEBUG_FOCUS) {
ALOGD("Resetting ANR timeouts.");
}
// Reset input target wait timeout.
mNoFocusedWindowTimeoutTime = std::nullopt;
mAwaitedFocusedApplication.reset();
}
/**
* Get the display id that the given event should go to. If this event specifies a valid display id,
* then it should be dispatched to that display. Otherwise, the event goes to the focused display.
* Focused display is the display that the user most recently interacted with.
*/
int32_t InputDispatcher::getTargetDisplayId(const EventEntry& entry) {
int32_t displayId;
switch (entry.type) {
case EventEntry::Type::KEY: {
const KeyEntry& keyEntry = static_cast<const KeyEntry&>(entry);
displayId = keyEntry.displayId;
break;
}
case EventEntry::Type::MOTION: {
const MotionEntry& motionEntry = static_cast<const MotionEntry&>(entry);
displayId = motionEntry.displayId;
break;
}
case EventEntry::Type::TOUCH_MODE_CHANGED:
case EventEntry::Type::POINTER_CAPTURE_CHANGED:
case EventEntry::Type::FOCUS:
case EventEntry::Type::CONFIGURATION_CHANGED:
case EventEntry::Type::DEVICE_RESET:
case EventEntry::Type::SENSOR:
case EventEntry::Type::DRAG: {
ALOGE("%s events do not have a target display", ftl::enum_string(entry.type).c_str());
return ADISPLAY_ID_NONE;
}
}
return displayId == ADISPLAY_ID_NONE ? mFocusedDisplayId : displayId;
}
bool InputDispatcher::shouldWaitToSendKeyLocked(nsecs_t currentTime,
const char* focusedWindowName) {
if (mAnrTracker.empty()) {
// already processed all events that we waited for
mKeyIsWaitingForEventsTimeout = std::nullopt;
return false;
}
if (!mKeyIsWaitingForEventsTimeout.has_value()) {
// Start the timer
// Wait to send key because there are unprocessed events that may cause focus to change
mKeyIsWaitingForEventsTimeout = currentTime +
std::chrono::duration_cast<std::chrono::nanoseconds>(KEY_WAITING_FOR_EVENTS_TIMEOUT)
.count();
return true;
}
// We still have pending events, and already started the timer
if (currentTime < *mKeyIsWaitingForEventsTimeout) {
return true; // Still waiting
}
// Waited too long, and some connection still hasn't processed all motions
// Just send the key to the focused window
ALOGW("Dispatching key to %s even though there are other unprocessed events",
focusedWindowName);
mKeyIsWaitingForEventsTimeout = std::nullopt;
return false;
}
InputEventInjectionResult InputDispatcher::findFocusedWindowTargetsLocked(
nsecs_t currentTime, const EventEntry& entry, std::vector<InputTarget>& inputTargets,
nsecs_t* nextWakeupTime) {
std::string reason;
int32_t displayId = getTargetDisplayId(entry);
sp<WindowInfoHandle> focusedWindowHandle = getFocusedWindowHandleLocked(displayId);
std::shared_ptr<InputApplicationHandle> focusedApplicationHandle =
getValueByKey(mFocusedApplicationHandlesByDisplay, displayId);
// If there is no currently focused window and no focused application
// then drop the event.
if (focusedWindowHandle == nullptr && focusedApplicationHandle == nullptr) {
ALOGI("Dropping %s event because there is no focused window or focused application in "
"display %" PRId32 ".",
ftl::enum_string(entry.type).c_str(), displayId);
return InputEventInjectionResult::FAILED;
}
// Drop key events if requested by input feature
if (focusedWindowHandle != nullptr && shouldDropInput(entry, focusedWindowHandle)) {
return InputEventInjectionResult::FAILED;
}
// Compatibility behavior: raise ANR if there is a focused application, but no focused window.
// Only start counting when we have a focused event to dispatch. The ANR is canceled if we
// start interacting with another application via touch (app switch). This code can be removed
// if the "no focused window ANR" is moved to the policy. Input doesn't know whether
// an app is expected to have a focused window.
if (focusedWindowHandle == nullptr && focusedApplicationHandle != nullptr) {
if (!mNoFocusedWindowTimeoutTime.has_value()) {
// We just discovered that there's no focused window. Start the ANR timer
std::chrono::nanoseconds timeout = focusedApplicationHandle->getDispatchingTimeout(
DEFAULT_INPUT_DISPATCHING_TIMEOUT);
mNoFocusedWindowTimeoutTime = currentTime + timeout.count();
mAwaitedFocusedApplication = focusedApplicationHandle;
mAwaitedApplicationDisplayId = displayId;
ALOGW("Waiting because no window has focus but %s may eventually add a "
"window when it finishes starting up. Will wait for %" PRId64 "ms",
mAwaitedFocusedApplication->getName().c_str(), millis(timeout));
*nextWakeupTime = *mNoFocusedWindowTimeoutTime;
return InputEventInjectionResult::PENDING;
} else if (currentTime > *mNoFocusedWindowTimeoutTime) {
// Already raised ANR. Drop the event
ALOGE("Dropping %s event because there is no focused window",
ftl::enum_string(entry.type).c_str());
return InputEventInjectionResult::FAILED;
} else {
// Still waiting for the focused window
return InputEventInjectionResult::PENDING;
}
}
// we have a valid, non-null focused window
resetNoFocusedWindowTimeoutLocked();
// Verify targeted injection.
if (const auto err = verifyTargetedInjection(focusedWindowHandle, entry); err) {
ALOGW("Dropping injected event: %s", (*err).c_str());
return InputEventInjectionResult::TARGET_MISMATCH;
}
if (focusedWindowHandle->getInfo()->inputConfig.test(
WindowInfo::InputConfig::PAUSE_DISPATCHING)) {
ALOGI("Waiting because %s is paused", focusedWindowHandle->getName().c_str());
return InputEventInjectionResult::PENDING;
}
// If the event is a key event, then we must wait for all previous events to
// complete before delivering it because previous events may have the
// side-effect of transferring focus to a different window and we want to
// ensure that the following keys are sent to the new window.
//
// Suppose the user touches a button in a window then immediately presses "A".
// If the button causes a pop-up window to appear then we want to ensure that
// the "A" key is delivered to the new pop-up window. This is because users
// often anticipate pending UI changes when typing on a keyboard.
// To obtain this behavior, we must serialize key events with respect to all
// prior input events.
if (entry.type == EventEntry::Type::KEY) {
if (shouldWaitToSendKeyLocked(currentTime, focusedWindowHandle->getName().c_str())) {
*nextWakeupTime = *mKeyIsWaitingForEventsTimeout;
return InputEventInjectionResult::PENDING;
}
}
// Success! Output targets.
addWindowTargetLocked(focusedWindowHandle,
InputTarget::FLAG_FOREGROUND | InputTarget::FLAG_DISPATCH_AS_IS,
BitSet32(0), inputTargets);
// Done.
return InputEventInjectionResult::SUCCEEDED;
}
/**
* Given a list of monitors, remove the ones we cannot find a connection for, and the ones
* that are currently unresponsive.
*/
std::vector<Monitor> InputDispatcher::selectResponsiveMonitorsLocked(
const std::vector<Monitor>& monitors) const {
std::vector<Monitor> responsiveMonitors;
std::copy_if(monitors.begin(), monitors.end(), std::back_inserter(responsiveMonitors),
[this](const Monitor& monitor) REQUIRES(mLock) {
sp<Connection> connection =
getConnectionLocked(monitor.inputChannel->getConnectionToken());
if (connection == nullptr) {
ALOGE("Could not find connection for monitor %s",
monitor.inputChannel->getName().c_str());
return false;
}
if (!connection->responsive) {
ALOGW("Unresponsive monitor %s will not get the new gesture",
connection->inputChannel->getName().c_str());
return false;
}
return true;
});
return responsiveMonitors;
}
InputEventInjectionResult InputDispatcher::findTouchedWindowTargetsLocked(
nsecs_t currentTime, const MotionEntry& entry, std::vector<InputTarget>& inputTargets,
nsecs_t* nextWakeupTime, bool* outConflictingPointerActions) {
ATRACE_CALL();
// For security reasons, we defer updating the touch state until we are sure that
// event injection will be allowed.
const int32_t displayId = entry.displayId;
const int32_t action = entry.action;
const int32_t maskedAction = action & AMOTION_EVENT_ACTION_MASK;
// Update the touch state as needed based on the properties of the touch event.
InputEventInjectionResult injectionResult = InputEventInjectionResult::PENDING;
sp<WindowInfoHandle> newHoverWindowHandle(mLastHoverWindowHandle);
sp<WindowInfoHandle> newTouchedWindowHandle;
// Copy current touch state into tempTouchState.
// This state will be used to update mTouchStatesByDisplay at the end of this function.
// If no state for the specified display exists, then our initial state will be empty.
const TouchState* oldState = nullptr;
TouchState tempTouchState;
if (const auto it = mTouchStatesByDisplay.find(displayId); it != mTouchStatesByDisplay.end()) {
oldState = &(it->second);
tempTouchState = *oldState;
}
bool isSplit = tempTouchState.split;
bool switchedDevice = tempTouchState.deviceId >= 0 && tempTouchState.displayId >= 0 &&
(tempTouchState.deviceId != entry.deviceId || tempTouchState.source != entry.source ||
tempTouchState.displayId != displayId);
const bool isHoverAction = (maskedAction == AMOTION_EVENT_ACTION_HOVER_MOVE ||
maskedAction == AMOTION_EVENT_ACTION_HOVER_ENTER ||
maskedAction == AMOTION_EVENT_ACTION_HOVER_EXIT);
const bool newGesture = (maskedAction == AMOTION_EVENT_ACTION_DOWN ||
maskedAction == AMOTION_EVENT_ACTION_SCROLL || isHoverAction);
const bool isFromMouse = isFromSource(entry.source, AINPUT_SOURCE_MOUSE);
bool wrongDevice = false;
if (newGesture) {
bool down = maskedAction == AMOTION_EVENT_ACTION_DOWN;
if (switchedDevice && tempTouchState.down && !down && !isHoverAction) {
ALOGI("Dropping event because a pointer for a different device is already down "
"in display %" PRId32,
displayId);
// TODO: test multiple simultaneous input streams.
injectionResult = InputEventInjectionResult::FAILED;
switchedDevice = false;
wrongDevice = true;
goto Failed;
}
tempTouchState.reset();
tempTouchState.down = down;
tempTouchState.deviceId = entry.deviceId;
tempTouchState.source = entry.source;
tempTouchState.displayId = displayId;
isSplit = false;
} else if (switchedDevice && maskedAction == AMOTION_EVENT_ACTION_MOVE) {
ALOGI("Dropping move event because a pointer for a different device is already active "
"in display %" PRId32,
displayId);
// TODO: test multiple simultaneous input streams.
injectionResult = InputEventInjectionResult::FAILED;
switchedDevice = false;
wrongDevice = true;
goto Failed;
}
if (newGesture || (isSplit && maskedAction == AMOTION_EVENT_ACTION_POINTER_DOWN)) {
/* Case 1: New splittable pointer going down, or need target for hover or scroll. */
int32_t x;
int32_t y;
const int32_t pointerIndex = getMotionEventActionPointerIndex(action);
// Always dispatch mouse events to cursor position.
if (isFromMouse) {
x = int32_t(entry.xCursorPosition);
y = int32_t(entry.yCursorPosition);
} else {
x = int32_t(entry.pointerCoords[pointerIndex].getAxisValue(AMOTION_EVENT_AXIS_X));
y = int32_t(entry.pointerCoords[pointerIndex].getAxisValue(AMOTION_EVENT_AXIS_Y));
}
const bool isDown = maskedAction == AMOTION_EVENT_ACTION_DOWN;
const bool isStylus = isPointerFromStylus(entry, pointerIndex);
newTouchedWindowHandle = findTouchedWindowAtLocked(displayId, x, y, &tempTouchState,
isStylus, isDown /*addOutsideTargets*/);
// Handle the case where we did not find a window.
if (newTouchedWindowHandle == nullptr) {
ALOGD("No new touched window at (%" PRId32 ", %" PRId32 ") in display %" PRId32, x, y,
displayId);
// Try to assign the pointer to the first foreground window we find, if there is one.
newTouchedWindowHandle = tempTouchState.getFirstForegroundWindowHandle();
}
// Verify targeted injection.
if (const auto err = verifyTargetedInjection(newTouchedWindowHandle, entry); err) {
ALOGW("Dropping injected touch event: %s", (*err).c_str());
injectionResult = os::InputEventInjectionResult::TARGET_MISMATCH;
newTouchedWindowHandle = nullptr;
goto Failed;
}
// Figure out whether splitting will be allowed for this window.
if (newTouchedWindowHandle != nullptr) {
if (newTouchedWindowHandle->getInfo()->supportsSplitTouch()) {
// New window supports splitting, but we should never split mouse events.
isSplit = !isFromMouse;
} else if (isSplit) {
// New window does not support splitting but we have already split events.
// Ignore the new window.
newTouchedWindowHandle = nullptr;
}
} else {
// No window is touched, so set split to true. This will allow the next pointer down to
// be delivered to a new window which supports split touch. Pointers from a mouse device
// should never be split.
tempTouchState.split = isSplit = !isFromMouse;
}
// Update hover state.
if (newTouchedWindowHandle != nullptr) {
if (maskedAction == AMOTION_EVENT_ACTION_HOVER_EXIT) {
newHoverWindowHandle = nullptr;
} else if (isHoverAction) {
newHoverWindowHandle = newTouchedWindowHandle;
}
}
std::vector<sp<WindowInfoHandle>> newTouchedWindows =
findTouchedSpyWindowsAtLocked(displayId, x, y, isStylus);
if (newTouchedWindowHandle != nullptr) {
// Process the foreground window first so that it is the first to receive the event.
newTouchedWindows.insert(newTouchedWindows.begin(), newTouchedWindowHandle);
}
if (newTouchedWindows.empty()) {
ALOGI("Dropping event because there is no touchable window at (%d, %d) on display %d.",
x, y, displayId);
injectionResult = InputEventInjectionResult::FAILED;
goto Failed;
}
for (const sp<WindowInfoHandle>& windowHandle : newTouchedWindows) {
const WindowInfo& info = *windowHandle->getInfo();
// Skip spy window targets that are not valid for targeted injection.
if (const auto err = verifyTargetedInjection(windowHandle, entry); err) {
continue;
}
if (info.inputConfig.test(WindowInfo::InputConfig::PAUSE_DISPATCHING)) {
ALOGI("Not sending touch event to %s because it is paused",
windowHandle->getName().c_str());
continue;
}
// Ensure the window has a connection and the connection is responsive
const bool isResponsive = hasResponsiveConnectionLocked(*windowHandle);
if (!isResponsive) {
ALOGW("Not sending touch gesture to %s because it is not responsive",
windowHandle->getName().c_str());
continue;
}
// Drop events that can't be trusted due to occlusion
if (mBlockUntrustedTouchesMode != BlockUntrustedTouchesMode::DISABLED) {
TouchOcclusionInfo occlusionInfo =
computeTouchOcclusionInfoLocked(windowHandle, x, y);
if (!isTouchTrustedLocked(occlusionInfo)) {
if (DEBUG_TOUCH_OCCLUSION) {
ALOGD("Stack of obscuring windows during untrusted touch (%d, %d):", x, y);
for (const auto& log : occlusionInfo.debugInfo) {
ALOGD("%s", log.c_str());
}
}
sendUntrustedTouchCommandLocked(occlusionInfo.obscuringPackage);
if (mBlockUntrustedTouchesMode == BlockUntrustedTouchesMode::BLOCK) {
ALOGW("Dropping untrusted touch event due to %s/%d",
occlusionInfo.obscuringPackage.c_str(), occlusionInfo.obscuringUid);
continue;
}
}
}
// Drop touch events if requested by input feature
if (shouldDropInput(entry, windowHandle)) {
continue;
}
// Set target flags.
int32_t targetFlags = InputTarget::FLAG_DISPATCH_AS_IS;
if (canReceiveForegroundTouches(*windowHandle->getInfo())) {
// There should only be one touched window that can be "foreground" for the pointer.
targetFlags |= InputTarget::FLAG_FOREGROUND;
}
if (isSplit) {
targetFlags |= InputTarget::FLAG_SPLIT;
}
if (isWindowObscuredAtPointLocked(windowHandle, x, y)) {
targetFlags |= InputTarget::FLAG_WINDOW_IS_OBSCURED;
} else if (isWindowObscuredLocked(windowHandle)) {
targetFlags |= InputTarget::FLAG_WINDOW_IS_PARTIALLY_OBSCURED;
}
// Update the temporary touch state.
BitSet32 pointerIds;
if (isSplit) {
uint32_t pointerId = entry.pointerProperties[pointerIndex].id;
pointerIds.markBit(pointerId);
}
tempTouchState.addOrUpdateWindow(windowHandle, targetFlags, pointerIds);
}
} else {
/* Case 2: Pointer move, up, cancel or non-splittable pointer down. */
// If the pointer is not currently down, then ignore the event.
if (!tempTouchState.down) {
if (DEBUG_FOCUS) {
ALOGD("Dropping event because the pointer is not down or we previously "
"dropped the pointer down event in display %" PRId32,
displayId);
}
injectionResult = InputEventInjectionResult::FAILED;
goto Failed;
}
addDragEventLocked(entry);
// Check whether touches should slip outside of the current foreground window.
if (maskedAction == AMOTION_EVENT_ACTION_MOVE && entry.pointerCount == 1 &&
tempTouchState.isSlippery()) {
const int32_t x = int32_t(entry.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_X));
const int32_t y = int32_t(entry.pointerCoords[0].getAxisValue(AMOTION_EVENT_AXIS_Y));
const bool isStylus = isPointerFromStylus(entry, 0 /*pointerIndex*/);
sp<WindowInfoHandle> oldTouchedWindowHandle =
tempTouchState.getFirstForegroundWindowHandle();
newTouchedWindowHandle =
findTouchedWindowAtLocked(displayId, x, y, &tempTouchState, isStylus);
// Verify targeted injection.
if (const auto err = verifyTargetedInjection(newTouchedWindowHandle, entry); err) {
ALOGW("Dropping injected event: %s", (*err).c_str());
injectionResult = os::InputEventInjectionResult::TARGET_MISMATCH;
newTouchedWindowHandle = nullptr;
goto Failed;
}
// Drop touch events if requested by input feature
if (newTouchedWindowHandle != nullptr &&
shouldDropInput(entry, newTouchedWindowHandle)) {
newTouchedWindowHandle = nullptr;
}
if (oldTouchedWindowHandle != newTouchedWindowHandle &&
oldTouchedWindowHandle != nullptr && newTouchedWindowHandle != nullptr) {
if (DEBUG_FOCUS) {
ALOGD("Touch is slipping out of window %s into window %s in display %" PRId32,
oldTouchedWindowHandle->getName().c_str(),
newTouchedWindowHandle->getName().c_str(), displayId);
}
// Make a slippery exit from the old window.
tempTouchState.addOrUpdateWindow(oldTouchedWindowHandle,
InputTarget::FLAG_DISPATCH_AS_SLIPPERY_EXIT,
BitSet32(0));
// Make a slippery entrance into the new window.
if (newTouchedWindowHandle->getInfo()->supportsSplitTouch()) {
isSplit = !isFromMouse;
}
int32_t targetFlags = InputTarget::FLAG_DISPATCH_AS_SLIPPERY_ENTER;
if (canReceiveForegroundTouches(*newTouchedWindowHandle->getInfo())) {
targetFlags |= InputTarget::FLAG_FOREGROUND;
}
if (isSplit) {
targetFlags |= InputTarget::FLAG_SPLIT;
}
if (isWindowObscuredAtPointLocked(newTouchedWindowHandle, x, y)) {
targetFlags |= InputTarget::FLAG_WINDOW_IS_OBSCURED;
} else if (isWindowObscuredLocked(newTouchedWindowHandle)) {
targetFlags |= InputTarget::FLAG_WINDOW_IS_PARTIALLY_OBSCURED;
}
BitSet32 pointerIds;
if (isSplit) {
pointerIds.markBit(entry.pointerProperties[0].id);
}
tempTouchState.addOrUpdateWindow(newTouchedWindowHandle, targetFlags, pointerIds);
}
}
}
// Update dispatching for hover enter and exit.
if (newHoverWindowHandle != mLastHoverWindowHandle) {
// Let the previous window know that the hover sequence is over, unless we already did
// it when dispatching it as is to newTouchedWindowHandle.
if (mLastHoverWindowHandle != nullptr &&
(maskedAction != AMOTION_EVENT_ACTION_HOVER_EXIT ||
mLastHoverWindowHandle != newTouchedWindowHandle)) {
if (DEBUG_HOVER) {
ALOGD("Sending hover exit event to window %s.",
mLastHoverWindowHandle->getName().c_str());
}
tempTouchState.addOrUpdateWindow(mLastHoverWindowHandle,
InputTarget::FLAG_DISPATCH_AS_HOVER_EXIT, BitSet32(0));
}
// Let the new window know that the hover sequence is starting, unless we already did it
// when dispatching it as is to newTouchedWindowHandle.
if (newHoverWindowHandle != nullptr &&
(maskedAction != AMOTION_EVENT_ACTION_HOVER_ENTER ||
newHoverWindowHandle != newTouchedWindowHandle)) {
if (DEBUG_HOVER) {
ALOGD("Sending hover enter event to window %s.",
newHoverWindowHandle->getName().c_str());
}
tempTouchState.addOrUpdateWindow(newHoverWindowHandle,
InputTarget::FLAG_DISPATCH_AS_HOVER_ENTER,
BitSet32(0));
}
}
// Ensure that we have at least one foreground window or at least one window that cannot be a
// foreground target. If we only have windows that are not receiving foreground touches (e.g. we
// only have windows getting ACTION_OUTSIDE), then drop the event, because there is no window
// that is actually receiving the entire gesture.
if (std::none_of(tempTouchState.windows.begin(), tempTouchState.windows.end(),
[](const TouchedWindow& touchedWindow) {
return !canReceiveForegroundTouches(
*touchedWindow.windowHandle->getInfo()) ||
(touchedWindow.targetFlags & InputTarget::FLAG_FOREGROUND) != 0;
})) {
ALOGI("Dropping event because there is no touched window on display %d to receive it: %s",
displayId, entry.getDescription().c_str());
injectionResult = InputEventInjectionResult::FAILED;
goto Failed;
}
// Ensure that all touched windows are valid for injection.
if (entry.injectionState != nullptr) {
std::string errs;
for (const TouchedWindow& touchedWindow : tempTouchState.windows) {
if (touchedWindow.targetFlags & InputTarget::FLAG_DISPATCH_AS_OUTSIDE) {
// Allow ACTION_OUTSIDE events generated by targeted injection to be
// dispatched to any uid, since the coords will be zeroed out later.
continue;
}
const auto err = verifyTargetedInjection(touchedWindow.windowHandle, entry);
if (err) errs += "\n - " + *err;
}
if (!errs.empty()) {
ALOGW("Dropping targeted injection: At least one touched window is not owned by uid "
"%d:%s",
*entry.injectionState->targetUid, errs.c_str());
injectionResult = InputEventInjectionResult::TARGET_MISMATCH;
goto Failed;
}
}
// Check whether windows listening for outside touches are owned by the same UID. If it is
// set the policy flag that we will not reveal coordinate information to this window.
if (maskedAction == AMOTION_EVENT_ACTION_DOWN) {
sp<WindowInfoHandle> foregroundWindowHandle =
tempTouchState.getFirstForegroundWindowHandle();
if (foregroundWindowHandle) {
const int32_t foregroundWindowUid = foregroundWindowHandle->getInfo()->ownerUid;
for (const TouchedWindow& touchedWindow : tempTouchState.windows) {
if (touchedWindow.targetFlags & InputTarget::FLAG_DISPATCH_AS_OUTSIDE) {
sp<WindowInfoHandle> windowInfoHandle = touchedWindow.windowHandle;
if (windowInfoHandle->getInfo()->ownerUid != foregroundWindowUid) {
tempTouchState.addOrUpdateWindow(windowInfoHandle,
InputTarget::FLAG_ZERO_COORDS,
BitSet32(0));
}
}
}
}
}
// If this is the first pointer going down and the touched window has a wallpaper
// then also add the touched wallpaper windows so they are locked in for the duration
// of the touch gesture.
// We do not collect wallpapers during HOVER_MOVE or SCROLL because the wallpaper
// engine only supports touch events. We would need to add a mechanism similar
// to View.onGenericMotionEvent to enable wallpapers to handle these events.
if (maskedAction == AMOTION_EVENT_ACTION_DOWN) {
sp<WindowInfoHandle> foregroundWindowHandle =
tempTouchState.getFirstForegroundWindowHandle();
if (foregroundWindowHandle &&
foregroundWindowHandle->getInfo()->inputConfig.test(
WindowInfo::InputConfig::DUPLICATE_TOUCH_TO_WALLPAPER)) {
const std::vector<sp<WindowInfoHandle>>& windowHandles =
getWindowHandlesLocked(displayId);
for (const sp<WindowInfoHandle>& windowHandle : windowHandles) {
const WindowInfo* info = windowHandle->getInfo();
if (info->displayId == displayId &&
windowHandle->getInfo()->inputConfig.test(
WindowInfo::InputConfig::IS_WALLPAPER)) {
tempTouchState
.addOrUpdateWindow(windowHandle,
InputTarget::FLAG_WINDOW_IS_OBSCURED |
InputTarget::
FLAG_WINDOW_IS_PARTIALLY_OBSCURED |
InputTarget::FLAG_DISPATCH_AS_IS,
BitSet32(0));
}
}
}
}
// Success! Output targets.
injectionResult = InputEventInjectionResult::SUCCEEDED;
for (const TouchedWindow& touchedWindow : tempTouchState.windows) {
addWindowTargetLocked(touchedWindow.windowHandle, touchedWindow.targetFlags,
touchedWindow.pointerIds, inputTargets);
}
// Drop the outside or hover touch windows since we will not care about them
// in the next iteration.
tempTouchState.filterNonAsIsTouchWindows();
Failed:
// Update final pieces of touch state if the injector had permission.
if (!wrongDevice) {
if (switchedDevice) {
if (DEBUG_FOCUS) {
ALOGD("Conflicting pointer actions: Switched to a different device.");
}
*outConflictingPointerActions = true;
}
if (isHoverAction) {
// Started hovering, therefore no longer down.
if (oldState && oldState->down) {
if (DEBUG_FOCUS) {
ALOGD("Conflicting pointer actions: Hover received while pointer was "
"down.");
}
*outConflictingPointerActions = true;
}
tempTouchState.reset();
if (maskedAction == AMOTION_EVENT_ACTION_HOVER_ENTER ||
maskedAction == AMOTION_EVENT_ACTION_HOVER_MOVE) {
tempTouchState.deviceId = entry.deviceId;
tempTouchState.source = entry.source;
tempTouchState.displayId = displayId;
}
} else if (maskedAction == AMOTION_EVENT_ACTION_UP ||
maskedAction == AMOTION_EVENT_ACTION_CANCEL) {
// All pointers up or canceled.
tempTouchState.reset();
} else if (maskedAction == AMOTION_EVENT_ACTION_DOWN) {
// First pointer went down.
if (oldState && oldState->down) {
if (DEBUG_FOCUS) {
ALOGD("Conflicting pointer actions: Down received while already down.");
}
*outConflictingPointerActions = true;
}
} else if (maskedAction == AMOTION_EVENT_ACTION_POINTER_UP) {
// One pointer went up.
if (isSplit) {
int32_t pointerIndex = getMotionEventActionPointerIndex(action);
uint32_t pointerId = entry.pointerProperties[pointerIndex].id;
for (size_t i = 0; i < tempTouchState.windows.size();) {
TouchedWindow& touchedWindow = tempTouchState.windows[i];
if (touchedWindow.targetFlags & InputTarget::FLAG_SPLIT) {
touchedWindow.pointerIds.clearBit(pointerId);
if (touchedWindow.pointerIds.isEmpty()) {
tempTouchState.windows.erase(tempTouchState.windows.begin() + i);
continue;
}
}
i += 1;
}
}
}
// Save changes unless the action was scroll in which case the temporary touch
// state was only valid for this one action.
if (maskedAction != AMOTION_EVENT_ACTION_SCROLL) {
if (tempTouchState.displayId >= 0) {
mTouchStatesByDisplay[displayId] = tempTouchState;
} else {
mTouchStatesByDisplay.erase(displayId);
}
}
// Update hover state.
mLastHoverWindowHandle = newHoverWindowHandle;
}
return injectionResult;
}
void InputDispatcher::finishDragAndDrop(int32_t displayId, float x, float y) {
// Prevent stylus interceptor windows from affecting drag and drop behavior for now, until we
// have an explicit reason to support it.
constexpr bool isStylus = false;
const sp<WindowInfoHandle> dropWindow =
findTouchedWindowAtLocked(displayId, x, y, nullptr /*touchState*/, isStylus,
false /*addOutsideTargets*/, true /*ignoreDragWindow*/);
if (dropWindow) {
vec2 local = dropWindow->getInfo()->transform.transform(x, y);
sendDropWindowCommandLocked(dropWindow->getToken(), local.x, local.y);
} else {
ALOGW("No window found when drop.");
sendDropWindowCommandLocked(nullptr, 0, 0);
}
mDragState.reset();
}
void InputDispatcher::addDragEventLocked(const MotionEntry& entry) {
if (!mDragState) {
return;
}
if (!mDragState->isStartDrag) {
mDragState->isStartDrag = true;
mDragState->isStylusButtonDownAtStart =
(entry.buttonState & AMOTION_EVENT_BUTTON_STYLUS_PRIMARY) != 0;
}
// Find the pointer index by id.
int32_t pointerIndex = 0;
for (; static_cast<uint32_t>(pointerIndex) < entry.pointerCount; pointerIndex++) {
const PointerProperties& pointerProperties = entry.pointerProperties[pointerIndex];
if (pointerProperties.id == mDragState->pointerId) {
break;
}
}
if (uint32_t(pointerIndex) == entry.pointerCount) {
LOG_ALWAYS_FATAL("Should find a valid pointer index by id %d", mDragState->pointerId);
sendDropWindowCommandLocked(nullptr, 0, 0);
mDragState.reset();
return;
}
const int32_t maskedAction = entry.action & AMOTION_EVENT_ACTION_MASK;
const int32_t x = entry.pointerCoords[pointerIndex].getX();
const int32_t y = entry.pointerCoords[pointerIndex].getY();
switch (maskedAction) {
case AMOTION_EVENT_ACTION_MOVE: {
// Handle the special case : stylus button no longer pressed.
bool isStylusButtonDown =
(entry.buttonState & AMOTION_EVENT_BUTTON_STYLUS_PRIMARY) != 0;
if (mDragState->isStylusButtonDownAtStart && !isStylusButtonDown) {
finishDragAndDrop(entry.displayId, x, y);
return;
}
// Prevent stylus interceptor windows from affecting drag and drop behavior for now,
// until we have an explicit reason to support it.
constexpr bool isStylus = false;
const sp<WindowInfoHandle> hoverWindowHandle =
findTouchedWindowAtLocked(entry.displayId, x, y, nullptr /*touchState*/,
isStylus, false /*addOutsideTargets*/,
true /*ignoreDragWindow*/);
// enqueue drag exit if needed.
if (hoverWindowHandle != mDragState->dragHoverWindowHandle &&
!haveSameToken(hoverWindowHandle, mDragState->dragHoverWindowHandle)) {
if (mDragState->dragHoverWindowHandle != nullptr) {
enqueueDragEventLocked(mDragState->dragHoverWindowHandle, true /*isExiting*/, x,
y);
}
mDragState->dragHoverWindowHandle = hoverWindowHandle;
}
// enqueue drag location if needed.
if (hoverWindowHandle != nullptr) {
enqueueDragEventLocked(hoverWindowHandle, false /*isExiting*/, x, y);
}
break;
}
case AMOTION_EVENT_ACTION_POINTER_UP:
if (getMotionEventActionPointerIndex(entry.action) != pointerIndex) {
break;
}
// The drag pointer is up.
[[fallthrough]];
case AMOTION_EVENT_ACTION_UP:
finishDragAndDrop(entry.displayId, x, y);
break;
case AMOTION_EVENT_ACTION_CANCEL: {
ALOGD("Receiving cancel when drag and drop.");
sendDropWindowCommandLocked(nullptr, 0, 0);
mDragState.reset();
break;
}
}
}
void InputDispatcher::addWindowTargetLocked(const sp<WindowInfoHandle>& windowHandle,
int32_t targetFlags, BitSet32 pointerIds,
std::vector<InputTarget>& inputTargets) {
std::vector<InputTarget>::iterator it =
std::find_if(inputTargets.begin(), inputTargets.end(),
[&windowHandle](const InputTarget& inputTarget) {
return inputTarget.inputChannel->getConnectionToken() ==
windowHandle->getToken();
});
const WindowInfo* windowInfo = windowHandle->getInfo();
if (it == inputTargets.end()) {
InputTarget inputTarget;
std::shared_ptr<InputChannel> inputChannel =
getInputChannelLocked(windowHandle->getToken());
if (inputChannel == nullptr) {
ALOGW("Window %s already unregistered input channel", windowHandle->getName().c_str());
return;
}
inputTarget.inputChannel = inputChannel;
inputTarget.flags = targetFlags;
inputTarget.globalScaleFactor = windowInfo->globalScaleFactor;
const auto& displayInfoIt = mDisplayInfos.find(windowInfo->displayId);
if (displayInfoIt != mDisplayInfos.end()) {
inputTarget.displayTransform = displayInfoIt->second.transform;
} else {
ALOGE("DisplayInfo not found for window on display: %d", windowInfo->displayId);
}
inputTargets.push_back(inputTarget);
it = inputTargets.end() - 1;
}
ALOG_ASSERT(it->flags == targetFlags);
ALOG_ASSERT(it->globalScaleFactor == windowInfo->globalScaleFactor);
it->addPointers(pointerIds, windowInfo->transform);
}
void InputDispatcher::addGlobalMonitoringTargetsLocked(std::vector<InputTarget>& inputTargets,
int32_t displayId) {
auto monitorsIt = mGlobalMonitorsByDisplay.find(displayId);
if (monitorsIt == mGlobalMonitorsByDisplay.end()) return;
for (const Monitor& monitor : selectResponsiveMonitorsLocked(monitorsIt->second)) {
InputTarget target;
target.inputChannel = monitor.inputChannel;
target.flags = InputTarget::FLAG_DISPATCH_AS_IS;
if (const auto& it = mDisplayInfos.find(displayId); it != mDisplayInfos.end()) {
target.displayTransform = it->second.transform;
}
target.setDefaultPointerTransform(target.displayTransform);
inputTargets.push_back(target);
}
}
/**
* Indicate whether one window handle should be considered as obscuring
* another window handle. We only check a few preconditions. Actually
* checking the bounds is left to the caller.
*/
static bool canBeObscuredBy(const sp<WindowInfoHandle>& windowHandle,
const sp<WindowInfoHandle>& otherHandle) {
// Compare by token so cloned layers aren't counted
if (haveSameToken(windowHandle, otherHandle)) {
return false;
}
auto info = windowHandle->getInfo();
auto otherInfo = otherHandle->getInfo();
if (otherInfo->inputConfig.test(WindowInfo::InputConfig::NOT_VISIBLE)) {
return false;
} else if (otherInfo->alpha == 0 &&
otherInfo->inputConfig.test(WindowInfo::InputConfig::NOT_TOUCHABLE)) {
// Those act as if they were invisible, so we don't need to flag them.
// We do want to potentially flag touchable windows even if they have 0
// opacity, since they can consume touches and alter the effects of the
// user interaction (eg. apps that rely on
// FLAG_WINDOW_IS_PARTIALLY_OBSCURED should still be told about those
// windows), hence we also check for FLAG_NOT_TOUCHABLE.
return false;
} else if (info->ownerUid == otherInfo->ownerUid) {
// If ownerUid is the same we don't generate occlusion events as there
// is no security boundary within an uid.
return false;
} else if (otherInfo->inputConfig.test(gui::WindowInfo::InputConfig::TRUSTED_OVERLAY)) {
return false;
} else if (otherInfo->displayId != info->displayId) {
return false;
}
return true;
}
/**
* Returns touch occlusion information in the form of TouchOcclusionInfo. To check if the touch is
* untrusted, one should check:
*
* 1. If result.hasBlockingOcclusion is true.
* If it's, it means the touch should be blocked due to a window with occlusion mode of
* BLOCK_UNTRUSTED.
*
* 2. If result.obscuringOpacity > mMaximumObscuringOpacityForTouch.
* If it is (and 1 is false), then the touch should be blocked because a stack of windows
* (possibly only one) with occlusion mode of USE_OPACITY from one UID resulted in a composed
* obscuring opacity above the threshold. Note that if there was no window of occlusion mode
* USE_OPACITY, result.obscuringOpacity would've been 0 and since
* mMaximumObscuringOpacityForTouch >= 0, the condition above would never be true.
*
* If neither of those is true, then it means the touch can be allowed.
*/
InputDispatcher::TouchOcclusionInfo InputDispatcher::computeTouchOcclusionInfoLocked(
const sp<WindowInfoHandle>& windowHandle, int32_t x, int32_t y) const {
const WindowInfo* windowInfo = windowHandle->getInfo();
int32_t displayId = windowInfo->displayId;
const std::vector<sp<WindowInfoHandle>>& windowHandles = getWindowHandlesLocked(displayId);
TouchOcclusionInfo info;
info.hasBlockingOcclusion = false;
info.obscuringOpacity = 0;
info.obscuringUid = -1;
std::map<int32_t, float> opacityByUid;
for (const sp<WindowInfoHandle>& otherHandle : windowHandles) {
if (windowHandle == otherHandle) {
break; // All future windows are below us. Exit early.
}
const WindowInfo* otherInfo = otherHandle->getInfo();
if (canBeObscuredBy(windowHandle, otherHandle) && otherInfo->frameContainsPoint(x, y) &&
!haveSameApplicationToken(windowInfo, otherInfo)) {
if (DEBUG_TOUCH_OCCLUSION) {
info.debugInfo.push_back(
dumpWindowForTouchOcclusion(otherInfo, /* isTouchedWindow */ false));
}
// canBeObscuredBy() has returned true above, which means this window is untrusted, so
// we perform the checks below to see if the touch can be propagated or not based on the
// window's touch occlusion mode
if (otherInfo->touchOcclusionMode == TouchOcclusionMode::BLOCK_UNTRUSTED) {
info.hasBlockingOcclusion = true;
info.obscuringUid = otherInfo->ownerUid;
info.obscuringPackage = otherInfo->packageName;
break;
}
if (otherInfo->touchOcclusionMode == TouchOcclusionMode::USE_OPACITY) {
uint32_t uid = otherInfo->ownerUid;
float opacity =
(opacityByUid.find(uid) == opacityByUid.end()) ? 0 : opacityByUid[uid];
// Given windows A and B:
// opacity(A, B) = 1 - [1 - opacity(A)] * [1 - opacity(B)]
opacity = 1 - (1 - opacity) * (1 - otherInfo->alpha);
opacityByUid[uid] = opacity;
if (opacity > info.obscuringOpacity) {
info.obscuringOpacity = opacity;
info.obscuringUid = uid;
info.obscuringPackage = otherInfo->packageName;
}
}
}
}
if (DEBUG_TOUCH_OCCLUSION) {
info.debugInfo.push_back(
dumpWindowForTouchOcclusion(windowInfo, /* isTouchedWindow */ true));
}
return info;
}
std::string InputDispatcher::dumpWindowForTouchOcclusion(const WindowInfo* info,
bool isTouchedWindow) const {
return StringPrintf(INDENT2 "* %spackage=%s/%" PRId32 ", id=%" PRId32 ", mode=%s, alpha=%.2f, "
"frame=[%" PRId32 ",%" PRId32 "][%" PRId32 ",%" PRId32
"], touchableRegion=%s, window={%s}, inputConfig={%s}, "
"hasToken=%s, applicationInfo.name=%s, applicationInfo.token=%s\n",
isTouchedWindow ? "[TOUCHED] " : "", info->packageName.c_str(),
info->ownerUid, info->id, toString(info->touchOcclusionMode).c_str(),
info->alpha, info->frameLeft, info->frameTop, info->frameRight,
info->frameBottom, dumpRegion(info->touchableRegion).c_str(),
info->name.c_str(), info->inputConfig.string().c_str(),
toString(info->token != nullptr), info->applicationInfo.name.c_str(),
toString(info->applicationInfo.token).c_str());
}
bool InputDispatcher::isTouchTrustedLocked(const TouchOcclusionInfo& occlusionInfo) const {
if (occlusionInfo.hasBlockingOcclusion) {
ALOGW("Untrusted touch due to occlusion by %s/%d", occlusionInfo.obscuringPackage.c_str(),
occlusionInfo.obscuringUid);
return false;
}
if (occlusionInfo.obscuringOpacity > mMaximumObscuringOpacityForTouch) {
ALOGW("Untrusted touch due to occlusion by %s/%d (obscuring opacity = "
"%.2f, maximum allowed = %.2f)",
occlusionInfo.obscuringPackage.c_str(), occlusionInfo.obscuringUid,
occlusionInfo.obscuringOpacity, mMaximumObscuringOpacityForTouch);
return false;
}
return true;
}
bool InputDispatcher::isWindowObscuredAtPointLocked(const sp<WindowInfoHandle>& windowHandle,
int32_t x, int32_t y) const {
int32_t displayId = windowHandle->getInfo()->displayId;
const std::vector<sp<WindowInfoHandle>>& windowHandles = getWindowHandlesLocked(displayId);
for (const sp<WindowInfoHandle>& otherHandle : windowHandles) {
if (windowHandle == otherHandle) {
break; // All future windows are below us. Exit early.
}
const WindowInfo* otherInfo = otherHandle->getInfo();
if (canBeObscuredBy(windowHandle, otherHandle) &&
otherInfo->frameContainsPoint(x, y)) {
return true;
}
}
return false;
}
bool InputDispatcher::isWindowObscuredLocked(const sp<WindowInfoHandle>& windowHandle) const {
int32_t displayId = windowHandle->getInfo()->displayId;
const std::vector<sp<WindowInfoHandle>>& windowHandles = getWindowHandlesLocked(displayId);
const WindowInfo* windowInfo = windowHandle->getInfo();
for (const sp<WindowInfoHandle>& otherHandle : windowHandles) {
if (windowHandle == otherHandle) {
break; // All future windows are below us. Exit early.
}
const WindowInfo* otherInfo = otherHandle->getInfo();
if (canBeObscuredBy(windowHandle, otherHandle) &&
otherInfo->overlaps(windowInfo)) {
return true;
}
}
return false;
}
std::string InputDispatcher::getApplicationWindowLabel(
const InputApplicationHandle* applicationHandle, const sp<WindowInfoHandle>& windowHandle) {
if (applicationHandle != nullptr) {
if (windowHandle != nullptr) {
return applicationHandle->getName() + " - " + windowHandle->getName();
} else {
return applicationHandle->getName();
}
} else if (windowHandle != nullptr) {
return windowHandle->getInfo()->applicationInfo.name + " - " + windowHandle->getName();
} else {
return "<unknown application or window>";
}
}
void InputDispatcher::pokeUserActivityLocked(const EventEntry& eventEntry) {
if (!isUserActivityEvent(eventEntry)) {
// Not poking user activity if the event type does not represent a user activity
return;
}
int32_t displayId = getTargetDisplayId(eventEntry);
sp<WindowInfoHandle> focusedWindowHandle = getFocusedWindowHandleLocked(displayId);
if (focusedWindowHandle != nullptr) {
const WindowInfo* info = focusedWindowHandle->getInfo();
if (info->inputConfig.test(WindowInfo::InputConfig::DISABLE_USER_ACTIVITY)) {
if (DEBUG_DISPATCH_CYCLE) {
ALOGD("Not poking user activity: disabled by window '%s'.", info->name.c_str());
}
return;
}
}
int32_t eventType = USER_ACTIVITY_EVENT_OTHER;
switch (eventEntry.type) {
case EventEntry::Type::MOTION: {
const MotionEntry& motionEntry = static_cast<const MotionEntry&>(eventEntry);
if (motionEntry.action == AMOTION_EVENT_ACTION_CANCEL) {
return;
}
if (MotionEvent::isTouchEvent(motionEntry.source, motionEntry.action)) {
eventType = USER_ACTIVITY_EVENT_TOUCH;
}
break;
}
case EventEntry::Type::KEY: {
const KeyEntry& keyEntry = static_cast<const KeyEntry&>(eventEntry);
if (keyEntry.flags & AKEY_EVENT_FLAG_CANCELED) {
return;
}
eventType = USER_ACTIVITY_EVENT_BUTTON;
break;
}
default: {
LOG_ALWAYS_FATAL("%s events are not user activity",
ftl::enum_string(eventEntry.type).c_str());
break;
}
}
auto command = [this, eventTime = eventEntry.eventTime, eventType, displayId]()
REQUIRES(mLock) {
scoped_unlock unlock(mLock);
mPolicy->pokeUserActivity(eventTime, eventType, displayId);
};
postCommandLocked(std::move(command));
}
void InputDispatcher::prepareDispatchCycleLocked(nsecs_t currentTime,
const sp<Connection>& connection,
std::shared_ptr<EventEntry> eventEntry,
const InputTarget& inputTarget) {
if (ATRACE_ENABLED()) {
std::string message =
StringPrintf("prepareDispatchCycleLocked(inputChannel=%s, id=0x%" PRIx32 ")",
connection->getInputChannelName().c_str(), eventEntry->id);
ATRACE_NAME(message.c_str());
}
if (DEBUG_DISPATCH_CYCLE) {
ALOGD("channel '%s' ~ prepareDispatchCycle - flags=0x%08x, "
"globalScaleFactor=%f, pointerIds=0x%x %s",
connection->getInputChannelName().c_str(), inputTarget.flags,
inputTarget.globalScaleFactor, inputTarget.pointerIds.value,
inputTarget.getPointerInfoString().c_str());
}
// Skip this event if the connection status is not normal.
// We don't want to enqueue additional outbound events if the connection is broken.
if (connection->status != Connection::Status::NORMAL) {
if (DEBUG_DISPATCH_CYCLE) {
ALOGD("channel '%s' ~ Dropping event because the channel status is %s",
connection->getInputChannelName().c_str(),
ftl::enum_string(connection->status).c_str());
}
return;
}
// Split a motion event if needed.
if (inputTarget.flags & InputTarget::FLAG_SPLIT) {
LOG_ALWAYS_FATAL_IF(eventEntry->type != EventEntry::Type::MOTION,
"Entry type %s should not have FLAG_SPLIT",
ftl::enum_string(eventEntry->type).c_str());
const MotionEntry& originalMotionEntry = static_cast<const MotionEntry&>(*eventEntry);
if (inputTarget.pointerIds.count() != originalMotionEntry.pointerCount) {
std::unique_ptr<MotionEntry> splitMotionEntry =
splitMotionEvent(originalMotionEntry, inputTarget.pointerIds);
if (!splitMotionEntry) {
return; // split event was dropped
}
if (splitMotionEntry->action == AMOTION_EVENT_ACTION_CANCEL) {
std::string reason = std::string("reason=pointer cancel on split window");
android_log_event_list(LOGTAG_INPUT_CANCEL)
<< connection->getInputChannelName().c_str() << reason << LOG_ID_EVENTS;
}
if (DEBUG_FOCUS) {
ALOGD("channel '%s' ~ Split motion event.",
connection->getInputChannelName().c_str());
logOutboundMotionDetails(" ", *splitMotionEntry);
}
enqueueDispatchEntriesLocked(currentTime, connection, std::move(splitMotionEntry),
inputTarget);
return;
}
}
// Not splitting. Enqueue dispatch entries for the event as is.
enqueueDispatchEntriesLocked(currentTime, connection, eventEntry, inputTarget);
}
void InputDispatcher::enqueueDispatchEntriesLocked(nsecs_t currentTime,
const sp<Connection>& connection,
std::shared_ptr<EventEntry> eventEntry,
const InputTarget& inputTarget) {
if (ATRACE_ENABLED()) {
std::string message =
StringPrintf("enqueueDispatchEntriesLocked(inputChannel=%s, id=0x%" PRIx32 ")",
connection->getInputChannelName().c_str(), eventEntry->id);
ATRACE_NAME(message.c_str());
}
bool wasEmpty = connection->outboundQueue.empty();
// Enqueue dispatch entries for the requested modes.
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_HOVER_EXIT);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_OUTSIDE);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_HOVER_ENTER);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_IS);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_SLIPPERY_EXIT);
enqueueDispatchEntryLocked(connection, eventEntry, inputTarget,
InputTarget::FLAG_DISPATCH_AS_SLIPPERY_ENTER);
// If the outbound queue was previously empty, start the dispatch cycle going.
if (wasEmpty && !connection->outboundQueue.empty()) {
startDispatchCycleLocked(currentTime, connection);
}
}
void InputDispatcher::enqueueDispatchEntryLocked(const sp<Connection>& connection,
std::shared_ptr<EventEntry> eventEntry,
const InputTarget& inputTarget,
int32_t dispatchMode) {
if (ATRACE_ENABLED()) {
std::string message = StringPrintf("enqueueDispatchEntry(inputChannel=%s, dispatchMode=%s)",
connection->getInputChannelName().c_str(),
dispatchModeToString(dispatchMode).c_str());
ATRACE_NAME(message.c_str());
}
int32_t inputTargetFlags = inputTarget.flags;
if (!(inputTargetFlags & dispatchMode)) {
return;
}
inputTargetFlags = (inputTargetFlags & ~InputTarget::FLAG_DISPATCH_MASK) | dispatchMode;
// This is a new event.
// Enqueue a new dispatch entry onto the outbound queue for this connection.
std::unique_ptr<DispatchEntry> dispatchEntry =
createDispatchEntry(inputTarget, eventEntry, inputTargetFlags);
// Use the eventEntry from dispatchEntry since the entry may have changed and can now be a
// different EventEntry than what was passed in.
EventEntry& newEntry = *(dispatchEntry->eventEntry);
// Apply target flags and update the connection's input state.
switch (newEntry.type) {
case EventEntry::Type::KEY: {
const KeyEntry& keyEntry = static_cast<const KeyEntry&>(newEntry);
dispatchEntry->resolvedEventId = keyEntry.id;
dispatchEntry->resolvedAction = keyEntry.action;
dispatchEntry->resolvedFlags = keyEntry.flags;
if (!connection->inputState.trackKey(keyEntry, dispatchEntry->resolvedAction,
dispatchEntry->resolvedFlags)) {
if (DEBUG_DISPATCH_CYCLE) {
ALOGD("channel '%s' ~ enqueueDispatchEntryLocked: skipping inconsistent key "
"event",
connection->getInputChannelName().c_str());
}
return; // skip the inconsistent event
}
break;
}
case EventEntry::Type::MOTION: {
const MotionEntry& motionEntry = static_cast<const MotionEntry&>(newEntry);
// Assign a default value to dispatchEntry that will never be generated by InputReader,
// and assign a InputDispatcher value if it doesn't change in the if-else chain below.
constexpr int32_t DEFAULT_RESOLVED_EVENT_ID =
static_cast<int32_t>(IdGenerator::Source::OTHER);
dispatchEntry->resolvedEventId = DEFAULT_RESOLVED_EVENT_ID;
if (dispatchMode & InputTarget::FLAG_DISPATCH_AS_OUTSIDE) {
dispatchEntry->resolvedAction = AMOTION_EVENT_ACTION_OUTSIDE;
} else if (dispatchMode & InputTarget::FLAG_DISPATCH_AS_HOVER_EXIT) {
dispatchEntry->resolvedAction = AMOTION_EVENT_ACTION_HOVER_EXIT;
} else if (dispatchMode & InputTarget::FLAG_DISPATCH_AS_HOVER_ENTER) {
dispatchEntry->resolvedAction = AMOTION_EVENT_ACTION_HOVER_ENTER;
} else if (dispatchMode & InputTarget::FLAG_DISPATCH_AS_SLIPPERY_EXIT) {
dispatchEntry->resolvedAction = AMOTION_EVENT_ACTION_CANCEL;
} else if (dispatchMode & InputTarget::FLAG_DISPATCH_AS_SLIPPERY_ENTER) {
dispatchEntry->resolvedAction = AMOTION_EVENT_ACTION_DOWN;
} else {
dispatchEntry->resolvedAction = motionEntry.action;
dispatchEntry->resolvedEventId = motionEntry.id;
}
if (dispatchEntry->resolvedAction == AMOTION_EVENT_ACTION_HOVER_MOVE &&
!connection->inputState.isHovering(motionEntry.deviceId, motionEntry.source,
motionEntry.displayId)) {
if (DEBUG_DISPATCH_CYCLE) {
ALOGD("channel '%s' ~ enqueueDispatchEntryLocked: filling in missing hover "
"enter event",
connection->getInputChannelName().c_str());
}
// We keep the 'resolvedEventId' here equal to the original 'motionEntry.id' because
// this is a one-to-one event conversion.
dispatchEntry->resolvedAction = AMOTION_EVENT_ACTION_HOVER_ENTER;
}
dispatchEntry->resolvedFlags = motionEntry.flags;
if (dispatchEntry->targetFlags & InputTarget::FLAG_WINDOW_IS_OBSCURED) {
dispatchEntry->resolvedFlags |= AMOTION_EVENT_FLAG_WINDOW_IS_OBSCURED;
}
if (dispatchEntry->targetFlags & InputTarget::FLAG_WINDOW_IS_PARTIALLY_OBSCURED) {
dispatchEntry->resolvedFlags |= AMOTION_EVENT_FLAG_WINDOW_IS_PARTIALLY_OBSCURED;
}
if (!connection->inputState.trackMotion(motionEntry, dispatchEntry->resolvedAction,
dispatchEntry->resolvedFlags)) {
if (DEBUG_DISPATCH_CYCLE) {
ALOGD("channel '%s' ~ enqueueDispatchEntryLocked: skipping inconsistent motion "
"event",
connection->getInputChannelName().c_str());
}
return; // skip the inconsistent event
}
dispatchEntry->resolvedEventId =
dispatchEntry->resolvedEventId == DEFAULT_RESOLVED_EVENT_ID
? mIdGenerator.nextId()
: motionEntry.id;
if (ATRACE_ENABLED() && dispatchEntry->resolvedEventId != motionEntry.id) {
std::string message = StringPrintf("Transmute MotionEvent(id=0x%" PRIx32
") to MotionEvent(id=0x%" PRIx32 ").",
motionEntry.id, dispatchEntry->resolvedEventId);
ATRACE_NAME(message.c_str());
}
if ((motionEntry.flags & AMOTION_EVENT_FLAG_NO_FOCUS_CHANGE) &&
(motionEntry.policyFlags & POLICY_FLAG_TRUSTED)) {
// Skip reporting pointer down outside focus to the policy.
break;
}
dispatchPointerDownOutsideFocus(motionEntry.source, dispatchEntry->resolvedAction,
inputTarget.inputChannel->getConnectionToken());
break;
}
case EventEntry::Type::FOCUS:
case EventEntry::Type::TOUCH_MODE_CHANGED:
case EventEntry::Type::POINTER_CAPTURE_CHANGED:
case EventEntry::Type::DRAG: {
break;
}
case EventEntry::Type::SENSOR: {
LOG_ALWAYS_FATAL("SENSOR events should not go to apps via input channel");
break;
}
case EventEntry::Type::CONFIGURATION_CHANGED:
case EventEntry::Type::DEVICE_RESET: {
LOG_ALWAYS_FATAL("%s events should not go to apps",
ftl::enum_string(newEntry.type).c_str());
break;
}
}
// Remember that we are waiting for this dispatch to complete.
if (dispatchEntry->hasForegroundTarget()) {
incrementPendingForegroundDispatches(newEntry);
}
// Enqueue the dispatch entry.
connection->outboundQueue.push_back(dispatchEntry.release());
traceOutboundQueueLength(*connection);
}
/**
* This function is purely for debugging. It helps us understand where the user interaction
* was taking place. For example, if user is touching launcher, we will see a log that user
* started interacting with launcher. In that example, the event would go to the wallpaper as well.
* We will see both launcher and wallpaper in that list.
* Once the interaction with a particular set of connections starts, no new logs will be printed
* until the set of interacted connections changes.
*
* The following items are skipped, to reduce the logspam:
* ACTION_OUTSIDE: any windows that are receiving ACTION_OUTSIDE are not logged
* ACTION_UP: any windows that receive ACTION_UP are not logged (for both keys and motions).
* This includes situations like the soft BACK button key. When the user releases (lifts up the
* finger) the back button, then navigation bar will inject KEYCODE_BACK with ACTION_UP.
* Both of those ACTION_UP events would not be logged
*/
void InputDispatcher::updateInteractionTokensLocked(const EventEntry& entry,
const std::vector<InputTarget>& targets) {
// Skip ACTION_UP events, and all events other than keys and motions
if (entry.type == EventEntry::Type::KEY) {
const KeyEntry& keyEntry = static_cast<const KeyEntry&>(entry);
if (keyEntry.action == AKEY_EVENT_ACTION_UP) {
return;
}
} else if (entry.type == EventEntry::Type::MOTION) {
const MotionEntry& motionEntry = static_cast<const MotionEntry&>(entry);
if (motionEntry.action == AMOTION_EVENT_ACTION_UP ||
motionEntry.action == AMOTION_EVENT_ACTION_CANCEL) {
return;
}
} else {
return; // Not a key or a motion
}
std::unordered_set<sp<IBinder>, StrongPointerHash<IBinder>> newConnectionTokens;
std::vector<sp<Connection>> newConnections;
for (const InputTarget& target : targets) {
if ((target.flags & InputTarget::FLAG_DISPATCH_AS_OUTSIDE) ==
InputTarget::FLAG_DISPATCH_AS_OUTSIDE) {
continue; // Skip windows that receive ACTION_OUTSIDE
}
sp<IBinder> token = target.inputChannel->getConnectionToken();
sp<Connection> connection = getConnectionLocked(token);
if (connection == nullptr) {
continue;
}
newConnectionTokens.insert(std::move(token));
newConnections.emplace_back(connection);
}
if (newConnectionTokens == mInteractionConnectionTokens) {
return; // no change
}
mInteractionConnectionTokens = newConnectionTokens;
std::string targetList;
for (const sp<Connection>& connection : newConnections) {
targetList += connection->getWindowName() + ", ";
}
std::string message = "Interaction with: " + targetList;
if (targetList.empty()) {
message += "<none>";
}
android_log_event_list(LOGTAG_INPUT_INTERACTION) << message << LOG_ID_EVENTS;
}
void InputDispatcher::dispatchPointerDownOutsideFocus(uint32_t source, int32_t action,
const sp<IBinder>& token) {
int32_t maskedAction = action & AMOTION_EVENT_ACTION_MASK;
uint32_t maskedSource = source & AINPUT_SOURCE_CLASS_MASK;
if (maskedSource != AINPUT_SOURCE_CLASS_POINTER || maskedAction != AMOTION_EVENT_ACTION_DOWN) {
return;
}
sp<IBinder> focusedToken = mFocusResolver.getFocusedWindowToken(mFocusedDisplayId);
if (focusedToken == token) {
// ignore since token is focused
return;
}
auto command = [this, token]() REQUIRES(mLock) {
scoped_unlock unlock(mLock);
mPolicy->onPointerDownOutsideFocus(token);
};
postCommandLocked(std::move(command));
}
void InputDispatcher::startDispatchCycleLocked(nsecs_t currentTime,
const sp<Connection>& connection) {
if (ATRACE_ENABLED()) {
std::string message = StringPrintf("startDispatchCycleLocked(inputChannel=%s)",
connection->getInputChannelName().c_str());
ATRACE_NAME(message.c_str());
}
if (DEBUG_DISPATCH_CYCLE) {
ALOGD("channel '%s' ~ startDispatchCycle", connection->getInputChannelName().c_str());
}
while (connection->status == Connection::Status::NORMAL && !connection->outboundQueue.empty()) {
DispatchEntry* dispatchEntry = connection->outboundQueue.front();
dispatchEntry->deliveryTime = currentTime;
const std::chrono::nanoseconds timeout = getDispatchingTimeoutLocked(connection);
dispatchEntry->timeoutTime = currentTime + timeout.count();
// Publish the event.
status_t status;
const EventEntry& eventEntry = *(dispatchEntry->eventEntry);
switch (eventEntry.type) {
case EventEntry::Type::KEY: {
const KeyEntry& keyEntry = static_cast<const KeyEntry&>(eventEntry);
std::array<uint8_t, 32> hmac = getSignature(keyEntry, *dispatchEntry);
// Publish the key event.
status = connection->inputPublisher
.publishKeyEvent(dispatchEntry->seq,
dispatchEntry->resolvedEventId, keyEntry.deviceId,
keyEntry.source, keyEntry.displayId,
std::move(hmac), dispatchEntry->resolvedAction,
dispatchEntry->resolvedFlags, keyEntry.keyCode,
keyEntry.scanCode, keyEntry.metaState,
keyEntry.repeatCount, keyEntry.downTime,
keyEntry.eventTime);
break;
}
case EventEntry::Type::MOTION: {
const MotionEntry& motionEntry = static_cast<const MotionEntry&>(eventEntry);
PointerCoords scaledCoords[MAX_POINTERS];
const PointerCoords* usingCoords = motionEntry.pointerCoords;
// Set the X and Y offset and X and Y scale depending on the input source.
if ((motionEntry.source & AINPUT_SOURCE_CLASS_POINTER) &&
!(dispatchEntry->targetFlags & InputTarget::FLAG_ZERO_COORDS)) {
float globalScaleFactor = dispatchEntry->globalScaleFactor;
if (globalScaleFactor != 1.0f) {
for (uint32_t i = 0; i < motionEntry.pointerCount; i++) {
scaledCoords[i] = motionEntry.pointerCoords[i];
// Don't apply window scale here since we don't want scale to affect raw
// coordinates. The scale will be sent back to the client and applied
// later when requesting relative coordinates.
scaledCoords[i].scale(globalScaleFactor, 1 /* windowXScale */,
1 /* windowYScale */);
}
usingCoords = scaledCoords;
}
} else {
// We don't want the dispatch target to know.
if (dispatchEntry->targetFlags & InputTarget::FLAG_ZERO_COORDS) {
for (uint32_t i = 0; i < motionEntry.pointerCount; i++) {
scaledCoords[i].clear();
}
usingCoords = scaledCoords;
}
}
std::array<uint8_t, 32> hmac = getSignature(motionEntry, *dispatchEntry);
// Publish the motion event.
status = connection->inputPublisher
.publishMotionEvent(dispatchEntry->seq,
dispatchEntry->resolvedEventId,
motionEntry.deviceId, motionEntry.source,
motionEntry.displayId, std::move(hmac),
dispatchEntry->resolvedAction,
motionEntry.actionButton,
dispatchEntry->resolvedFlags,
motionEntry.edgeFlags, motionEntry.metaState,
motionEntry.buttonState,
motionEntry.classification,
dispatchEntry->transform,
motionEntry.xPrecision, motionEntry.yPrecision,
motionEntry.xCursorPosition,
motionEntry.yCursorPosition,
dispatchEntry->rawTransform,
motionEntry.downTime, motionEntry.eventTime,
motionEntry.pointerCount,
motionEntry.pointerProperties, usingCoords);
break;
}
case EventEntry::Type::FOCUS: {
const FocusEntry& focusEntry = static_cast<const FocusEntry&>(eventEntry);
status = connection->inputPublisher.publishFocusEvent(dispatchEntry->seq,
focusEntry.id,
focusEntry.hasFocus);
break;
}
case EventEntry::Type::TOUCH_MODE_CHANGED: {
const TouchModeEntry& touchModeEntry =
static_cast<const TouchModeEntry&>(eventEntry);
status = connection->inputPublisher
.publishTouchModeEvent(dispatchEntry->seq, touchModeEntry.id,
touchModeEntry.inTouchMode);
break;
}
case EventEntry::Type::POINTER_CAPTURE_CHANGED: {
const auto& captureEntry =
static_cast<const PointerCaptureChangedEntry&>(eventEntry);
status = connection->inputPublisher
.publishCaptureEvent(dispatchEntry->seq, captureEntry.id,
captureEntry.pointerCaptureRequest.enable);
break;
}
case EventEntry::Type::DRAG: {
const DragEntry& dragEntry = static_cast<const DragEntry&>(eventEntry);
status = connection->inputPublisher.publishDragEvent(dispatchEntry->seq,
dragEntry.id, dragEntry.x,
dragEntry.y,
dragEntry.isExiting);
break;
}
case EventEntry::Type::CONFIGURATION_CHANGED:
case EventEntry::Type::DEVICE_RESET:
case EventEntry::Type::SENSOR: {
LOG_ALWAYS_FATAL("Should never start dispatch cycles for %s events",
ftl::enum_string(eventEntry.type).c_str());
return;
}
}
// Check the result.
if (status) {
if (status == WOULD_BLOCK) {
if (connection->waitQueue.empty()) {
ALOGE("channel '%s' ~ Could not publish event because the pipe is full. "
"This is unexpected because the wait queue is empty, so the pipe "
"should be empty and we shouldn't have any problems writing an "
"event to it, status=%s(%d)",
connection->getInputChannelName().c_str(), statusToString(status).c_str(),
status);
abortBrokenDispatchCycleLocked(currentTime, connection, true /*notify*/);
} else {
// Pipe is full and we are waiting for the app to finish process some events
// before sending more events to it.
if (DEBUG_DISPATCH_CYCLE) {
ALOGD("channel '%s' ~ Could not publish event because the pipe is full, "
"waiting for the application to catch up",
connection->getInputChannelName().c_str());
}
}
} else {
ALOGE("channel '%s' ~ Could not publish event due to an unexpected error, "
"status=%s(%d)",
connection->getInputChannelName().c_str(), statusToString(status).c_str(),
status);
abortBrokenDispatchCycleLocked(currentTime, connection, true /*notify*/);
}
return;
}
// Re-enqueue the event on the wait queue.
connection->outboundQueue.erase(std::remove(connection->outboundQueue.begin(),
connection->outboundQueue.end(),
dispatchEntry));
traceOutboundQueueLength(*connection);
connection->waitQueue.push_back(dispatchEntry);
if (connection->responsive) {
mAnrTracker.insert(dispatchEntry->timeoutTime,
connection->inputChannel->getConnectionToken());
}
traceWaitQueueLength(*connection);
}
}
std::array<uint8_t, 32> InputDispatcher::sign(const VerifiedInputEvent& event) const {
size_t size;
switch (event.type) {
case VerifiedInputEvent::Type::KEY: {
size = sizeof(VerifiedKeyEvent);
break;
}
case VerifiedInputEvent::Type::MOTION: {
size = sizeof(VerifiedMotionEvent);
break;
}
}
const uint8_t* start = reinterpret_cast<const uint8_t*>(&event);
return mHmacKeyManager.sign(start, size);
}
const std::array<uint8_t, 32> InputDispatcher::getSignature(
const MotionEntry& motionEntry, const DispatchEntry& dispatchEntry) const {
const int32_t actionMasked = dispatchEntry.resolvedAction & AMOTION_EVENT_ACTION_MASK;
if (actionMasked != AMOTION_EVENT_ACTION_UP && actionMasked != AMOTION_EVENT_ACTION_DOWN) {
// Only sign events up and down events as the purely move events
// are tied to their up/down counterparts so signing would be redundant.
return INVALID_HMAC;
}
VerifiedMotionEvent verifiedEvent =
verifiedMotionEventFromMotionEntry(motionEntry, dispatchEntry.rawTransform);
verifiedEvent.actionMasked = actionMasked;
verifiedEvent.flags = dispatchEntry.resolvedFlags & VERIFIED_MOTION_EVENT_FLAGS;
return sign(verifiedEvent);
}
const std::array<uint8_t, 32> InputDispatcher::getSignature(
const KeyEntry& keyEntry, const DispatchEntry& dispatchEntry) const {
VerifiedKeyEvent verifiedEvent = verifiedKeyEventFromKeyEntry(keyEntry);
verifiedEvent.flags = dispatchEntry.resolvedFlags & VERIFIED_KEY_EVENT_FLAGS;
verifiedEvent.action = dispatchEntry.resolvedAction;
return sign(verifiedEvent);
}
void InputDispatcher::finishDispatchCycleLocked(nsecs_t currentTime,
const sp<Connection>& connection, uint32_t seq,
bool handled, nsecs_t consumeTime) {
if (DEBUG_DISPATCH_CYCLE) {
ALOGD("channel '%s' ~ finishDispatchCycle - seq=%u, handled=%s",
connection->getInputChannelName().c_str(), seq, toString(handled));
}
if (connection->status == Connection::Status::BROKEN ||
connection->status == Connection::Status::ZOMBIE) {
return;
}
// Notify other system components and prepare to start the next dispatch cycle.
auto command = [this, currentTime, connection, seq, handled, consumeTime]() REQUIRES(mLock) {
doDispatchCycleFinishedCommand(currentTime, connection, seq, handled, consumeTime);
};
postCommandLocked(std::move(command));
}
void InputDispatcher::abortBrokenDispatchCycleLocked(nsecs_t currentTime,
const sp<Connection>& connection,
bool notify) {
if (DEBUG_DISPATCH_CYCLE) {
ALOGD("channel '%s' ~ abortBrokenDispatchCycle - notify=%s",
connection->getInputChannelName().c_str(), toString(notify));
}
// Clear the dispatch queues.
drainDispatchQueue(connection->outboundQueue);
traceOutboundQueueLength(*connection);
drainDispatchQueue(connection->waitQueue);
traceWaitQueueLength(*connection);
// The connection appears to be unrecoverably broken.
// Ignore already broken or zombie connections.
if (connection->status == Connection::Status::NORMAL) {
connection->status = Connection::Status::BROKEN;
if (notify) {
// Notify other system components.
ALOGE("channel '%s' ~ Channel is unrecoverably broken and will be disposed!",
connection->getInputChannelName().c_str());
auto command = [this, connection]() REQUIRES(mLock) {
scoped_unlock unlock(mLock);
mPolicy->notifyInputChannelBroken(connection->inputChannel->getConnectionToken());
};
postCommandLocked(std::move(command));
}
}
}
void InputDispatcher::drainDispatchQueue(std::deque<DispatchEntry*>& queue) {
while (!queue.empty()) {
DispatchEntry* dispatchEntry = queue.front();
queue.pop_front();
releaseDispatchEntry(dispatchEntry);
}
}
void InputDispatcher::releaseDispatchEntry(DispatchEntry* dispatchEntry) {
if (dispatchEntry->hasForegroundTarget()) {
decrementPendingForegroundDispatches(*(dispatchEntry->eventEntry));
}
delete dispatchEntry;
}
int InputDispatcher::handleReceiveCallback(int events, sp<IBinder> connectionToken) {
std::scoped_lock _l(mLock);
sp<Connection> connection = getConnectionLocked(connectionToken);
if (connection == nullptr) {
ALOGW("Received looper callback for unknown input channel token %p. events=0x%x",
connectionToken.get(), events);
return 0; // remove the callback
}
bool notify;
if (!(events & (ALOOPER_EVENT_ERROR | ALOOPER_EVENT_HANGUP))) {
if (!(events & ALOOPER_EVENT_INPUT)) {
ALOGW("channel '%s' ~ Received spurious callback for unhandled poll event. "
"events=0x%x",
connection->getInputChannelName().c_str(), events);
return 1;
}
nsecs_t currentTime = now();
bool gotOne = false;
status_t status = OK;
for (;;) {
Result<InputPublisher::ConsumerResponse> result =
connection->inputPublisher.receiveConsumerResponse();
if (!result.ok()) {
status = result.error().code();
break;
}
if (std::holds_alternative<InputPublisher::Finished>(*result)) {
const InputPublisher::Finished& finish =
std::get<InputPublisher::Finished>(*result);
finishDispatchCycleLocked(currentTime, connection, finish.seq, finish.handled,
finish.consumeTime);
} else if (std::holds_alternative<InputPublisher::Timeline>(*result)) {
if (shouldReportMetricsForConnection(*connection)) {
const InputPublisher::Timeline& timeline =
std::get<InputPublisher::Timeline>(*result);
mLatencyTracker
.trackGraphicsLatency(timeline.inputEventId,
connection->inputChannel->getConnectionToken(),
std::move(timeline.graphicsTimeline));
}
}
gotOne = true;
}
if (gotOne) {
runCommandsLockedInterruptable();
if (status == WOULD_BLOCK) {
return 1;
}
}
notify = status != DEAD_OBJECT || !connection->monitor;
if (notify) {
ALOGE("channel '%s' ~ Failed to receive finished signal. status=%s(%d)",
connection->getInputChannelName().c_str(), statusToString(status).c_str(),
status);
}
} else {
// Monitor channels are never explicitly unregistered.
// We do it automatically when the remote endpoint is closed so don't warn about them.
const bool stillHaveWindowHandle =
getWindowHandleLocked(connection->inputChannel->getConnectionToken()) != nullptr;
notify = !connection->monitor && stillHaveWindowHandle;
if (notify) {
ALOGW("channel '%s' ~ Consumer closed input channel or an error occurred. events=0x%x",
connection->getInputChannelName().c_str(), events);
}
}
// Remove the channel.
removeInputChannelLocked(connection->inputChannel->getConnectionToken(), notify);
return 0; // remove the callback
}
void InputDispatcher::synthesizeCancelationEventsForAllConnectionsLocked(
const CancelationOptions& options) {
for (const auto& [token, connection] : mConnectionsByToken) {
synthesizeCancelationEventsForConnectionLocked(connection, options);
}
}
void InputDispatcher::synthesizeCancelationEventsForMonitorsLocked(
const CancelationOptions& options) {
for (const auto& [_, monitors] : mGlobalMonitorsByDisplay) {
for (const Monitor& monitor : monitors) {
synthesizeCancelationEventsForInputChannelLocked(monitor.inputChannel, options);
}
}
}
void InputDispatcher::synthesizeCancelationEventsForInputChannelLocked(
const std::shared_ptr<InputChannel>& channel, const CancelationOptions& options) {
sp<Connection> connection = getConnectionLocked(channel->getConnectionToken());
if (connection == nullptr) {
return;
}
synthesizeCancelationEventsForConnectionLocked(connection, options);
}
void InputDispatcher::synthesizeCancelationEventsForConnectionLocked(
const sp<Connection>& connection, const CancelationOptions& options) {
if (connection->status == Connection::Status::BROKEN) {
return;
}
nsecs_t currentTime = now();
std::vector<std::unique_ptr<EventEntry>> cancelationEvents =
connection->inputState.synthesizeCancelationEvents(currentTime, options);
if (cancelationEvents.empty()) {
return;
}
if (DEBUG_OUTBOUND_EVENT_DETAILS) {
ALOGD("channel '%s' ~ Synthesized %zu cancelation events to bring channel back in sync "
"with reality: %s, mode=%d.",
connection->getInputChannelName().c_str(), cancelationEvents.size(), options.reason,
options.mode);
}
std::string reason = std::string("reason=").append(options.reason);
android_log_event_list(LOGTAG_INPUT_CANCEL)
<< connection->getInputChannelName().c_str() << reason << LOG_ID_EVENTS;
InputTarget target;
sp<WindowInfoHandle> windowHandle =
getWindowHandleLocked(connection->inputChannel->getConnectionToken());
if (windowHandle != nullptr) {
const WindowInfo* windowInfo = windowHandle->getInfo();
target.setDefaultPointerTransform(windowInfo->transform);
target.globalScaleFactor = windowInfo->globalScaleFactor;
}
target.inputChannel = connection->inputChannel;
target.flags = InputTarget::FLAG_DISPATCH_AS_IS;
for (size_t i = 0; i < cancelationEvents.size(); i++) {
std::unique_ptr<EventEntry> cancelationEventEntry = std::move(cancelationEvents[i]);
switch (cancelationEventEntry->type) {
case EventEntry::Type::KEY: {
logOutboundKeyDetails("cancel - ",
static_cast<const KeyEntry&>(*cancelationEventEntry));
break;
}
case EventEntry::Type::MOTION: {
logOutboundMotionDetails("cancel - ",
static_cast<const MotionEntry&>(*cancelationEventEntry));
break;
}
case EventEntry::Type::FOCUS:
case EventEntry::Type::TOUCH_MODE_CHANGED:
case EventEntry::Type::POINTER_CAPTURE_CHANGED:
case EventEntry::Type::DRAG: {
LOG_ALWAYS_FATAL("Canceling %s events is not supported",
ftl::enum_string(cancelationEventEntry->type).c_str());
break;
}
case EventEntry::Type::CONFIGURATION_CHANGED:
case EventEntry::Type::DEVICE_RESET:
case EventEntry::Type::SENSOR: {
LOG_ALWAYS_FATAL("%s event should not be found inside Connections's queue",
ftl::enum_string(cancelationEventEntry->type).c_str());
break;
}
}
enqueueDispatchEntryLocked(connection, std::move(cancelationEventEntry), target,
InputTarget::FLAG_DISPATCH_AS_IS);
}
startDispatchCycleLocked(currentTime, connection);
}
void InputDispatcher::synthesizePointerDownEventsForConnectionLocked(
const sp<Connection>& connection) {
if (connection->status == Connection::Status::BROKEN) {
return;
}
nsecs_t currentTime = now();
std::vector<std::unique_ptr<EventEntry>> downEvents =
connection->inputState.synthesizePointerDownEvents(currentTime);
if (downEvents.empty()) {
return;
}
if (DEBUG_OUTBOUND_EVENT_DETAILS) {
ALOGD("channel '%s' ~ Synthesized %zu down events to ensure consistent event stream.",
connection->getInputChannelName().c_str(), downEvents.size());
}
InputTarget target;
sp<WindowInfoHandle> windowHandle =
getWindowHandleLocked(connection->inputChannel->getConnectionToken());
if (windowHandle != nullptr) {
const WindowInfo* windowInfo = windowHandle->getInfo();
target.setDefaultPointerTransform(windowInfo->transform);
target.globalScaleFactor = windowInfo->globalScaleFactor;
}
target.inputChannel = connection->inputChannel;
target.flags = InputTarget::FLAG_DISPATCH_AS_IS;
for (std::unique_ptr<EventEntry>& downEventEntry : downEvents) {
switch (downEventEntry->type) {
case EventEntry::Type::MOTION: {
logOutboundMotionDetails("down - ",
static_cast<const MotionEntry&>(*downEventEntry));
break;
}
case EventEntry::Type::KEY:
case EventEntry::Type::FOCUS:
case EventEntry::Type::TOUCH_MODE_CHANGED:
case EventEntry::Type::CONFIGURATION_CHANGED:
case EventEntry::Type::DEVICE_RESET:
case EventEntry::Type::POINTER_CAPTURE_CHANGED:
case EventEntry::Type::SENSOR:
case EventEntry::Type::DRAG: {
LOG_ALWAYS_FATAL("%s event should not be found inside Connections's queue",
ftl::enum_string(downEventEntry->type).c_str());
break;
}
}
enqueueDispatchEntryLocked(connection, std::move(downEventEntry), target,
InputTarget::FLAG_DISPATCH_AS_IS);
}
startDispatchCycleLocked(currentTime, connection);
}
std::unique_ptr<MotionEntry> InputDispatcher::splitMotionEvent(
const MotionEntry& originalMotionEntry, BitSet32 pointerIds) {
ALOG_ASSERT(pointerIds.value != 0);
uint32_t splitPointerIndexMap[MAX_POINTERS];
PointerProperties splitPointerProperties[MAX_POINTERS];
PointerCoords splitPointerCoords[MAX_POINTERS];
uint32_t originalPointerCount = originalMotionEntry.pointerCount;
uint32_t splitPointerCount = 0;
for (uint32_t originalPointerIndex = 0; originalPointerIndex < originalPointerCount;
originalPointerIndex++) {
const PointerProperties& pointerProperties =
originalMotionEntry.pointerProperties[originalPointerIndex];
uint32_t pointerId = uint32_t(pointerProperties.id);
if (pointerIds.hasBit(pointerId)) {
splitPointerIndexMap[splitPointerCount] = originalPointerIndex;
splitPointerProperties[splitPointerCount].copyFrom(pointerProperties);
splitPointerCoords[splitPointerCount].copyFrom(
originalMotionEntry.pointerCoords[originalPointerIndex]);
splitPointerCount += 1;
}
}
if (splitPointerCount != pointerIds.count()) {
// This is bad. We are missing some of the pointers that we expected to deliver.
// Most likely this indicates that we received an ACTION_MOVE events that has
// different pointer ids than we expected based on the previous ACTION_DOWN
// or ACTION_POINTER_DOWN events that caused us to decide to split the pointers
// in this way.
ALOGW("Dropping split motion event because the pointer count is %d but "
"we expected there to be %d pointers. This probably means we received "
"a broken sequence of pointer ids from the input device.",
splitPointerCount, pointerIds.count());
return nullptr;
}
int32_t action = originalMotionEntry.action;
int32_t maskedAction = action & AMOTION_EVENT_ACTION_MASK;
if (maskedAction == AMOTION_EVENT_ACTION_POINTER_DOWN ||
maskedAction == AMOTION_EVENT_ACTION_POINTER_UP) {
int32_t originalPointerIndex = getMotionEventActionPointerIndex(action);
const PointerProperties& pointerProperties =
originalMotionEntry.pointerProperties[originalPointerIndex];
uint32_t pointerId = uint32_t(pointerProperties.id);
if (pointerIds.hasBit(pointerId)) {
if (pointerIds.count() == 1) {
// The first/last pointer went down/up.
action = maskedAction == AMOTION_EVENT_ACTION_POINTER_DOWN
? AMOTION_EVENT_ACTION_DOWN
: (originalMotionEntry.flags & AMOTION_EVENT_FLAG_CANCELED) != 0
? AMOTION_EVENT_ACTION_CANCEL
: AMOTION_EVENT_ACTION_UP;
} else {
// A secondary pointer went down/up.
uint32_t splitPointerIndex = 0;
while (pointerId != uint32_t(splitPointerProperties[splitPointerIndex].id)) {
splitPointerIndex += 1;
}
action = maskedAction |
(splitPointerIndex << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT);
}
} else {
// An unrelated pointer changed.
action = AMOTION_EVENT_ACTION_MOVE;
}
}
int32_t newId = mIdGenerator.nextId();
if (ATRACE_ENABLED()) {
std::string message = StringPrintf("Split MotionEvent(id=0x%" PRIx32
") to MotionEvent(id=0x%" PRIx32 ").",
originalMotionEntry.id, newId);
ATRACE_NAME(message.c_str());
}
std::unique_ptr<MotionEntry> splitMotionEntry =
std::make_unique<MotionEntry>(newId, originalMotionEntry.eventTime,
originalMotionEntry.deviceId, originalMotionEntry.source,
originalMotionEntry.displayId,
originalMotionEntry.policyFlags, action,
originalMotionEntry.actionButton,
originalMotionEntry.flags, originalMotionEntry.metaState,
originalMotionEntry.buttonState,
originalMotionEntry.classification,
originalMotionEntry.edgeFlags,
originalMotionEntry.xPrecision,
originalMotionEntry.yPrecision,
originalMotionEntry.xCursorPosition,
originalMotionEntry.yCursorPosition,
originalMotionEntry.downTime, splitPointerCount,
splitPointerProperties, splitPointerCoords);
if (originalMotionEntry.injectionState) {
splitMotionEntry->injectionState = originalMotionEntry.injectionState;
splitMotionEntry->injectionState->refCount += 1;
}
return splitMotionEntry;
}
void InputDispatcher::notifyConfigurationChanged(const NotifyConfigurationChangedArgs* args) {
if (DEBUG_INBOUND_EVENT_DETAILS) {
ALOGD("notifyConfigurationChanged - eventTime=%" PRId64, args->eventTime);
}
bool needWake = false;
{ // acquire lock
std::scoped_lock _l(mLock);
std::unique_ptr<ConfigurationChangedEntry> newEntry =
std::make_unique<ConfigurationChangedEntry>(args->id, args->eventTime);
needWake = enqueueInboundEventLocked(std::move(newEntry));
} // release lock
if (needWake) {
mLooper->wake();
}
}
/**
* If one of the meta shortcuts is detected, process them here:
* Meta + Backspace -> generate BACK
* Meta + Enter -> generate HOME
* This will potentially overwrite keyCode and metaState.
*/
void InputDispatcher::accelerateMetaShortcuts(const int32_t deviceId, const int32_t action,
int32_t& keyCode, int32_t& metaState) {
if (metaState & AMETA_META_ON && action == AKEY_EVENT_ACTION_DOWN) {
int32_t newKeyCode = AKEYCODE_UNKNOWN;
if (keyCode == AKEYCODE_DEL) {
newKeyCode = AKEYCODE_BACK;
} else if (keyCode == AKEYCODE_ENTER) {
newKeyCode = AKEYCODE_HOME;
}
if (newKeyCode != AKEYCODE_UNKNOWN) {
std::scoped_lock _l(mLock);
struct KeyReplacement replacement = {keyCode, deviceId};
mReplacedKeys[replacement] = newKeyCode;
keyCode = newKeyCode;
metaState &= ~(AMETA_META_ON | AMETA_META_LEFT_ON | AMETA_META_RIGHT_ON);
}
} else if (action == AKEY_EVENT_ACTION_UP) {
// In order to maintain a consistent stream of up and down events, check to see if the key
// going up is one we've replaced in a down event and haven't yet replaced in an up event,
// even if the modifier was released between the down and the up events.
std::scoped_lock _l(mLock);
struct KeyReplacement replacement = {keyCode, deviceId};
auto replacementIt = mReplacedKeys.find(replacement);
if (replacementIt != mReplacedKeys.end()) {
keyCode = replacementIt->second;
mReplacedKeys.erase(replacementIt);
metaState &= ~(AMETA_META_ON | AMETA_META_LEFT_ON | AMETA_META_RIGHT_ON);
}
}
}
void InputDispatcher::notifyKey(const NotifyKeyArgs* args) {
if (DEBUG_INBOUND_EVENT_DETAILS) {
ALOGD("notifyKey - eventTime=%" PRId64 ", deviceId=%d, source=0x%x, displayId=%" PRId32
"policyFlags=0x%x, action=0x%x, "
"flags=0x%x, keyCode=0x%x, scanCode=0x%x, metaState=0x%x, downTime=%" PRId64,
args->eventTime, args->deviceId, args->source, args->displayId, args->policyFlags,
args->action, args->flags, args->keyCode, args->scanCode, args->metaState,
args->downTime);
}
if (!validateKeyEvent(args->action)) {
return;
}
uint32_t policyFlags = args->policyFlags;
int32_t flags = args->flags;
int32_t metaState = args->metaState;
// InputDispatcher tracks and generates key repeats on behalf of
// whatever notifies it, so repeatCount should always be set to 0
constexpr int32_t repeatCount = 0;
if ((policyFlags & POLICY_FLAG_VIRTUAL) || (flags & AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY)) {
policyFlags |= POLICY_FLAG_VIRTUAL;
flags |= AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY;
}
if (policyFlags & POLICY_FLAG_FUNCTION) {
metaState |= AMETA_FUNCTION_ON;
}
policyFlags |= POLICY_FLAG_TRUSTED;
int32_t keyCode = args->keyCode;
accelerateMetaShortcuts(args->deviceId, args->action, keyCode, metaState);
KeyEvent event;
event.initialize(args->id, args->deviceId, args->source, args->displayId, INVALID_HMAC,
args->action, flags, keyCode, args->scanCode, metaState, repeatCount,
args->downTime, args->eventTime);
android::base::Timer t;
mPolicy->interceptKeyBeforeQueueing(&event, /*byref*/ policyFlags);
if (t.duration() > SLOW_INTERCEPTION_THRESHOLD) {
ALOGW("Excessive delay in interceptKeyBeforeQueueing; took %s ms",
std::to_string(t.duration().count()).c_str());
}
bool needWake = false;
{ // acquire lock
mLock.lock();
if (shouldSendKeyToInputFilterLocked(args)) {
mLock.unlock();
policyFlags |= POLICY_FLAG_FILTERED;
if (!mPolicy->filterInputEvent(&event, policyFlags)) {
return; // event was consumed by the filter
}
mLock.lock();
}
std::unique_ptr<KeyEntry> newEntry =
std::make_unique<KeyEntry>(args->id, args->eventTime, args->deviceId, args->source,
args->displayId, policyFlags, args->action, flags,
keyCode, args->scanCode, metaState, repeatCount,
args->downTime);
needWake = enqueueInboundEventLocked(std::move(newEntry));
mLock.unlock();
} // release lock
if (needWake) {
mLooper->wake();
}
}
bool InputDispatcher::shouldSendKeyToInputFilterLocked(const NotifyKeyArgs* args) {
return mInputFilterEnabled;
}
void InputDispatcher::notifyMotion(const NotifyMotionArgs* args) {
if (DEBUG_INBOUND_EVENT_DETAILS) {
ALOGD("notifyMotion - id=%" PRIx32 " eventTime=%" PRId64 ", deviceId=%d, source=0x%x, "
"displayId=%" PRId32 ", policyFlags=0x%x, "
"action=0x%x, actionButton=0x%x, flags=0x%x, metaState=0x%x, buttonState=0x%x, "
"edgeFlags=0x%x, xPrecision=%f, yPrecision=%f, xCursorPosition=%f, "
"yCursorPosition=%f, downTime=%" PRId64,
args->id, args->eventTime, args->deviceId, args->source, args->displayId,
args->policyFlags, args->action, args->actionButton, args->flags, args->metaState,
args->buttonState, args->edgeFlags, args->xPrecision, args->yPrecision,
args->xCursorPosition, args->yCursorPosition, args->downTime);
for (uint32_t i = 0; i < args->pointerCount; i++) {
ALOGD(" Pointer %d: id=%d, toolType=%d, "
"x=%f, y=%f, pressure=%f, size=%f, "
"touchMajor=%f, touchMinor=%f, toolMajor=%f, toolMinor=%f, "
"orientation=%f",
i, args->pointerProperties[i].id, args->pointerProperties[i].toolType,
args->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_X),
args->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_Y),
args->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_PRESSURE),
args->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_SIZE),
args->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR),
args->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR),
args->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR),
args->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR),
args->pointerCoords[i].getAxisValue(AMOTION_EVENT_AXIS_ORIENTATION));
}
}
if (!validateMotionEvent(args->action, args->actionButton, args->pointerCount,
args->pointerProperties)) {
return;
}
uint32_t policyFlags = args->policyFlags;
policyFlags |= POLICY_FLAG_TRUSTED;
android::base::Timer t;
mPolicy->interceptMotionBeforeQueueing(args->displayId, args->eventTime, /*byref*/ policyFlags);
if (t.duration() > SLOW_INTERCEPTION_THRESHOLD) {
ALOGW("Excessive delay in interceptMotionBeforeQueueing; took %s ms",
std::to_string(t.duration().count()).c_str());
}
bool needWake = false;
{ // acquire lock
mLock.lock();
if (shouldSendMotionToInputFilterLocked(args)) {
ui::Transform displayTransform;
if (const auto it = mDisplayInfos.find(args->displayId); it != mDisplayInfos.end()) {
displayTransform = it->second.transform;
}
mLock.unlock();
MotionEvent event;
event.initialize(args->id, args->deviceId, args->source, args->displayId, INVALID_HMAC,
args->action, args->actionButton, args->flags, args->edgeFlags,
args->metaState, args->buttonState, args->classification,
displayTransform, args->xPrecision, args->yPrecision,
args->xCursorPosition, args->yCursorPosition, displayTransform,
args->downTime, args->eventTime, args->pointerCount,
args->pointerProperties, args->pointerCoords);
policyFlags |= POLICY_FLAG_FILTERED;
if (!mPolicy->filterInputEvent(&event, policyFlags)) {
return; // event was consumed by the filter
}
mLock.lock();
}
// Just enqueue a new motion event.
std::unique_ptr<MotionEntry> newEntry =
std::make_unique<MotionEntry>(args->id, args->eventTime, args->deviceId,
args->source, args->displayId, policyFlags,
args->action, args->actionButton, args->flags,
args->metaState, args->buttonState,
args->classification, args->edgeFlags,
args->xPrecision, args->yPrecision,
args->xCursorPosition, args->yCursorPosition,
args->downTime, args->pointerCount,
args->pointerProperties, args->pointerCoords);
if (args->id != android::os::IInputConstants::INVALID_INPUT_EVENT_ID &&
IdGenerator::getSource(args->id) == IdGenerator::Source::INPUT_READER &&
!mInputFilterEnabled) {
const bool isDown = args->action == AMOTION_EVENT_ACTION_DOWN;
mLatencyTracker.trackListener(args->id, isDown, args->eventTime, args->readTime);
}
needWake = enqueueInboundEventLocked(std::move(newEntry));
mLock.unlock();
} // release lock
if (needWake) {
mLooper->wake();
}
}
void InputDispatcher::notifySensor(const NotifySensorArgs* args) {
if (DEBUG_INBOUND_EVENT_DETAILS) {
ALOGD("notifySensor - id=%" PRIx32 " eventTime=%" PRId64 ", deviceId=%d, source=0x%x, "
" sensorType=%s",
args->id, args->eventTime, args->deviceId, args->source,
ftl::enum_string(args->sensorType).c_str());
}
bool needWake = false;
{ // acquire lock
mLock.lock();
// Just enqueue a new sensor event.
std::unique_ptr<SensorEntry> newEntry =
std::make_unique<SensorEntry>(args->id, args->eventTime, args->deviceId,
args->source, 0 /* policyFlags*/, args->hwTimestamp,
args->sensorType, args->accuracy,
args->accuracyChanged, args->values);
needWake = enqueueInboundEventLocked(std::move(newEntry));
mLock.unlock();
} // release lock
if (needWake) {
mLooper->wake();
}
}
void InputDispatcher::notifyVibratorState(const NotifyVibratorStateArgs* args) {
if (DEBUG_INBOUND_EVENT_DETAILS) {
ALOGD("notifyVibratorState - eventTime=%" PRId64 ", device=%d, isOn=%d", args->eventTime,
args->deviceId, args->isOn);
}
mPolicy->notifyVibratorState(args->deviceId, args->isOn);
}
bool InputDispatcher::shouldSendMotionToInputFilterLocked(const NotifyMotionArgs* args) {
return mInputFilterEnabled;
}
void InputDispatcher::notifySwitch(const NotifySwitchArgs* args) {
if (DEBUG_INBOUND_EVENT_DETAILS) {
ALOGD("notifySwitch - eventTime=%" PRId64 ", policyFlags=0x%x, switchValues=0x%08x, "
"switchMask=0x%08x",
args->eventTime, args->policyFlags, args->switchValues, args->switchMask);
}
uint32_t policyFlags = args->policyFlags;
policyFlags |= POLICY_FLAG_TRUSTED;
mPolicy->notifySwitch(args->eventTime, args->switchValues, args->switchMask, policyFlags);
}
void InputDispatcher::notifyDeviceReset(const NotifyDeviceResetArgs* args) {
if (DEBUG_INBOUND_EVENT_DETAILS) {
ALOGD("notifyDeviceReset - eventTime=%" PRId64 ", deviceId=%d", args->eventTime,
args->deviceId);
}
bool needWake = false;
{ // acquire lock
std::scoped_lock _l(mLock);
std::unique_ptr<DeviceResetEntry> newEntry =
std::make_unique<DeviceResetEntry>(args->id, args->eventTime, args->deviceId);
needWake = enqueueInboundEventLocked(std::move(newEntry));
} // release lock
if (needWake) {
mLooper->wake();
}
}
void InputDispatcher::notifyPointerCaptureChanged(const NotifyPointerCaptureChangedArgs* args) {
if (DEBUG_INBOUND_EVENT_DETAILS) {
ALOGD("notifyPointerCaptureChanged - eventTime=%" PRId64 ", enabled=%s", args->eventTime,
args->request.enable ? "true" : "false");
}
bool needWake = false;
{ // acquire lock
std::scoped_lock _l(mLock);
auto entry = std::make_unique<PointerCaptureChangedEntry>(args->id, args->eventTime,
args->request);
needWake = enqueueInboundEventLocked(std::move(entry));
} // release lock
if (needWake) {
mLooper->wake();
}
}
InputEventInjectionResult InputDispatcher::injectInputEvent(const InputEvent* event,
std::optional<int32_t> targetUid,
InputEventInjectionSync syncMode,
std::chrono::milliseconds timeout,
uint32_t policyFlags) {
if (DEBUG_INBOUND_EVENT_DETAILS) {
ALOGD("injectInputEvent - eventType=%d, targetUid=%s, syncMode=%d, timeout=%lld, "
"policyFlags=0x%08x",
event->getType(), targetUid ? std::to_string(*targetUid).c_str() : "none", syncMode,
timeout.count(), policyFlags);
}
nsecs_t endTime = now() + std::chrono::duration_cast<std::chrono::nanoseconds>(timeout).count();
policyFlags |= POLICY_FLAG_INJECTED | POLICY_FLAG_TRUSTED;
// For all injected events, set device id = VIRTUAL_KEYBOARD_ID. The only exception is events
// that have gone through the InputFilter. If the event passed through the InputFilter, assign
// the provided device id. If the InputFilter is accessibility, and it modifies or synthesizes
// the injected event, it is responsible for setting POLICY_FLAG_INJECTED_FROM_ACCESSIBILITY.
// For those events, we will set FLAG_IS_ACCESSIBILITY_EVENT to allow apps to distinguish them
// from events that originate from actual hardware.
int32_t resolvedDeviceId = VIRTUAL_KEYBOARD_ID;
if (policyFlags & POLICY_FLAG_FILTERED) {
resolvedDeviceId = event->getDeviceId();
}
std::queue<std::unique_ptr<EventEntry>> injectedEntries;
switch (event->getType()) {
case AINPUT_EVENT_TYPE_KEY: {
const KeyEvent& incomingKey = static_cast<const KeyEvent&>(*event);
int32_t action = incomingKey.getAction();
if (!validateKeyEvent(action)) {
return InputEventInjectionResult::FAILED;
}
int32_t flags = incomingKey.getFlags();
if (policyFlags & POLICY_FLAG_INJECTED_FROM_ACCESSIBILITY) {
flags |= AKEY_EVENT_FLAG_IS_ACCESSIBILITY_EVENT;
}
int32_t keyCode = incomingKey.getKeyCode();
int32_t metaState = incomingKey.getMetaState();
accelerateMetaShortcuts(resolvedDeviceId, action,
/*byref*/ keyCode, /*byref*/ metaState);
KeyEvent keyEvent;
keyEvent.initialize(incomingKey.getId(), resolvedDeviceId, incomingKey.getSource(),
incomingKey.getDisplayId(), INVALID_HMAC, action, flags, keyCode,
incomingKey.getScanCode(), metaState, incomingKey.getRepeatCount(),
incomingKey.getDownTime(), incomingKey.getEventTime());
if (flags & AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY) {
policyFlags |= POLICY_FLAG_VIRTUAL;
}
if (!(policyFlags & POLICY_FLAG_FILTERED)) {
android::base::Timer t;
mPolicy->interceptKeyBeforeQueueing(&keyEvent, /*byref*/ policyFlags);
if (t.duration() > SLOW_INTERCEPTION_THRESHOLD) {
ALOGW("Excessive delay in interceptKeyBeforeQueueing; took %s ms",
std::to_string(t.duration().count()).c_str());
}
}
mLock.lock();
std::unique_ptr<KeyEntry> injectedEntry =
std::make_unique<KeyEntry>(incomingKey.getId(), incomingKey.getEventTime(),
resolvedDeviceId, incomingKey.getSource(),
incomingKey.getDisplayId(), policyFlags, action,
flags, keyCode, incomingKey.getScanCode(), metaState,
incomingKey.getRepeatCount(),
incomingKey.getDownTime());
injectedEntries.push(std::move(injectedEntry));
break;
}
case AINPUT_EVENT_TYPE_MOTION: {
const MotionEvent& motionEvent = static_cast<const MotionEvent&>(*event);
const int32_t action = motionEvent.getAction();
const bool isPointerEvent =
isFromSource(event->getSource(), AINPUT_SOURCE_CLASS_POINTER);
// If a pointer event has no displayId specified, inject it to the default display.
const uint32_t displayId = isPointerEvent && (event->getDisplayId() == ADISPLAY_ID_NONE)
? ADISPLAY_ID_DEFAULT
: event->getDisplayId();
const size_t pointerCount = motionEvent.getPointerCount();
const PointerProperties* pointerProperties = motionEvent.getPointerProperties();
const int32_t actionButton = motionEvent.getActionButton();
int32_t flags = motionEvent.getFlags();
if (!validateMotionEvent(action, actionButton, pointerCount, pointerProperties)) {
return InputEventInjectionResult::FAILED;
}
if (!(policyFlags & POLICY_FLAG_FILTERED)) {
nsecs_t eventTime = motionEvent.getEventTime();
android::base::Timer t;
mPolicy->interceptMotionBeforeQueueing(displayId, eventTime, /*byref*/ policyFlags);
if (t.duration() > SLOW_INTERCEPTION_THRESHOLD) {
ALOGW("Excessive delay in interceptMotionBeforeQueueing; took %s ms",
std::to_string(t.duration().count()).c_str());
}
}
if (policyFlags & POLICY_FLAG_INJECTED_FROM_ACCESSIBILITY) {
flags |= AMOTION_EVENT_FLAG_IS_ACCESSIBILITY_EVENT;
}
mLock.lock();
const nsecs_t* sampleEventTimes = motionEvent.getSampleEventTimes();
const PointerCoords* samplePointerCoords = motionEvent.getSamplePointerCoords();
std::unique_ptr<MotionEntry> injectedEntry =
std::make_unique<MotionEntry>(motionEvent.getId(), *sampleEventTimes,
resolvedDeviceId, motionEvent.getSource(),
displayId, policyFlags, action, actionButton,
flags, motionEvent.getMetaState(),
motionEvent.getButtonState(),
motionEvent.getClassification(),
motionEvent.getEdgeFlags(),
motionEvent.getXPrecision(),
motionEvent.getYPrecision(),
motionEvent.getRawXCursorPosition(),
motionEvent.getRawYCursorPosition(),
motionEvent.getDownTime(), uint32_t(pointerCount),
pointerProperties, samplePointerCoords);
transformMotionEntryForInjectionLocked(*injectedEntry, motionEvent.getTransform());
injectedEntries.push(std::move(injectedEntry));
for (size_t i = motionEvent.getHistorySize(); i > 0; i--) {
sampleEventTimes += 1;
samplePointerCoords += pointerCount;
std::unique_ptr<MotionEntry> nextInjectedEntry =
std::make_unique<MotionEntry>(motionEvent.getId(), *sampleEventTimes,
resolvedDeviceId, motionEvent.getSource(),
displayId, policyFlags, action, actionButton,
flags, motionEvent.getMetaState(),
motionEvent.getButtonState(),
motionEvent.getClassification(),
motionEvent.getEdgeFlags(),
motionEvent.getXPrecision(),
motionEvent.getYPrecision(),
motionEvent.getRawXCursorPosition(),
motionEvent.getRawYCursorPosition(),
motionEvent.getDownTime(),
uint32_t(pointerCount), pointerProperties,
samplePointerCoords);
transformMotionEntryForInjectionLocked(*nextInjectedEntry,
motionEvent.getTransform());
injectedEntries.push(std::move(nextInjectedEntry));
}
break;
}
default:
ALOGW("Cannot inject %s events", inputEventTypeToString(event->getType()));
return InputEventInjectionResult::FAILED;
}
InjectionState* injectionState = new InjectionState(targetUid);
if (syncMode == InputEventInjectionSync::NONE) {
injectionState->injectionIsAsync = true;
}
injectionState->refCount += 1;
injectedEntries.back()->injectionState = injectionState;
bool needWake = false;
while (!injectedEntries.empty()) {
needWake |= enqueueInboundEventLocked(std::move(injectedEntries.front()));
injectedEntries.pop();
}
mLock.unlock();
if (needWake) {
mLooper->wake();
}
InputEventInjectionResult injectionResult;
{ // acquire lock
std::unique_lock _l(mLock);
if (syncMode == InputEventInjectionSync::NONE) {
injectionResult = InputEventInjectionResult::SUCCEEDED;
} else {
for (;;) {
injectionResult = injectionState->injectionResult;
if (injectionResult != InputEventInjectionResult::PENDING) {
break;
}
nsecs_t remainingTimeout = endTime - now();
if (remainingTimeout <= 0) {
if (DEBUG_INJECTION) {
ALOGD("injectInputEvent - Timed out waiting for injection result "
"to become available.");
}
injectionResult = InputEventInjectionResult::TIMED_OUT;
break;
}
mInjectionResultAvailable.wait_for(_l, std::chrono::nanoseconds(remainingTimeout));
}
if (injectionResult == InputEventInjectionResult::SUCCEEDED &&
syncMode == InputEventInjectionSync::WAIT_FOR_FINISHED) {
while (injectionState->pendingForegroundDispatches != 0) {
if (DEBUG_INJECTION) {
ALOGD("injectInputEvent - Waiting for %d pending foreground dispatches.",
injectionState->pendingForegroundDispatches);
}
nsecs_t remainingTimeout = endTime - now();
if (remainingTimeout <= 0) {
if (DEBUG_INJECTION) {
ALOGD("injectInputEvent - Timed out waiting for pending foreground "
"dispatches to finish.");
}
injectionResult = InputEventInjectionResult::TIMED_OUT;
break;
}
mInjectionSyncFinished.wait_for(_l, std::chrono::nanoseconds(remainingTimeout));
}
}
}
injectionState->release();
} // release lock
if (DEBUG_INJECTION) {
ALOGD("injectInputEvent - Finished with result %d.", injectionResult);
}
return injectionResult;
}
std::unique_ptr<VerifiedInputEvent> InputDispatcher::verifyInputEvent(const InputEvent& event) {
std::array<uint8_t, 32> calculatedHmac;
std::unique_ptr<VerifiedInputEvent> result;
switch (event.getType()) {
case AINPUT_EVENT_TYPE_KEY: {
const KeyEvent& keyEvent = static_cast<const KeyEvent&>(event);
VerifiedKeyEvent verifiedKeyEvent = verifiedKeyEventFromKeyEvent(keyEvent);
result = std::make_unique<VerifiedKeyEvent>(verifiedKeyEvent);
calculatedHmac = sign(verifiedKeyEvent);
break;
}
case AINPUT_EVENT_TYPE_MOTION: {
const MotionEvent& motionEvent = static_cast<const MotionEvent&>(event);
VerifiedMotionEvent verifiedMotionEvent =
verifiedMotionEventFromMotionEvent(motionEvent);
result = std::make_unique<VerifiedMotionEvent>(verifiedMotionEvent);
calculatedHmac = sign(verifiedMotionEvent);
break;
}
default: {
ALOGE("Cannot verify events of type %" PRId32, event.getType());
return nullptr;
}
}
if (calculatedHmac == INVALID_HMAC) {
return nullptr;
}
if (calculatedHmac != event.getHmac()) {
return nullptr;
}
return result;
}
void InputDispatcher::setInjectionResult(EventEntry& entry,
InputEventInjectionResult injectionResult) {
InjectionState* injectionState = entry.injectionState;
if (injectionState) {
if (DEBUG_INJECTION) {
ALOGD("Setting input event injection result to %d.", injectionResult);
}
if (injectionState->injectionIsAsync && !(entry.policyFlags & POLICY_FLAG_FILTERED)) {
// Log the outcome since the injector did not wait for the injection result.
switch (injectionResult) {
case InputEventInjectionResult::SUCCEEDED:
ALOGV("Asynchronous input event injection succeeded.");
break;
case InputEventInjectionResult::TARGET_MISMATCH:
ALOGV("Asynchronous input event injection target mismatch.");
break;
case InputEventInjectionResult::FAILED:
ALOGW("Asynchronous input event injection failed.");
break;
case InputEventInjectionResult::TIMED_OUT:
ALOGW("Asynchronous input event injection timed out.");
break;
case InputEventInjectionResult::PENDING:
ALOGE("Setting result to 'PENDING' for asynchronous injection");
break;
}
}
injectionState->injectionResult = injectionResult;
mInjectionResultAvailable.notify_all();
}
}
void InputDispatcher::transformMotionEntryForInjectionLocked(
MotionEntry& entry, const ui::Transform& injectedTransform) const {
// Input injection works in the logical display coordinate space, but the input pipeline works
// display space, so we need to transform the injected events accordingly.
const auto it = mDisplayInfos.find(entry.displayId);
if (it == mDisplayInfos.end()) return;
const auto& transformToDisplay = it->second.transform.inverse() * injectedTransform;
for (uint32_t i = 0; i < entry.pointerCount; i++) {
entry.pointerCoords[i] =
MotionEvent::calculateTransformedCoords(entry.source, transformToDisplay,
entry.pointerCoords[i]);
}
}
void InputDispatcher::incrementPendingForegroundDispatches(EventEntry& entry) {
InjectionState* injectionState = entry.injectionState;
if (injectionState) {
injectionState->pendingForegroundDispatches += 1;
}
}
void InputDispatcher::decrementPendingForegroundDispatches(EventEntry& entry) {
InjectionState* injectionState = entry.injectionState;
if (injectionState) {
injectionState->pendingForegroundDispatches -= 1;
if (injectionState->pendingForegroundDispatches == 0) {
mInjectionSyncFinished.notify_all();
}
}
}
const std::vector<sp<WindowInfoHandle>>& InputDispatcher::getWindowHandlesLocked(
int32_t displayId) const {
static const std::vector<sp<WindowInfoHandle>> EMPTY_WINDOW_HANDLES;
auto it = mWindowHandlesByDisplay.find(displayId);
return it != mWindowHandlesByDisplay.end() ? it->second : EMPTY_WINDOW_HANDLES;
}
sp<WindowInfoHandle> InputDispatcher::getWindowHandleLocked(
const sp<IBinder>& windowHandleToken) const {
if (windowHandleToken == nullptr) {
return nullptr;
}
for (auto& it : mWindowHandlesByDisplay) {
const std::vector<sp<WindowInfoHandle>>& windowHandles = it.second;
for (const sp<WindowInfoHandle>& windowHandle : windowHandles) {
if (windowHandle->getToken() == windowHandleToken) {
return windowHandle;
}
}
}
return nullptr;
}
sp<WindowInfoHandle> InputDispatcher::getWindowHandleLocked(const sp<IBinder>& windowHandleToken,
int displayId) const {
if (windowHandleToken == nullptr) {
return nullptr;
}
for (const sp<WindowInfoHandle>& windowHandle : getWindowHandlesLocked(displayId)) {
if (windowHandle->getToken() == windowHandleToken) {
return windowHandle;
}
}
return nullptr;
}
sp<WindowInfoHandle> InputDispatcher::getWindowHandleLocked(
const sp<WindowInfoHandle>& windowHandle) const {
for (auto& it : mWindowHandlesByDisplay) {
const std::vector<sp<WindowInfoHandle>>& windowHandles = it.second;
for (const sp<WindowInfoHandle>& handle : windowHandles) {
if (handle->getId() == windowHandle->getId() &&
handle->getToken() == windowHandle->getToken()) {
if (windowHandle->getInfo()->displayId != it.first) {
ALOGE("Found window %s in display %" PRId32
", but it should belong to display %" PRId32,
windowHandle->getName().c_str(), it.first,
windowHandle->getInfo()->displayId);
}
return handle;
}
}
}
return nullptr;
}
sp<WindowInfoHandle> InputDispatcher::getFocusedWindowHandleLocked(int displayId) const {
sp<IBinder> focusedToken = mFocusResolver.getFocusedWindowToken(displayId);
return getWindowHandleLocked(focusedToken, displayId);
}
bool InputDispatcher::hasResponsiveConnectionLocked(WindowInfoHandle& windowHandle) const {
sp<Connection> connection = getConnectionLocked(windowHandle.getToken());
const bool noInputChannel =
windowHandle.getInfo()->inputConfig.test(WindowInfo::InputConfig::NO_INPUT_CHANNEL);
if (connection != nullptr && noInputChannel) {
ALOGW("%s has feature NO_INPUT_CHANNEL, but it matched to connection %s",
windowHandle.getName().c_str(), connection->inputChannel->getName().c_str());
return false;
}
if (connection == nullptr) {
if (!noInputChannel) {
ALOGI("Could not find connection for %s", windowHandle.getName().c_str());
}
return false;
}
if (!connection->responsive) {
ALOGW("Window %s is not responsive", windowHandle.getName().c_str());
return false;
}
return true;
}
std::shared_ptr<InputChannel> InputDispatcher::getInputChannelLocked(
const sp<IBinder>& token) const {
auto connectionIt = mConnectionsByToken.find(token);
if (connectionIt == mConnectionsByToken.end()) {
return nullptr;
}
return connectionIt->second->inputChannel;
}
void InputDispatcher::updateWindowHandlesForDisplayLocked(
const std::vector<sp<WindowInfoHandle>>& windowInfoHandles, int32_t displayId) {
if (windowInfoHandles.empty()) {
// Remove all handles on a display if there are no windows left.
mWindowHandlesByDisplay.erase(displayId);
return;
}
// Since we compare the pointer of input window handles across window updates, we need
// to make sure the handle object for the same window stays unchanged across updates.
const std::vector<sp<WindowInfoHandle>>& oldHandles = getWindowHandlesLocked(displayId);
std::unordered_map<int32_t /*id*/, sp<WindowInfoHandle>> oldHandlesById;
for (const sp<WindowInfoHandle>& handle : oldHandles) {
oldHandlesById[handle->getId()] = handle;
}
std::vector<sp<WindowInfoHandle>> newHandles;
for (const sp<WindowInfoHandle>& handle : windowInfoHandles) {
const WindowInfo* info = handle->getInfo();
if (getInputChannelLocked(handle->getToken()) == nullptr) {
const bool noInputChannel =
info->inputConfig.test(WindowInfo::InputConfig::NO_INPUT_CHANNEL);
const bool canReceiveInput =
!info->inputConfig.test(WindowInfo::InputConfig::NOT_TOUCHABLE) ||
!info->inputConfig.test(WindowInfo::InputConfig::NOT_FOCUSABLE);
if (canReceiveInput && !noInputChannel) {
ALOGV("Window handle %s has no registered input channel",
handle->getName().c_str());
continue;
}
}
if (info->displayId != displayId) {
ALOGE("Window %s updated by wrong display %d, should belong to display %d",
handle->getName().c_str(), displayId, info->displayId);
continue;
}
if ((oldHandlesById.find(handle->getId()) != oldHandlesById.end()) &&
(oldHandlesById.at(handle->getId())->getToken() == handle->getToken())) {
const sp<WindowInfoHandle>& oldHandle = oldHandlesById.at(handle->getId());
oldHandle->updateFrom(handle);
newHandles.push_back(oldHandle);
} else {
newHandles.push_back(handle);
}
}
// Insert or replace
mWindowHandlesByDisplay[displayId] = newHandles;
}
void InputDispatcher::setInputWindows(
const std::unordered_map<int32_t, std::vector<sp<WindowInfoHandle>>>& handlesPerDisplay) {
// TODO(b/198444055): Remove setInputWindows from InputDispatcher.
{ // acquire lock
std::scoped_lock _l(mLock);
for (const auto& [displayId, handles] : handlesPerDisplay) {
setInputWindowsLocked(handles, displayId);
}
}
// Wake up poll loop since it may need to make new input dispatching choices.
mLooper->wake();
}
/**
* Called from InputManagerService, update window handle list by displayId that can receive input.
* A window handle contains information about InputChannel, Touch Region, Types, Focused,...
* If set an empty list, remove all handles from the specific display.
* For focused handle, check if need to change and send a cancel event to previous one.
* For removed handle, check if need to send a cancel event if already in touch.
*/
void InputDispatcher::setInputWindowsLocked(
const std::vector<sp<WindowInfoHandle>>& windowInfoHandles, int32_t displayId) {
if (DEBUG_FOCUS) {
std::string windowList;
for (const sp<WindowInfoHandle>& iwh : windowInfoHandles) {
windowList += iwh->getName() + " ";
}
ALOGD("setInputWindows displayId=%" PRId32 " %s", displayId, windowList.c_str());
}
// Check preconditions for new input windows
for (const sp<WindowInfoHandle>& window : windowInfoHandles) {
const WindowInfo& info = *window->getInfo();
// Ensure all tokens are null if the window has feature NO_INPUT_CHANNEL
const bool noInputWindow = info.inputConfig.test(WindowInfo::InputConfig::NO_INPUT_CHANNEL);
if (noInputWindow && window->getToken() != nullptr) {
ALOGE("%s has feature NO_INPUT_WINDOW, but a non-null token. Clearing",
window->getName().c_str());
window->releaseChannel();
}
// Ensure all spy windows are trusted overlays
LOG_ALWAYS_FATAL_IF(info.isSpy() &&
!info.inputConfig.test(
WindowInfo::InputConfig::TRUSTED_OVERLAY),
"%s has feature SPY, but is not a trusted overlay.",
window->getName().c_str());
// Ensure all stylus interceptors are trusted overlays
LOG_ALWAYS_FATAL_IF(info.interceptsStylus() &&
!info.inputConfig.test(
WindowInfo::InputConfig::TRUSTED_OVERLAY),
"%s has feature INTERCEPTS_STYLUS, but is not a trusted overlay.",
window->getName().c_str());
}
// Copy old handles for release if they are no longer present.
const std::vector<sp<WindowInfoHandle>> oldWindowHandles = getWindowHandlesLocked(displayId);
// Save the old windows' orientation by ID before it gets updated.
std::unordered_map<int32_t, uint32_t> oldWindowOrientations;
for (const sp<WindowInfoHandle>& handle : oldWindowHandles) {
oldWindowOrientations.emplace(handle->getId(),
handle->getInfo()->transform.getOrientation());
}
updateWindowHandlesForDisplayLocked(windowInfoHandles, displayId);
const std::vector<sp<WindowInfoHandle>>& windowHandles = getWindowHandlesLocked(displayId);
if (mLastHoverWindowHandle &&
std::find(windowHandles.begin(), windowHandles.end(), mLastHoverWindowHandle) ==
windowHandles.end()) {
mLastHoverWindowHandle = nullptr;
}
std::optional<FocusResolver::FocusChanges> changes =
mFocusResolver.setInputWindows(displayId, windowHandles);
if (changes) {
onFocusChangedLocked(*changes);
}
std::unordered_map<int32_t, TouchState>::iterator stateIt =
mTouchStatesByDisplay.find(displayId);
if (stateIt != mTouchStatesByDisplay.end()) {
TouchState& state = stateIt->second;
for (size_t i = 0; i < state.windows.size();) {
TouchedWindow& touchedWindow = state.windows[i];
if (getWindowHandleLocked(touchedWindow.windowHandle) == nullptr) {
if (DEBUG_FOCUS) {
ALOGD("Touched window was removed: %s in display %" PRId32,
touchedWindow.windowHandle->getName().c_str(), displayId);
}
std::shared_ptr<InputChannel> touchedInputChannel =
getInputChannelLocked(touchedWindow.windowHandle->getToken());
if (touchedInputChannel != nullptr) {
CancelationOptions options(CancelationOptions::CANCEL_POINTER_EVENTS,
"touched window was removed");
synthesizeCancelationEventsForInputChannelLocked(touchedInputChannel, options);
// Since we are about to drop the touch, cancel the events for the wallpaper as
// well.
if (touchedWindow.targetFlags & InputTarget::FLAG_FOREGROUND &&
touchedWindow.windowHandle->getInfo()->inputConfig.test(
gui::WindowInfo::InputConfig::DUPLICATE_TOUCH_TO_WALLPAPER)) {
sp<WindowInfoHandle> wallpaper = state.getWallpaperWindow();
if (wallpaper != nullptr) {
sp<Connection> wallpaperConnection =
getConnectionLocked(wallpaper->getToken());
if (wallpaperConnection != nullptr) {
synthesizeCancelationEventsForConnectionLocked(wallpaperConnection,
options);
}
}
}
}
state.windows.erase(state.windows.begin() + i);
} else {
++i;
}
}
// If drag window is gone, it would receive a cancel event and broadcast the DRAG_END. We
// could just clear the state here.
if (mDragState &&
std::find(windowHandles.begin(), windowHandles.end(), mDragState->dragWindow) ==
windowHandles.end()) {
mDragState.reset();
}
}
// Determine if the orientation of any of the input windows have changed, and cancel all
// pointer events if necessary.
for (const sp<WindowInfoHandle>& oldWindowHandle : oldWindowHandles) {
const sp<WindowInfoHandle> newWindowHandle = getWindowHandleLocked(oldWindowHandle);
if (newWindowHandle != nullptr &&
newWindowHandle->getInfo()->transform.getOrientation() !=
oldWindowOrientations[oldWindowHandle->getId()]) {
std::shared_ptr<InputChannel> inputChannel =
getInputChannelLocked(newWindowHandle->getToken());
if (inputChannel != nullptr) {
CancelationOptions options(CancelationOptions::CANCEL_POINTER_EVENTS,
"touched window's orientation changed");
synthesizeCancelationEventsForInputChannelLocked(inputChannel, options);
}
}
}
// Release information for windows that are no longer present.
// This ensures that unused input channels are released promptly.
// Otherwise, they might stick around until the window handle is destroyed
// which might not happen until the next GC.
for (const sp<WindowInfoHandle>& oldWindowHandle : oldWindowHandles) {
if (getWindowHandleLocked(oldWindowHandle) == nullptr) {
if (DEBUG_FOCUS) {
ALOGD("Window went away: %s", oldWindowHandle->getName().c_str());
}
oldWindowHandle->releaseChannel();
}
}
}
void InputDispatcher::setFocusedApplication(
int32_t displayId, const std::shared_ptr<InputApplicationHandle>& inputApplicationHandle) {
if (DEBUG_FOCUS) {
ALOGD("setFocusedApplication displayId=%" PRId32 " %s", displayId,
inputApplicationHandle ? inputApplicationHandle->getName().c_str() : "<nullptr>");
}
{ // acquire lock
std::scoped_lock _l(mLock);
setFocusedApplicationLocked(displayId, inputApplicationHandle);
} // release lock
// Wake up poll loop since it may need to make new input dispatching choices.
mLooper->wake();
}
void InputDispatcher::setFocusedApplicationLocked(
int32_t displayId, const std::shared_ptr<InputApplicationHandle>& inputApplicationHandle) {
std::shared_ptr<InputApplicationHandle> oldFocusedApplicationHandle =
getValueByKey(mFocusedApplicationHandlesByDisplay, displayId);
if (sharedPointersEqual(oldFocusedApplicationHandle, inputApplicationHandle)) {
return; // This application is already focused. No need to wake up or change anything.
}
// Set the new application handle.
if (inputApplicationHandle != nullptr) {
mFocusedApplicationHandlesByDisplay[displayId] = inputApplicationHandle;
} else {
mFocusedApplicationHandlesByDisplay.erase(displayId);
}
// No matter what the old focused application was, stop waiting on it because it is
// no longer focused.
resetNoFocusedWindowTimeoutLocked();
}
/**
* Sets the focused display, which is responsible for receiving focus-dispatched input events where
* the display not specified.
*
* We track any unreleased events for each window. If a window loses the ability to receive the
* released event, we will send a cancel event to it. So when the focused display is changed, we
* cancel all the unreleased display-unspecified events for the focused window on the old focused
* display. The display-specified events won't be affected.
*/
void InputDispatcher::setFocusedDisplay(int32_t displayId) {
if (DEBUG_FOCUS) {
ALOGD("setFocusedDisplay displayId=%" PRId32, displayId);
}
{ // acquire lock
std::scoped_lock _l(mLock);
if (mFocusedDisplayId != displayId) {
sp<IBinder> oldFocusedWindowToken =
mFocusResolver.getFocusedWindowToken(mFocusedDisplayId);
if (oldFocusedWindowToken != nullptr) {
std::shared_ptr<InputChannel> inputChannel =
getInputChannelLocked(oldFocusedWindowToken);
if (inputChannel != nullptr) {
CancelationOptions
options(CancelationOptions::CANCEL_NON_POINTER_EVENTS,
"The display which contains this window no longer has focus.");
options.displayId = ADISPLAY_ID_NONE;
synthesizeCancelationEventsForInputChannelLocked(inputChannel, options);
}
}
mFocusedDisplayId = displayId;
// Find new focused window and validate
sp<IBinder> newFocusedWindowToken = mFocusResolver.getFocusedWindowToken(displayId);
sendFocusChangedCommandLocked(oldFocusedWindowToken, newFocusedWindowToken);
if (newFocusedWindowToken == nullptr) {
ALOGW("Focused display #%" PRId32 " does not have a focused window.", displayId);
if (mFocusResolver.hasFocusedWindowTokens()) {
ALOGE("But another display has a focused window\n%s",
mFocusResolver.dumpFocusedWindows().c_str());
}
}
}
if (DEBUG_FOCUS) {
logDispatchStateLocked();
}
} // release lock
// Wake up poll loop since it may need to make new input dispatching choices.
mLooper->wake();
}
void InputDispatcher::setInputDispatchMode(bool enabled, bool frozen) {
if (DEBUG_FOCUS) {
ALOGD("setInputDispatchMode: enabled=%d, frozen=%d", enabled, frozen);
}
bool changed;
{ // acquire lock
std::scoped_lock _l(mLock);
if (mDispatchEnabled != enabled || mDispatchFrozen != frozen) {
if (mDispatchFrozen && !frozen) {
resetNoFocusedWindowTimeoutLocked();
}
if (mDispatchEnabled && !enabled) {
resetAndDropEverythingLocked("dispatcher is being disabled");
}
mDispatchEnabled = enabled;
mDispatchFrozen = frozen;
changed = true;
} else {
changed = false;
}
if (DEBUG_FOCUS) {
logDispatchStateLocked();
}
} // release lock
if (changed) {
// Wake up poll loop since it may need to make new input dispatching choices.
mLooper->wake();
}
}
void InputDispatcher::setInputFilterEnabled(bool enabled) {
if (DEBUG_FOCUS) {
ALOGD("setInputFilterEnabled: enabled=%d", enabled);
}
{ // acquire lock
std::scoped_lock _l(mLock);
if (mInputFilterEnabled == enabled) {
return;
}
mInputFilterEnabled = enabled;
resetAndDropEverythingLocked("input filter is being enabled or disabled");
} // release lock
// Wake up poll loop since there might be work to do to drop everything.
mLooper->wake();
}
bool InputDispatcher::setInTouchMode(bool inTouchMode, int32_t pid, int32_t uid,
bool hasPermission) {
bool needWake = false;
{
std::scoped_lock lock(mLock);
if (mInTouchMode == inTouchMode) {
return false;
}
if (DEBUG_TOUCH_MODE) {
ALOGD("Request to change touch mode from %s to %s (calling pid=%d, uid=%d, "
"hasPermission=%s)",
toString(mInTouchMode), toString(inTouchMode), pid, uid, toString(hasPermission));
}
if (!hasPermission) {
if (!focusedWindowIsOwnedByLocked(pid, uid) &&
!recentWindowsAreOwnedByLocked(pid, uid)) {
ALOGD("Touch mode switch rejected, caller (pid=%d, uid=%d) doesn't own the focused "
"window nor none of the previously interacted window",
pid, uid);
return false;
}
}
// TODO(b/198499018): Store touch mode per display.
mInTouchMode = inTouchMode;
auto entry = std::make_unique<TouchModeEntry>(mIdGenerator.nextId(), now(), inTouchMode);
needWake = enqueueInboundEventLocked(std::move(entry));
} // release lock
if (needWake) {
mLooper->wake();
}
return true;
}
bool InputDispatcher::focusedWindowIsOwnedByLocked(int32_t pid, int32_t uid) {
const sp<IBinder> focusedToken = mFocusResolver.getFocusedWindowToken(mFocusedDisplayId);
if (focusedToken == nullptr) {
return false;
}
sp<WindowInfoHandle> windowHandle = getWindowHandleLocked(focusedToken);
return isWindowOwnedBy(windowHandle, pid, uid);
}
bool InputDispatcher::recentWindowsAreOwnedByLocked(int32_t pid, int32_t uid) {
return std::find_if(mInteractionConnectionTokens.begin(), mInteractionConnectionTokens.end(),
[&](const sp<IBinder>& connectionToken) REQUIRES(mLock) {
const sp<WindowInfoHandle> windowHandle =
getWindowHandleLocked(connectionToken);
return isWindowOwnedBy(windowHandle, pid, uid);
}) != mInteractionConnectionTokens.end();
}
void InputDispatcher::setMaximumObscuringOpacityForTouch(float opacity) {
if (opacity < 0 || opacity > 1) {
LOG_ALWAYS_FATAL("Maximum obscuring opacity for touch should be >= 0 and <= 1");
return;
}
std::scoped_lock lock(mLock);
mMaximumObscuringOpacityForTouch = opacity;
}
void InputDispatcher::setBlockUntrustedTouchesMode(BlockUntrustedTouchesMode mode) {
std::scoped_lock lock(mLock);
mBlockUntrustedTouchesMode = mode;
}
std::pair<TouchState*, TouchedWindow*> InputDispatcher::findTouchStateAndWindowLocked(
const sp<IBinder>& token) {
for (auto& [displayId, state] : mTouchStatesByDisplay) {
for (TouchedWindow& w : state.windows) {
if (w.windowHandle->getToken() == token) {
return std::make_pair(&state, &w);
}
}
}
return std::make_pair(nullptr, nullptr);
}
bool InputDispatcher::transferTouchFocus(const sp<IBinder>& fromToken, const sp<IBinder>& toToken,
bool isDragDrop) {
if (fromToken == toToken) {
if (DEBUG_FOCUS) {
ALOGD("Trivial transfer to same window.");
}
return true;
}
{ // acquire lock
std::scoped_lock _l(mLock);
// Find the target touch state and touched window by fromToken.
auto [state, touchedWindow] = findTouchStateAndWindowLocked(fromToken);
if (state == nullptr || touchedWindow == nullptr) {
ALOGD("Focus transfer failed because from window is not being touched.");
return false;
}
const int32_t displayId = state->displayId;
sp<WindowInfoHandle> toWindowHandle = getWindowHandleLocked(toToken, displayId);
if (toWindowHandle == nullptr) {
ALOGW("Cannot transfer focus because to window not found.");
return false;
}
if (DEBUG_FOCUS) {
ALOGD("transferTouchFocus: fromWindowHandle=%s, toWindowHandle=%s",
touchedWindow->windowHandle->getName().c_str(),
toWindowHandle->getName().c_str());
}
// Erase old window.
int32_t oldTargetFlags = touchedWindow->targetFlags;
BitSet32 pointerIds = touchedWindow->pointerIds;
state->removeWindowByToken(fromToken);
// Add new window.
int32_t newTargetFlags =
oldTargetFlags & (InputTarget::FLAG_SPLIT | InputTarget::FLAG_DISPATCH_AS_IS);
if (canReceiveForegroundTouches(*toWindowHandle->getInfo())) {
newTargetFlags |= InputTarget::FLAG_FOREGROUND;
}
state->addOrUpdateWindow(toWindowHandle, newTargetFlags, pointerIds);
// Store the dragging window.
if (isDragDrop) {
if (pointerIds.count() > 1) {
ALOGW("The drag and drop cannot be started when there is more than 1 pointer on the"
" window.");
return false;
}
// If the window didn't not support split or the source is mouse, the pointerIds count
// would be 0, so we have to track the pointer 0.
const int32_t id = pointerIds.count() == 0 ? 0 : pointerIds.firstMarkedBit();
mDragState = std::make_unique<DragState>(toWindowHandle, id);
}
// Synthesize cancel for old window and down for new window.
sp<Connection> fromConnection = getConnectionLocked(fromToken);
sp<Connection> toConnection = getConnectionLocked(toToken);
if (fromConnection != nullptr && toConnection != nullptr) {
fromConnection->inputState.mergePointerStateTo(toConnection->inputState);
CancelationOptions
options(CancelationOptions::CANCEL_POINTER_EVENTS,
"transferring touch focus from this window to another window");
synthesizeCancelationEventsForConnectionLocked(fromConnection, options);
synthesizePointerDownEventsForConnectionLocked(toConnection);
}
if (DEBUG_FOCUS) {
logDispatchStateLocked();
}
} // release lock
// Wake up poll loop since it may need to make new input dispatching choices.
mLooper->wake();
return true;
}
/**
* Get the touched foreground window on the given display.
* Return null if there are no windows touched on that display, or if more than one foreground
* window is being touched.
*/
sp<WindowInfoHandle> InputDispatcher::findTouchedForegroundWindowLocked(int32_t displayId) const {
auto stateIt = mTouchStatesByDisplay.find(displayId);
if (stateIt == mTouchStatesByDisplay.end()) {
ALOGI("No touch state on display %" PRId32, displayId);
return nullptr;
}
const TouchState& state = stateIt->second;
sp<WindowInfoHandle> touchedForegroundWindow;
// If multiple foreground windows are touched, return nullptr
for (const TouchedWindow& window : state.windows) {
if (window.targetFlags & InputTarget::FLAG_FOREGROUND) {
if (touchedForegroundWindow != nullptr) {
ALOGI("Two or more foreground windows: %s and %s",
touchedForegroundWindow->getName().c_str(),
window.windowHandle->getName().c_str());
return nullptr;
}
touchedForegroundWindow = window.windowHandle;
}
}
return touchedForegroundWindow;
}
// Binder call
bool InputDispatcher::transferTouch(const sp<IBinder>& destChannelToken, int32_t displayId) {
sp<IBinder> fromToken;
{ // acquire lock
std::scoped_lock _l(mLock);
sp<WindowInfoHandle> toWindowHandle = getWindowHandleLocked(destChannelToken, displayId);
if (toWindowHandle == nullptr) {
ALOGW("Could not find window associated with token=%p on display %" PRId32,
destChannelToken.get(), displayId);
return false;
}
sp<WindowInfoHandle> from = findTouchedForegroundWindowLocked(displayId);
if (from == nullptr) {
ALOGE("Could not find a source window in %s for %p", __func__, destChannelToken.get());
return false;
}
fromToken = from->getToken();
} // release lock
return transferTouchFocus(fromToken, destChannelToken);
}
void InputDispatcher::resetAndDropEverythingLocked(const char* reason) {
if (DEBUG_FOCUS) {
ALOGD("Resetting and dropping all events (%s).", reason);
}
CancelationOptions options(CancelationOptions::CANCEL_ALL_EVENTS, reason);
synthesizeCancelationEventsForAllConnectionsLocked(options);
resetKeyRepeatLocked();
releasePendingEventLocked();
drainInboundQueueLocked();
resetNoFocusedWindowTimeoutLocked();
mAnrTracker.clear();
mTouchStatesByDisplay.clear();
mLastHoverWindowHandle.clear();
mReplacedKeys.clear();
}
void InputDispatcher::logDispatchStateLocked() {
std::string dump;
dumpDispatchStateLocked(dump);
std::istringstream stream(dump);
std::string line;
while (std::getline(stream, line, '\n')) {
ALOGD("%s", line.c_str());
}
}
std::string InputDispatcher::dumpPointerCaptureStateLocked() {
std::string dump;
dump += StringPrintf(INDENT "Pointer Capture Requested: %s\n",
toString(mCurrentPointerCaptureRequest.enable));
std::string windowName = "None";
if (mWindowTokenWithPointerCapture) {
const sp<WindowInfoHandle> captureWindowHandle =
getWindowHandleLocked(mWindowTokenWithPointerCapture);
windowName = captureWindowHandle ? captureWindowHandle->getName().c_str()
: "token has capture without window";
}
dump += StringPrintf(INDENT "Current Window with Pointer Capture: %s\n", windowName.c_str());
return dump;
}
void InputDispatcher::dumpDispatchStateLocked(std::string& dump) {
dump += StringPrintf(INDENT "DispatchEnabled: %s\n", toString(mDispatchEnabled));
dump += StringPrintf(INDENT "DispatchFrozen: %s\n", toString(mDispatchFrozen));
dump += StringPrintf(INDENT "InputFilterEnabled: %s\n", toString(mInputFilterEnabled));
dump += StringPrintf(INDENT "FocusedDisplayId: %" PRId32 "\n", mFocusedDisplayId);
if (!mFocusedApplicationHandlesByDisplay.empty()) {
dump += StringPrintf(INDENT "FocusedApplications:\n");
for (auto& it : mFocusedApplicationHandlesByDisplay) {
const int32_t displayId = it.first;
const std::shared_ptr<InputApplicationHandle>& applicationHandle = it.second;
const std::chrono::duration timeout =
applicationHandle->getDispatchingTimeout(DEFAULT_INPUT_DISPATCHING_TIMEOUT);
dump += StringPrintf(INDENT2 "displayId=%" PRId32
", name='%s', dispatchingTimeout=%" PRId64 "ms\n",
displayId, applicationHandle->getName().c_str(), millis(timeout));
}
} else {
dump += StringPrintf(INDENT "FocusedApplications: <none>\n");
}
dump += mFocusResolver.dump();
dump += dumpPointerCaptureStateLocked();
if (!mTouchStatesByDisplay.empty()) {
dump += StringPrintf(INDENT "TouchStatesByDisplay:\n");
for (const std::pair<int32_t, TouchState>& pair : mTouchStatesByDisplay) {
const TouchState& state = pair.second;
dump += StringPrintf(INDENT2 "%d: down=%s, split=%s, deviceId=%d, source=0x%08x\n",
state.displayId, toString(state.down), toString(state.split),
state.deviceId, state.source);
if (!state.windows.empty()) {
dump += INDENT3 "Windows:\n";
for (size_t i = 0; i < state.windows.size(); i++) {
const TouchedWindow& touchedWindow = state.windows[i];
dump += StringPrintf(INDENT4
"%zu: name='%s', pointerIds=0x%0x, targetFlags=0x%x\n",
i, touchedWindow.windowHandle->getName().c_str(),
touchedWindow.pointerIds.value, touchedWindow.targetFlags);
}
} else {
dump += INDENT3 "Windows: <none>\n";
}
}
} else {
dump += INDENT "TouchStates: <no displays touched>\n";
}
if (mDragState) {
dump += StringPrintf(INDENT "DragState:\n");
mDragState->dump(dump, INDENT2);
}
if (!mWindowHandlesByDisplay.empty()) {
for (const auto& [displayId, windowHandles] : mWindowHandlesByDisplay) {
dump += StringPrintf(INDENT "Display: %" PRId32 "\n", displayId);
if (const auto& it = mDisplayInfos.find(displayId); it != mDisplayInfos.end()) {
const auto& displayInfo = it->second;
dump += StringPrintf(INDENT2 "logicalSize=%dx%d\n", displayInfo.logicalWidth,
displayInfo.logicalHeight);
displayInfo.transform.dump(dump, "transform", INDENT4);
} else {
dump += INDENT2 "No DisplayInfo found!\n";
}
if (!windowHandles.empty()) {
dump += INDENT2 "Windows:\n";
for (size_t i = 0; i < windowHandles.size(); i++) {
const sp<WindowInfoHandle>& windowHandle = windowHandles[i];
const WindowInfo* windowInfo = windowHandle->getInfo();
dump += StringPrintf(INDENT3 "%zu: name='%s', id=%" PRId32 ", displayId=%d, "
"inputConfig=%s, alpha=%.2f, "
"frame=[%d,%d][%d,%d], globalScale=%f, "
"applicationInfo.name=%s, "
"applicationInfo.token=%s, "
"touchableRegion=",
i, windowInfo->name.c_str(), windowInfo->id,
windowInfo->displayId,
windowInfo->inputConfig.string().c_str(),
windowInfo->alpha, windowInfo->frameLeft,
windowInfo->frameTop, windowInfo->frameRight,
windowInfo->frameBottom, windowInfo->globalScaleFactor,
windowInfo->applicationInfo.name.c_str(),
toString(windowInfo->applicationInfo.token).c_str());
dump += dumpRegion(windowInfo->touchableRegion);
dump += StringPrintf(", ownerPid=%d, ownerUid=%d, dispatchingTimeout=%" PRId64
"ms, hasToken=%s, "
"touchOcclusionMode=%s\n",
windowInfo->ownerPid, windowInfo->ownerUid,
millis(windowInfo->dispatchingTimeout),
toString(windowInfo->token != nullptr),
toString(windowInfo->touchOcclusionMode).c_str());
windowInfo->transform.dump(dump, "transform", INDENT4);
}
} else {
dump += INDENT2 "Windows: <none>\n";
}
}
} else {
dump += INDENT "Displays: <none>\n";
}
if (!mGlobalMonitorsByDisplay.empty()) {
for (const auto& [displayId, monitors] : mGlobalMonitorsByDisplay) {
dump += StringPrintf(INDENT "Global monitors on display %d:\n", displayId);
dumpMonitors(dump, monitors);
}
} else {
dump += INDENT "Global Monitors: <none>\n";
}
const nsecs_t currentTime = now();
// Dump recently dispatched or dropped events from oldest to newest.
if (!mRecentQueue.empty()) {
dump += StringPrintf(INDENT "RecentQueue: length=%zu\n", mRecentQueue.size());
for (std::shared_ptr<EventEntry>& entry : mRecentQueue) {
dump += INDENT2;
dump += entry->getDescription();
dump += StringPrintf(", age=%" PRId64 "ms\n", ns2ms(currentTime - entry->eventTime));
}
} else {
dump += INDENT "RecentQueue: <empty>\n";
}
// Dump event currently being dispatched.
if (mPendingEvent) {
dump += INDENT "PendingEvent:\n";
dump += INDENT2;
dump += mPendingEvent->getDescription();
dump += StringPrintf(", age=%" PRId64 "ms\n",
ns2ms(currentTime - mPendingEvent->eventTime));
} else {
dump += INDENT "PendingEvent: <none>\n";
}
// Dump inbound events from oldest to newest.
if (!mInboundQueue.empty()) {
dump += StringPrintf(INDENT "InboundQueue: length=%zu\n", mInboundQueue.size());
for (std::shared_ptr<EventEntry>& entry : mInboundQueue) {
dump += INDENT2;
dump += entry->getDescription();
dump += StringPrintf(", age=%" PRId64 "ms\n", ns2ms(currentTime - entry->eventTime));
}
} else {
dump += INDENT "InboundQueue: <empty>\n";
}
if (!mReplacedKeys.empty()) {
dump += INDENT "ReplacedKeys:\n";
for (const std::pair<KeyReplacement, int32_t>& pair : mReplacedKeys) {
const KeyReplacement& replacement = pair.first;
int32_t newKeyCode = pair.second;
dump += StringPrintf(INDENT2 "originalKeyCode=%d, deviceId=%d -> newKeyCode=%d\n",
replacement.keyCode, replacement.deviceId, newKeyCode);
}
} else {
dump += INDENT "ReplacedKeys: <empty>\n";
}
if (!mCommandQueue.empty()) {
dump += StringPrintf(INDENT "CommandQueue: size=%zu\n", mCommandQueue.size());
} else {
dump += INDENT "CommandQueue: <empty>\n";
}
if (!mConnectionsByToken.empty()) {
dump += INDENT "Connections:\n";
for (const auto& [token, connection] : mConnectionsByToken) {
dump += StringPrintf(INDENT2 "%i: channelName='%s', windowName='%s', "
"status=%s, monitor=%s, responsive=%s\n",
connection->inputChannel->getFd().get(),
connection->getInputChannelName().c_str(),
connection->getWindowName().c_str(),
ftl::enum_string(connection->status).c_str(),
toString(connection->monitor), toString(connection->responsive));
if (!connection->outboundQueue.empty()) {
dump += StringPrintf(INDENT3 "OutboundQueue: length=%zu\n",
connection->outboundQueue.size());
dump += dumpQueue(connection->outboundQueue, currentTime);
} else {
dump += INDENT3 "OutboundQueue: <empty>\n";
}
if (!connection->waitQueue.empty()) {
dump += StringPrintf(INDENT3 "WaitQueue: length=%zu\n",
connection->waitQueue.size());
dump += dumpQueue(connection->waitQueue, currentTime);
} else {
dump += INDENT3 "WaitQueue: <empty>\n";
}
}
} else {
dump += INDENT "Connections: <none>\n";
}
if (isAppSwitchPendingLocked()) {
dump += StringPrintf(INDENT "AppSwitch: pending, due in %" PRId64 "ms\n",
ns2ms(mAppSwitchDueTime - now()));
} else {
dump += INDENT "AppSwitch: not pending\n";
}
dump += INDENT "Configuration:\n";
dump += StringPrintf(INDENT2 "KeyRepeatDelay: %" PRId64 "ms\n", ns2ms(mConfig.keyRepeatDelay));
dump += StringPrintf(INDENT2 "KeyRepeatTimeout: %" PRId64 "ms\n",
ns2ms(mConfig.keyRepeatTimeout));
dump += mLatencyTracker.dump(INDENT2);
dump += mLatencyAggregator.dump(INDENT2);
}
void InputDispatcher::dumpMonitors(std::string& dump, const std::vector<Monitor>& monitors) {
const size_t numMonitors = monitors.size();
for (size_t i = 0; i < numMonitors; i++) {
const Monitor& monitor = monitors[i];
const std::shared_ptr<InputChannel>& channel = monitor.inputChannel;
dump += StringPrintf(INDENT2 "%zu: '%s', ", i, channel->getName().c_str());
dump += "\n";
}
}
class LooperEventCallback : public LooperCallback {
public:
LooperEventCallback(std::function<int(int events)> callback) : mCallback(callback) {}
int handleEvent(int /*fd*/, int events, void* /*data*/) override { return mCallback(events); }
private:
std::function<int(int events)> mCallback;
};
Result<std::unique_ptr<InputChannel>> InputDispatcher::createInputChannel(const std::string& name) {
if (DEBUG_CHANNEL_CREATION) {
ALOGD("channel '%s' ~ createInputChannel", name.c_str());
}
std::unique_ptr<InputChannel> serverChannel;
std::unique_ptr<InputChannel> clientChannel;
status_t result = InputChannel::openInputChannelPair(name, serverChannel, clientChannel);
if (result) {
return base::Error(result) << "Failed to open input channel pair with name " << name;
}
{ // acquire lock
std::scoped_lock _l(mLock);
const sp<IBinder>& token = serverChannel->getConnectionToken();
int fd = serverChannel->getFd();
sp<Connection> connection =
new Connection(std::move(serverChannel), false /*monitor*/, mIdGenerator);
if (mConnectionsByToken.find(token) != mConnectionsByToken.end()) {
ALOGE("Created a new connection, but the token %p is already known", token.get());
}
mConnectionsByToken.emplace(token, connection);
std::function<int(int events)> callback = std::bind(&InputDispatcher::handleReceiveCallback,
this, std::placeholders::_1, token);
mLooper->addFd(fd, 0, ALOOPER_EVENT_INPUT, new LooperEventCallback(callback), nullptr);
} // release lock
// Wake the looper because some connections have changed.
mLooper->wake();
return clientChannel;
}
Result<std::unique_ptr<InputChannel>> InputDispatcher::createInputMonitor(int32_t displayId,
const std::string& name,
int32_t pid) {
std::shared_ptr<InputChannel> serverChannel;
std::unique_ptr<InputChannel> clientChannel;
status_t result = openInputChannelPair(name, serverChannel, clientChannel);
if (result) {
return base::Error(result) << "Failed to open input channel pair with name " << name;
}
{ // acquire lock
std::scoped_lock _l(mLock);
if (displayId < 0) {
return base::Error(BAD_VALUE) << "Attempted to create input monitor with name " << name
<< " without a specified display.";
}
sp<Connection> connection = new Connection(serverChannel, true /*monitor*/, mIdGenerator);
const sp<IBinder>& token = serverChannel->getConnectionToken();
const int fd = serverChannel->getFd();
if (mConnectionsByToken.find(token) != mConnectionsByToken.end()) {
ALOGE("Created a new connection, but the token %p is already known", token.get());
}
mConnectionsByToken.emplace(token, connection);
std::function<int(int events)> callback = std::bind(&InputDispatcher::handleReceiveCallback,
this, std::placeholders::_1, token);
mGlobalMonitorsByDisplay[displayId].emplace_back(serverChannel, pid);
mLooper->addFd(fd, 0, ALOOPER_EVENT_INPUT, new LooperEventCallback(callback), nullptr);
}
// Wake the looper because some connections have changed.
mLooper->wake();
return clientChannel;
}
status_t InputDispatcher::removeInputChannel(const sp<IBinder>& connectionToken) {
{ // acquire lock
std::scoped_lock _l(mLock);
status_t status = removeInputChannelLocked(connectionToken, false /*notify*/);
if (status) {
return status;
}
} // release lock
// Wake the poll loop because removing the connection may have changed the current
// synchronization state.
mLooper->wake();
return OK;
}
status_t InputDispatcher::removeInputChannelLocked(const sp<IBinder>& connectionToken,
bool notify) {
sp<Connection> connection = getConnectionLocked(connectionToken);
if (connection == nullptr) {
// Connection can be removed via socket hang up or an explicit call to 'removeInputChannel'
return BAD_VALUE;
}
removeConnectionLocked(connection);
if (connection->monitor) {
removeMonitorChannelLocked(connectionToken);
}
mLooper->removeFd(connection->inputChannel->getFd());
nsecs_t currentTime = now();
abortBrokenDispatchCycleLocked(currentTime, connection, notify);
connection->status = Connection::Status::ZOMBIE;
return OK;
}
void InputDispatcher::removeMonitorChannelLocked(const sp<IBinder>& connectionToken) {
for (auto it = mGlobalMonitorsByDisplay.begin(); it != mGlobalMonitorsByDisplay.end();) {
auto& [displayId, monitors] = *it;
std::erase_if(monitors, [connectionToken](const Monitor& monitor) {
return monitor.inputChannel->getConnectionToken() == connectionToken;
});
if (monitors.empty()) {
it = mGlobalMonitorsByDisplay.erase(it);
} else {
++it;
}
}
}
status_t InputDispatcher::pilferPointers(const sp<IBinder>& token) {
std::scoped_lock _l(mLock);
const std::shared_ptr<InputChannel> requestingChannel = getInputChannelLocked(token);
if (!requestingChannel) {
ALOGW("Attempted to pilfer pointers from an un-registered channel or invalid token");
return BAD_VALUE;
}
auto [statePtr, windowPtr] = findTouchStateAndWindowLocked(token);
if (statePtr == nullptr || windowPtr == nullptr || !statePtr->down) {
ALOGW("Attempted to pilfer points from a channel without any on-going pointer streams."
" Ignoring.");
return BAD_VALUE;
}
TouchState& state = *statePtr;
// Send cancel events to all the input channels we're stealing from.
CancelationOptions options(CancelationOptions::CANCEL_POINTER_EVENTS,
"input channel stole pointer stream");
options.deviceId = state.deviceId;
options.displayId = state.displayId;
std::string canceledWindows;
for (const TouchedWindow& window : state.windows) {
const std::shared_ptr<InputChannel> channel =
getInputChannelLocked(window.windowHandle->getToken());
if (channel != nullptr && channel->getConnectionToken() != token) {
synthesizeCancelationEventsForInputChannelLocked(channel, options);
canceledWindows += canceledWindows.empty() ? "[" : ", ";
canceledWindows += channel->getName();
}
}
canceledWindows += canceledWindows.empty() ? "[]" : "]";
ALOGI("Channel %s is stealing touch from %s", requestingChannel->getName().c_str(),
canceledWindows.c_str());
// Prevent the gesture from being sent to any other windows.
state.filterWindowsExcept(token);
state.preventNewTargets = true;
return OK;
}
void InputDispatcher::requestPointerCapture(const sp<IBinder>& windowToken, bool enabled) {
{ // acquire lock
std::scoped_lock _l(mLock);
if (DEBUG_FOCUS) {
const sp<WindowInfoHandle> windowHandle = getWindowHandleLocked(windowToken);
ALOGI("Request to %s Pointer Capture from: %s.", enabled ? "enable" : "disable",
windowHandle != nullptr ? windowHandle->getName().c_str()
: "token without window");
}
const sp<IBinder> focusedToken = mFocusResolver.getFocusedWindowToken(mFocusedDisplayId);
if (focusedToken != windowToken) {
ALOGW("Ignoring request to %s Pointer Capture: window does not have focus.",
enabled ? "enable" : "disable");
return;
}
if (enabled == mCurrentPointerCaptureRequest.enable) {
ALOGW("Ignoring request to %s Pointer Capture: "
"window has %s requested pointer capture.",
enabled ? "enable" : "disable", enabled ? "already" : "not");
return;
}
if (enabled) {
if (std::find(mIneligibleDisplaysForPointerCapture.begin(),
mIneligibleDisplaysForPointerCapture.end(),
mFocusedDisplayId) != mIneligibleDisplaysForPointerCapture.end()) {
ALOGW("Ignoring request to enable Pointer Capture: display is not eligible");
return;
}
}
setPointerCaptureLocked(enabled);
} // release lock
// Wake the thread to process command entries.
mLooper->wake();
}
void InputDispatcher::setDisplayEligibilityForPointerCapture(int32_t displayId, bool isEligible) {
{ // acquire lock
std::scoped_lock _l(mLock);
std::erase(mIneligibleDisplaysForPointerCapture, displayId);
if (!isEligible) {
mIneligibleDisplaysForPointerCapture.push_back(displayId);
}
} // release lock
}
std::optional<int32_t> InputDispatcher::findMonitorPidByTokenLocked(const sp<IBinder>& token) {
for (const auto& [_, monitors] : mGlobalMonitorsByDisplay) {
for (const Monitor& monitor : monitors) {
if (monitor.inputChannel->getConnectionToken() == token) {
return monitor.pid;
}
}
}
return std::nullopt;
}
sp<Connection> InputDispatcher::getConnectionLocked(const sp<IBinder>& inputConnectionToken) const {
if (inputConnectionToken == nullptr) {
return nullptr;
}
for (const auto& [token, connection] : mConnectionsByToken) {
if (token == inputConnectionToken) {
return connection;
}
}
return nullptr;
}
std::string InputDispatcher::getConnectionNameLocked(const sp<IBinder>& connectionToken) const {
sp<Connection> connection = getConnectionLocked(connectionToken);
if (connection == nullptr) {
return "<nullptr>";
}
return connection->getInputChannelName();
}
void InputDispatcher::removeConnectionLocked(const sp<Connection>& connection) {
mAnrTracker.eraseToken(connection->inputChannel->getConnectionToken());
mConnectionsByToken.erase(connection->inputChannel->getConnectionToken());
}
void InputDispatcher::doDispatchCycleFinishedCommand(nsecs_t finishTime,
const sp<Connection>& connection, uint32_t seq,
bool handled, nsecs_t consumeTime) {
// Handle post-event policy actions.
std::deque<DispatchEntry*>::iterator dispatchEntryIt = connection->findWaitQueueEntry(seq);
if (dispatchEntryIt == connection->waitQueue.end()) {
return;
}
DispatchEntry* dispatchEntry = *dispatchEntryIt;
const nsecs_t eventDuration = finishTime - dispatchEntry->deliveryTime;
if (eventDuration > SLOW_EVENT_PROCESSING_WARNING_TIMEOUT) {
ALOGI("%s spent %" PRId64 "ms processing %s", connection->getWindowName().c_str(),
ns2ms(eventDuration), dispatchEntry->eventEntry->getDescription().c_str());
}
if (shouldReportFinishedEvent(*dispatchEntry, *connection)) {
mLatencyTracker.trackFinishedEvent(dispatchEntry->eventEntry->id,
connection->inputChannel->getConnectionToken(),
dispatchEntry->deliveryTime, consumeTime, finishTime);
}
bool restartEvent;
if (dispatchEntry->eventEntry->type == EventEntry::Type::KEY) {
KeyEntry& keyEntry = static_cast<KeyEntry&>(*(dispatchEntry->eventEntry));
restartEvent =
afterKeyEventLockedInterruptable(connection, dispatchEntry, keyEntry, handled);
} else if (dispatchEntry->eventEntry->type == EventEntry::Type::MOTION) {
MotionEntry& motionEntry = static_cast<MotionEntry&>(*(dispatchEntry->eventEntry));
restartEvent = afterMotionEventLockedInterruptable(connection, dispatchEntry, motionEntry,
handled);
} else {
restartEvent = false;
}
// Dequeue the event and start the next cycle.
// Because the lock might have been released, it is possible that the
// contents of the wait queue to have been drained, so we need to double-check
// a few things.
dispatchEntryIt = connection->findWaitQueueEntry(seq);
if (dispatchEntryIt != connection->waitQueue.end()) {
dispatchEntry = *dispatchEntryIt;
connection->waitQueue.erase(dispatchEntryIt);
const sp<IBinder>& connectionToken = connection->inputChannel->getConnectionToken();
mAnrTracker.erase(dispatchEntry->timeoutTime, connectionToken);
if (!connection->responsive) {
connection->responsive = isConnectionResponsive(*connection);
if (connection->responsive) {
// The connection was unresponsive, and now it's responsive.
processConnectionResponsiveLocked(*connection);
}
}
traceWaitQueueLength(*connection);
if (restartEvent && connection->status == Connection::Status::NORMAL) {
connection->outboundQueue.push_front(dispatchEntry);
traceOutboundQueueLength(*connection);
} else {
releaseDispatchEntry(dispatchEntry);
}
}
// Start the next dispatch cycle for this connection.
startDispatchCycleLocked(now(), connection);
}
void InputDispatcher::sendFocusChangedCommandLocked(const sp<IBinder>& oldToken,
const sp<IBinder>& newToken) {
auto command = [this, oldToken, newToken]() REQUIRES(mLock) {
scoped_unlock unlock(mLock);
mPolicy->notifyFocusChanged(oldToken, newToken);
};
postCommandLocked(std::move(command));
}
void InputDispatcher::sendDropWindowCommandLocked(const sp<IBinder>& token, float x, float y) {
auto command = [this, token, x, y]() REQUIRES(mLock) {
scoped_unlock unlock(mLock);
mPolicy->notifyDropWindow(token, x, y);
};
postCommandLocked(std::move(command));
}
void InputDispatcher::sendUntrustedTouchCommandLocked(const std::string& obscuringPackage) {
auto command = [this, obscuringPackage]() REQUIRES(mLock) {
scoped_unlock unlock(mLock);
mPolicy->notifyUntrustedTouch(obscuringPackage);
};
postCommandLocked(std::move(command));
}
void InputDispatcher::onAnrLocked(const sp<Connection>& connection) {
if (connection == nullptr) {
LOG_ALWAYS_FATAL("Caller must check for nullness");
}
// Since we are allowing the policy to extend the timeout, maybe the waitQueue
// is already healthy again. Don't raise ANR in this situation
if (connection->waitQueue.empty()) {
ALOGI("Not raising ANR because the connection %s has recovered",
connection->inputChannel->getName().c_str());
return;
}
/**
* The "oldestEntry" is the entry that was first sent to the application. That entry, however,
* may not be the one that caused the timeout to occur. One possibility is that window timeout
* has changed. This could cause newer entries to time out before the already dispatched
* entries. In that situation, the newest entries caused ANR. But in all likelihood, the app
* processes the events linearly. So providing information about the oldest entry seems to be
* most useful.
*/
DispatchEntry* oldestEntry = *connection->waitQueue.begin();
const nsecs_t currentWait = now() - oldestEntry->deliveryTime;
std::string reason =
android::base::StringPrintf("%s is not responding. Waited %" PRId64 "ms for %s",
connection->inputChannel->getName().c_str(),
ns2ms(currentWait),
oldestEntry->eventEntry->getDescription().c_str());
sp<IBinder> connectionToken = connection->inputChannel->getConnectionToken();
updateLastAnrStateLocked(getWindowHandleLocked(connectionToken), reason);
processConnectionUnresponsiveLocked(*connection, std::move(reason));
// Stop waking up for events on this connection, it is already unresponsive
cancelEventsForAnrLocked(connection);
}
void InputDispatcher::onAnrLocked(std::shared_ptr<InputApplicationHandle> application) {
std::string reason =
StringPrintf("%s does not have a focused window", application->getName().c_str());
updateLastAnrStateLocked(*application, reason);
auto command = [this, application = std::move(application)]() REQUIRES(mLock) {
scoped_unlock unlock(mLock);
mPolicy->notifyNoFocusedWindowAnr(application);
};
postCommandLocked(std::move(command));
}
void InputDispatcher::updateLastAnrStateLocked(const sp<WindowInfoHandle>& window,
const std::string& reason) {
const std::string windowLabel = getApplicationWindowLabel(nullptr, window);
updateLastAnrStateLocked(windowLabel, reason);
}
void InputDispatcher::updateLastAnrStateLocked(const InputApplicationHandle& application,
const std::string& reason) {
const std::string windowLabel = getApplicationWindowLabel(&application, nullptr);
updateLastAnrStateLocked(windowLabel, reason);
}
void InputDispatcher::updateLastAnrStateLocked(const std::string& windowLabel,
const std::string& reason) {
// Capture a record of the InputDispatcher state at the time of the ANR.
time_t t = time(nullptr);
struct tm tm;
localtime_r(&t, &tm);
char timestr[64];
strftime(timestr, sizeof(timestr), "%F %T", &tm);
mLastAnrState.clear();
mLastAnrState += INDENT "ANR:\n";
mLastAnrState += StringPrintf(INDENT2 "Time: %s\n", timestr);
mLastAnrState += StringPrintf(INDENT2 "Reason: %s\n", reason.c_str());
mLastAnrState += StringPrintf(INDENT2 "Window: %s\n", windowLabel.c_str());
dumpDispatchStateLocked(mLastAnrState);
}
void InputDispatcher::doInterceptKeyBeforeDispatchingCommand(const sp<IBinder>& focusedWindowToken,
KeyEntry& entry) {
const KeyEvent event = createKeyEvent(entry);
nsecs_t delay = 0;
{ // release lock
scoped_unlock unlock(mLock);
android::base::Timer t;
delay = mPolicy->interceptKeyBeforeDispatching(focusedWindowToken, &event,
entry.policyFlags);
if (t.duration() > SLOW_INTERCEPTION_THRESHOLD) {
ALOGW("Excessive delay in interceptKeyBeforeDispatching; took %s ms",
std::to_string(t.duration().count()).c_str());
}
} // acquire lock
if (delay < 0) {
entry.interceptKeyResult = KeyEntry::INTERCEPT_KEY_RESULT_SKIP;
} else if (delay == 0) {
entry.interceptKeyResult = KeyEntry::INTERCEPT_KEY_RESULT_CONTINUE;
} else {
entry.interceptKeyResult = KeyEntry::INTERCEPT_KEY_RESULT_TRY_AGAIN_LATER;
entry.interceptKeyWakeupTime = now() + delay;
}
}
void InputDispatcher::sendWindowUnresponsiveCommandLocked(const sp<IBinder>& token,
std::optional<int32_t> pid,
std::string reason) {
auto command = [this, token, pid, reason = std::move(reason)]() REQUIRES(mLock) {
scoped_unlock unlock(mLock);
mPolicy->notifyWindowUnresponsive(token, pid, reason);
};
postCommandLocked(std::move(command));
}
void InputDispatcher::sendWindowResponsiveCommandLocked(const sp<IBinder>& token,
std::optional<int32_t> pid) {
auto command = [this, token, pid]() REQUIRES(mLock) {
scoped_unlock unlock(mLock);
mPolicy->notifyWindowResponsive(token, pid);
};
postCommandLocked(std::move(command));
}
/**
* Tell the policy that a connection has become unresponsive so that it can start ANR.
* Check whether the connection of interest is a monitor or a window, and add the corresponding
* command entry to the command queue.
*/
void InputDispatcher::processConnectionUnresponsiveLocked(const Connection& connection,
std::string reason) {
const sp<IBinder>& connectionToken = connection.inputChannel->getConnectionToken();
std::optional<int32_t> pid;
if (connection.monitor) {
ALOGW("Monitor %s is unresponsive: %s", connection.inputChannel->getName().c_str(),
reason.c_str());
pid = findMonitorPidByTokenLocked(connectionToken);
} else {
// The connection is a window
ALOGW("Window %s is unresponsive: %s", connection.inputChannel->getName().c_str(),
reason.c_str());
const sp<WindowInfoHandle> handle = getWindowHandleLocked(connectionToken);
if (handle != nullptr) {
pid = handle->getInfo()->ownerPid;
}
}
sendWindowUnresponsiveCommandLocked(connectionToken, pid, std::move(reason));
}
/**
* Tell the policy that a connection has become responsive so that it can stop ANR.
*/
void InputDispatcher::processConnectionResponsiveLocked(const Connection& connection) {
const sp<IBinder>& connectionToken = connection.inputChannel->getConnectionToken();
std::optional<int32_t> pid;
if (connection.monitor) {
pid = findMonitorPidByTokenLocked(connectionToken);
} else {
// The connection is a window
const sp<WindowInfoHandle> handle = getWindowHandleLocked(connectionToken);
if (handle != nullptr) {
pid = handle->getInfo()->ownerPid;
}
}
sendWindowResponsiveCommandLocked(connectionToken, pid);
}
bool InputDispatcher::afterKeyEventLockedInterruptable(const sp<Connection>& connection,
DispatchEntry* dispatchEntry,
KeyEntry& keyEntry, bool handled) {
if (keyEntry.flags & AKEY_EVENT_FLAG_FALLBACK) {
if (!handled) {
// Report the key as unhandled, since the fallback was not handled.
mReporter->reportUnhandledKey(keyEntry.id);
}
return false;
}
// Get the fallback key state.
// Clear it out after dispatching the UP.
int32_t originalKeyCode = keyEntry.keyCode;
int32_t fallbackKeyCode = connection->inputState.getFallbackKey(originalKeyCode);
if (keyEntry.action == AKEY_EVENT_ACTION_UP) {
connection->inputState.removeFallbackKey(originalKeyCode);
}
if (handled || !dispatchEntry->hasForegroundTarget()) {
// If the application handles the original key for which we previously
// generated a fallback or if the window is not a foreground window,
// then cancel the associated fallback key, if any.
if (fallbackKeyCode != -1) {
// Dispatch the unhandled key to the policy with the cancel flag.
if (DEBUG_OUTBOUND_EVENT_DETAILS) {
ALOGD("Unhandled key event: Asking policy to cancel fallback action. "
"keyCode=%d, action=%d, repeatCount=%d, policyFlags=0x%08x",
keyEntry.keyCode, keyEntry.action, keyEntry.repeatCount,
keyEntry.policyFlags);
}
KeyEvent event = createKeyEvent(keyEntry);
event.setFlags(event.getFlags() | AKEY_EVENT_FLAG_CANCELED);
mLock.unlock();
mPolicy->dispatchUnhandledKey(connection->inputChannel->getConnectionToken(), &event,
keyEntry.policyFlags, &event);
mLock.lock();
// Cancel the fallback key.
if (fallbackKeyCode != AKEYCODE_UNKNOWN) {
CancelationOptions options(CancelationOptions::CANCEL_FALLBACK_EVENTS,
"application handled the original non-fallback key "
"or is no longer a foreground target, "
"canceling previously dispatched fallback key");
options.keyCode = fallbackKeyCode;
synthesizeCancelationEventsForConnectionLocked(connection, options);
}
connection->inputState.removeFallbackKey(originalKeyCode);
}
} else {
// If the application did not handle a non-fallback key, first check
// that we are in a good state to perform unhandled key event processing
// Then ask the policy what to do with it.
bool initialDown = keyEntry.action == AKEY_EVENT_ACTION_DOWN && keyEntry.repeatCount == 0;
if (fallbackKeyCode == -1 && !initialDown) {
if (DEBUG_OUTBOUND_EVENT_DETAILS) {
ALOGD("Unhandled key event: Skipping unhandled key event processing "
"since this is not an initial down. "
"keyCode=%d, action=%d, repeatCount=%d, policyFlags=0x%08x",
originalKeyCode, keyEntry.action, keyEntry.repeatCount, keyEntry.policyFlags);
}
return false;
}
// Dispatch the unhandled key to the policy.
if (DEBUG_OUTBOUND_EVENT_DETAILS) {
ALOGD("Unhandled key event: Asking policy to perform fallback action. "
"keyCode=%d, action=%d, repeatCount=%d, policyFlags=0x%08x",
keyEntry.keyCode, keyEntry.action, keyEntry.repeatCount, keyEntry.policyFlags);
}
KeyEvent event = createKeyEvent(keyEntry);
mLock.unlock();
bool fallback =
mPolicy->dispatchUnhandledKey(connection->inputChannel->getConnectionToken(),
&event, keyEntry.policyFlags, &event);
mLock.lock();
if (connection->status != Connection::Status::NORMAL) {
connection->inputState.removeFallbackKey(originalKeyCode);
return false;
}
// Latch the fallback keycode for this key on an initial down.
// The fallback keycode cannot change at any other point in the lifecycle.
if (initialDown) {
if (fallback) {
fallbackKeyCode = event.getKeyCode();
} else {
fallbackKeyCode = AKEYCODE_UNKNOWN;
}
connection->inputState.setFallbackKey(originalKeyCode, fallbackKeyCode);
}
ALOG_ASSERT(fallbackKeyCode != -1);
// Cancel the fallback key if the policy decides not to send it anymore.
// We will continue to dispatch the key to the policy but we will no
// longer dispatch a fallback key to the application.
if (fallbackKeyCode != AKEYCODE_UNKNOWN &&
(!fallback || fallbackKeyCode != event.getKeyCode())) {
if (DEBUG_OUTBOUND_EVENT_DETAILS) {
if (fallback) {
ALOGD("Unhandled key event: Policy requested to send key %d"
"as a fallback for %d, but on the DOWN it had requested "
"to send %d instead. Fallback canceled.",
event.getKeyCode(), originalKeyCode, fallbackKeyCode);
} else {
ALOGD("Unhandled key event: Policy did not request fallback for %d, "
"but on the DOWN it had requested to send %d. "
"Fallback canceled.",
originalKeyCode, fallbackKeyCode);
}
}
CancelationOptions options(CancelationOptions::CANCEL_FALLBACK_EVENTS,
"canceling fallback, policy no longer desires it");
options.keyCode = fallbackKeyCode;
synthesizeCancelationEventsForConnectionLocked(connection, options);
fallback = false;
fallbackKeyCode = AKEYCODE_UNKNOWN;
if (keyEntry.action != AKEY_EVENT_ACTION_UP) {
connection->inputState.setFallbackKey(originalKeyCode, fallbackKeyCode);
}
}
if (DEBUG_OUTBOUND_EVENT_DETAILS) {
{
std::string msg;
const KeyedVector<int32_t, int32_t>& fallbackKeys =
connection->inputState.getFallbackKeys();
for (size_t i = 0; i < fallbackKeys.size(); i++) {
msg += StringPrintf(", %d->%d", fallbackKeys.keyAt(i), fallbackKeys.valueAt(i));
}
ALOGD("Unhandled key event: %zu currently tracked fallback keys%s.",
fallbackKeys.size(), msg.c_str());
}
}
if (fallback) {
// Restart the dispatch cycle using the fallback key.
keyEntry.eventTime = event.getEventTime();
keyEntry.deviceId = event.getDeviceId();
keyEntry.source = event.getSource();
keyEntry.displayId = event.getDisplayId();
keyEntry.flags = event.getFlags() | AKEY_EVENT_FLAG_FALLBACK;
keyEntry.keyCode = fallbackKeyCode;
keyEntry.scanCode = event.getScanCode();
keyEntry.metaState = event.getMetaState();
keyEntry.repeatCount = event.getRepeatCount();
keyEntry.downTime = event.getDownTime();
keyEntry.syntheticRepeat = false;
if (DEBUG_OUTBOUND_EVENT_DETAILS) {
ALOGD("Unhandled key event: Dispatching fallback key. "
"originalKeyCode=%d, fallbackKeyCode=%d, fallbackMetaState=%08x",
originalKeyCode, fallbackKeyCode, keyEntry.metaState);
}
return true; // restart the event
} else {
if (DEBUG_OUTBOUND_EVENT_DETAILS) {
ALOGD("Unhandled key event: No fallback key.");
}
// Report the key as unhandled, since there is no fallback key.
mReporter->reportUnhandledKey(keyEntry.id);
}
}
return false;
}
bool InputDispatcher::afterMotionEventLockedInterruptable(const sp<Connection>& connection,
DispatchEntry* dispatchEntry,
MotionEntry& motionEntry, bool handled) {
return false;
}
void InputDispatcher::traceInboundQueueLengthLocked() {
if (ATRACE_ENABLED()) {
ATRACE_INT("iq", mInboundQueue.size());
}
}
void InputDispatcher::traceOutboundQueueLength(const Connection& connection) {
if (ATRACE_ENABLED()) {
char counterName[40];
snprintf(counterName, sizeof(counterName), "oq:%s", connection.getWindowName().c_str());
ATRACE_INT(counterName, connection.outboundQueue.size());
}
}
void InputDispatcher::traceWaitQueueLength(const Connection& connection) {
if (ATRACE_ENABLED()) {
char counterName[40];
snprintf(counterName, sizeof(counterName), "wq:%s", connection.getWindowName().c_str());
ATRACE_INT(counterName, connection.waitQueue.size());
}
}
void InputDispatcher::dump(std::string& dump) {
std::scoped_lock _l(mLock);
dump += "Input Dispatcher State:\n";
dumpDispatchStateLocked(dump);
if (!mLastAnrState.empty()) {
dump += "\nInput Dispatcher State at time of last ANR:\n";
dump += mLastAnrState;
}
}
void InputDispatcher::monitor() {
// Acquire and release the lock to ensure that the dispatcher has not deadlocked.
std::unique_lock _l(mLock);
mLooper->wake();
mDispatcherIsAlive.wait(_l);
}
/**
* Wake up the dispatcher and wait until it processes all events and commands.
* The notification of mDispatcherEnteredIdle is guaranteed to happen after wake(), so
* this method can be safely called from any thread, as long as you've ensured that
* the work you are interested in completing has already been queued.
*/
bool InputDispatcher::waitForIdle() {
/**
* Timeout should represent the longest possible time that a device might spend processing
* events and commands.
*/
constexpr std::chrono::duration TIMEOUT = 100ms;
std::unique_lock lock(mLock);
mLooper->wake();
std::cv_status result = mDispatcherEnteredIdle.wait_for(lock, TIMEOUT);
return result == std::cv_status::no_timeout;
}
/**
* Sets focus to the window identified by the token. This must be called
* after updating any input window handles.
*
* Params:
* request.token - input channel token used to identify the window that should gain focus.
* request.focusedToken - the token that the caller expects currently to be focused. If the
* specified token does not match the currently focused window, this request will be dropped.
* If the specified focused token matches the currently focused window, the call will succeed.
* Set this to "null" if this call should succeed no matter what the currently focused token is.
* request.timestamp - SYSTEM_TIME_MONOTONIC timestamp in nanos set by the client (wm)
* when requesting the focus change. This determines which request gets
* precedence if there is a focus change request from another source such as pointer down.
*/
void InputDispatcher::setFocusedWindow(const FocusRequest& request) {
{ // acquire lock
std::scoped_lock _l(mLock);
std::optional<FocusResolver::FocusChanges> changes =
mFocusResolver.setFocusedWindow(request, getWindowHandlesLocked(request.displayId));
if (changes) {
onFocusChangedLocked(*changes);
}
} // release lock
// Wake up poll loop since it may need to make new input dispatching choices.
mLooper->wake();
}
void InputDispatcher::onFocusChangedLocked(const FocusResolver::FocusChanges& changes) {
if (changes.oldFocus) {
std::shared_ptr<InputChannel> focusedInputChannel = getInputChannelLocked(changes.oldFocus);
if (focusedInputChannel) {
CancelationOptions options(CancelationOptions::CANCEL_NON_POINTER_EVENTS,
"focus left window");
synthesizeCancelationEventsForInputChannelLocked(focusedInputChannel, options);
enqueueFocusEventLocked(changes.oldFocus, false /*hasFocus*/, changes.reason);
}
}
if (changes.newFocus) {
enqueueFocusEventLocked(changes.newFocus, true /*hasFocus*/, changes.reason);
}
// If a window has pointer capture, then it must have focus. We need to ensure that this
// contract is upheld when pointer capture is being disabled due to a loss of window focus.
// If the window loses focus before it loses pointer capture, then the window can be in a state
// where it has pointer capture but not focus, violating the contract. Therefore we must
// dispatch the pointer capture event before the focus event. Since focus events are added to
// the front of the queue (above), we add the pointer capture event to the front of the queue
// after the focus events are added. This ensures the pointer capture event ends up at the
// front.
disablePointerCaptureForcedLocked();
if (mFocusedDisplayId == changes.displayId) {
sendFocusChangedCommandLocked(changes.oldFocus, changes.newFocus);
}
}
void InputDispatcher::disablePointerCaptureForcedLocked() {
if (!mCurrentPointerCaptureRequest.enable && !mWindowTokenWithPointerCapture) {
return;
}
ALOGD_IF(DEBUG_FOCUS, "Disabling Pointer Capture because the window lost focus.");
if (mCurrentPointerCaptureRequest.enable) {
setPointerCaptureLocked(false);
}
if (!mWindowTokenWithPointerCapture) {
// No need to send capture changes because no window has capture.
return;
}
if (mPendingEvent != nullptr) {
// Move the pending event to the front of the queue. This will give the chance
// for the pending event to be dropped if it is a captured event.
mInboundQueue.push_front(mPendingEvent);
mPendingEvent = nullptr;
}
auto entry = std::make_unique<PointerCaptureChangedEntry>(mIdGenerator.nextId(), now(),
mCurrentPointerCaptureRequest);
mInboundQueue.push_front(std::move(entry));
}
void InputDispatcher::setPointerCaptureLocked(bool enable) {
mCurrentPointerCaptureRequest.enable = enable;
mCurrentPointerCaptureRequest.seq++;
auto command = [this, request = mCurrentPointerCaptureRequest]() REQUIRES(mLock) {
scoped_unlock unlock(mLock);
mPolicy->setPointerCapture(request);
};
postCommandLocked(std::move(command));
}
void InputDispatcher::displayRemoved(int32_t displayId) {
{ // acquire lock
std::scoped_lock _l(mLock);
// Set an empty list to remove all handles from the specific display.
setInputWindowsLocked(/* window handles */ {}, displayId);
setFocusedApplicationLocked(displayId, nullptr);
// Call focus resolver to clean up stale requests. This must be called after input windows
// have been removed for the removed display.
mFocusResolver.displayRemoved(displayId);
// Reset pointer capture eligibility, regardless of previous state.
std::erase(mIneligibleDisplaysForPointerCapture, displayId);
} // release lock
// Wake up poll loop since it may need to make new input dispatching choices.
mLooper->wake();
}
void InputDispatcher::onWindowInfosChanged(const std::vector<WindowInfo>& windowInfos,
const std::vector<DisplayInfo>& displayInfos) {
// The listener sends the windows as a flattened array. Separate the windows by display for
// more convenient parsing.
std::unordered_map<int32_t, std::vector<sp<WindowInfoHandle>>> handlesPerDisplay;
for (const auto& info : windowInfos) {
handlesPerDisplay.emplace(info.displayId, std::vector<sp<WindowInfoHandle>>());
handlesPerDisplay[info.displayId].push_back(new WindowInfoHandle(info));
}
{ // acquire lock
std::scoped_lock _l(mLock);
mDisplayInfos.clear();
for (const auto& displayInfo : displayInfos) {
mDisplayInfos.emplace(displayInfo.displayId, displayInfo);
}
for (const auto& [displayId, handles] : handlesPerDisplay) {
setInputWindowsLocked(handles, displayId);
}
}
// Wake up poll loop since it may need to make new input dispatching choices.
mLooper->wake();
}
bool InputDispatcher::shouldDropInput(
const EventEntry& entry, const sp<android::gui::WindowInfoHandle>& windowHandle) const {
if (windowHandle->getInfo()->inputConfig.test(WindowInfo::InputConfig::DROP_INPUT) ||
(windowHandle->getInfo()->inputConfig.test(
WindowInfo::InputConfig::DROP_INPUT_IF_OBSCURED) &&
isWindowObscuredLocked(windowHandle))) {
ALOGW("Dropping %s event targeting %s as requested by the input configuration {%s} on "
"display %" PRId32 ".",
ftl::enum_string(entry.type).c_str(), windowHandle->getName().c_str(),
windowHandle->getInfo()->inputConfig.string().c_str(),
windowHandle->getInfo()->displayId);
return true;
}
return false;
}
void InputDispatcher::DispatcherWindowListener::onWindowInfosChanged(
const std::vector<gui::WindowInfo>& windowInfos,
const std::vector<DisplayInfo>& displayInfos) {
mDispatcher.onWindowInfosChanged(windowInfos, displayInfos);
}
void InputDispatcher::cancelCurrentTouch() {
{
std::scoped_lock _l(mLock);
ALOGD("Canceling all ongoing pointer gestures on all displays.");
CancelationOptions options(CancelationOptions::CANCEL_POINTER_EVENTS,
"cancel current touch");
synthesizeCancelationEventsForAllConnectionsLocked(options);
mTouchStatesByDisplay.clear();
mLastHoverWindowHandle.clear();
}
// Wake up poll loop since there might be work to do.
mLooper->wake();
}
void InputDispatcher::setMonitorDispatchingTimeoutForTest(std::chrono::nanoseconds timeout) {
std::scoped_lock _l(mLock);
mMonitorDispatchingTimeout = timeout;
}
} // namespace android::inputdispatcher