blob: 85df405f98bf9f8150f1dd18d749c4f1228a6006 [file] [log] [blame]
//
// Copyright 2010 The Android Open Source Project
//
// Provides a shared memory transport for input events.
//
#define LOG_TAG "InputTransport"
//#define LOG_NDEBUG 0
// Log debug messages about channel messages (send message, receive message)
#define DEBUG_CHANNEL_MESSAGES 0
// Log debug messages whenever InputChannel objects are created/destroyed
static constexpr bool DEBUG_CHANNEL_LIFECYCLE = false;
// Log debug messages about transport actions
static constexpr bool DEBUG_TRANSPORT_ACTIONS = false;
// Log debug messages about touch event resampling
#define DEBUG_RESAMPLING 0
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <math.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <unistd.h>
#include <android-base/stringprintf.h>
#include <binder/Parcel.h>
#include <cutils/properties.h>
#include <log/log.h>
#include <utils/Trace.h>
#include <input/InputTransport.h>
using android::base::StringPrintf;
namespace android {
// Socket buffer size. The default is typically about 128KB, which is much larger than
// we really need. So we make it smaller. It just needs to be big enough to hold
// a few dozen large multi-finger motion events in the case where an application gets
// behind processing touches.
static const size_t SOCKET_BUFFER_SIZE = 32 * 1024;
// Nanoseconds per milliseconds.
static const nsecs_t NANOS_PER_MS = 1000000;
// Latency added during resampling. A few milliseconds doesn't hurt much but
// reduces the impact of mispredicted touch positions.
static const nsecs_t RESAMPLE_LATENCY = 5 * NANOS_PER_MS;
// Minimum time difference between consecutive samples before attempting to resample.
static const nsecs_t RESAMPLE_MIN_DELTA = 2 * NANOS_PER_MS;
// Maximum time difference between consecutive samples before attempting to resample
// by extrapolation.
static const nsecs_t RESAMPLE_MAX_DELTA = 20 * NANOS_PER_MS;
// Maximum time to predict forward from the last known state, to avoid predicting too
// far into the future. This time is further bounded by 50% of the last time delta.
static const nsecs_t RESAMPLE_MAX_PREDICTION = 8 * NANOS_PER_MS;
/**
* System property for enabling / disabling touch resampling.
* Resampling extrapolates / interpolates the reported touch event coordinates to better
* align them to the VSYNC signal, thus resulting in smoother scrolling performance.
* Resampling is not needed (and should be disabled) on hardware that already
* has touch events triggered by VSYNC.
* Set to "1" to enable resampling (default).
* Set to "0" to disable resampling.
* Resampling is enabled by default.
*/
static const char* PROPERTY_RESAMPLING_ENABLED = "ro.input.resampling";
template<typename T>
inline static T min(const T& a, const T& b) {
return a < b ? a : b;
}
inline static float lerp(float a, float b, float alpha) {
return a + alpha * (b - a);
}
inline static bool isPointerEvent(int32_t source) {
return (source & AINPUT_SOURCE_CLASS_POINTER) == AINPUT_SOURCE_CLASS_POINTER;
}
inline static const char* toString(bool value) {
return value ? "true" : "false";
}
// --- InputMessage ---
bool InputMessage::isValid(size_t actualSize) const {
if (size() == actualSize) {
switch (header.type) {
case Type::KEY:
return true;
case Type::MOTION:
return body.motion.pointerCount > 0 && body.motion.pointerCount <= MAX_POINTERS;
case Type::FINISHED:
return true;
case Type::FOCUS:
return true;
}
}
return false;
}
size_t InputMessage::size() const {
switch (header.type) {
case Type::KEY:
return sizeof(Header) + body.key.size();
case Type::MOTION:
return sizeof(Header) + body.motion.size();
case Type::FINISHED:
return sizeof(Header) + body.finished.size();
case Type::FOCUS:
return sizeof(Header) + body.focus.size();
}
return sizeof(Header);
}
/**
* There could be non-zero bytes in-between InputMessage fields. Force-initialize the entire
* memory to zero, then only copy the valid bytes on a per-field basis.
*/
void InputMessage::getSanitizedCopy(InputMessage* msg) const {
memset(msg, 0, sizeof(*msg));
// Write the header
msg->header.type = header.type;
msg->header.seq = header.seq;
// Write the body
switch(header.type) {
case InputMessage::Type::KEY: {
// int32_t eventId
msg->body.key.eventId = body.key.eventId;
// nsecs_t eventTime
msg->body.key.eventTime = body.key.eventTime;
// int32_t deviceId
msg->body.key.deviceId = body.key.deviceId;
// int32_t source
msg->body.key.source = body.key.source;
// int32_t displayId
msg->body.key.displayId = body.key.displayId;
// std::array<uint8_t, 32> hmac
msg->body.key.hmac = body.key.hmac;
// int32_t action
msg->body.key.action = body.key.action;
// int32_t flags
msg->body.key.flags = body.key.flags;
// int32_t keyCode
msg->body.key.keyCode = body.key.keyCode;
// int32_t scanCode
msg->body.key.scanCode = body.key.scanCode;
// int32_t metaState
msg->body.key.metaState = body.key.metaState;
// int32_t repeatCount
msg->body.key.repeatCount = body.key.repeatCount;
// nsecs_t downTime
msg->body.key.downTime = body.key.downTime;
break;
}
case InputMessage::Type::MOTION: {
// int32_t eventId
msg->body.motion.eventId = body.motion.eventId;
// nsecs_t eventTime
msg->body.motion.eventTime = body.motion.eventTime;
// int32_t deviceId
msg->body.motion.deviceId = body.motion.deviceId;
// int32_t source
msg->body.motion.source = body.motion.source;
// int32_t displayId
msg->body.motion.displayId = body.motion.displayId;
// std::array<uint8_t, 32> hmac
msg->body.motion.hmac = body.motion.hmac;
// int32_t action
msg->body.motion.action = body.motion.action;
// int32_t actionButton
msg->body.motion.actionButton = body.motion.actionButton;
// int32_t flags
msg->body.motion.flags = body.motion.flags;
// int32_t metaState
msg->body.motion.metaState = body.motion.metaState;
// int32_t buttonState
msg->body.motion.buttonState = body.motion.buttonState;
// MotionClassification classification
msg->body.motion.classification = body.motion.classification;
// int32_t edgeFlags
msg->body.motion.edgeFlags = body.motion.edgeFlags;
// nsecs_t downTime
msg->body.motion.downTime = body.motion.downTime;
msg->body.motion.dsdx = body.motion.dsdx;
msg->body.motion.dtdx = body.motion.dtdx;
msg->body.motion.dtdy = body.motion.dtdy;
msg->body.motion.dsdy = body.motion.dsdy;
msg->body.motion.tx = body.motion.tx;
msg->body.motion.ty = body.motion.ty;
// float xPrecision
msg->body.motion.xPrecision = body.motion.xPrecision;
// float yPrecision
msg->body.motion.yPrecision = body.motion.yPrecision;
// float xCursorPosition
msg->body.motion.xCursorPosition = body.motion.xCursorPosition;
// float yCursorPosition
msg->body.motion.yCursorPosition = body.motion.yCursorPosition;
// uint32_t pointerCount
msg->body.motion.pointerCount = body.motion.pointerCount;
//struct Pointer pointers[MAX_POINTERS]
for (size_t i = 0; i < body.motion.pointerCount; i++) {
// PointerProperties properties
msg->body.motion.pointers[i].properties.id = body.motion.pointers[i].properties.id;
msg->body.motion.pointers[i].properties.toolType =
body.motion.pointers[i].properties.toolType,
// PointerCoords coords
msg->body.motion.pointers[i].coords.bits = body.motion.pointers[i].coords.bits;
const uint32_t count = BitSet64::count(body.motion.pointers[i].coords.bits);
memcpy(&msg->body.motion.pointers[i].coords.values[0],
&body.motion.pointers[i].coords.values[0],
count * (sizeof(body.motion.pointers[i].coords.values[0])));
}
break;
}
case InputMessage::Type::FINISHED: {
msg->body.finished.handled = body.finished.handled;
break;
}
case InputMessage::Type::FOCUS: {
msg->body.focus.eventId = body.focus.eventId;
msg->body.focus.hasFocus = body.focus.hasFocus;
msg->body.focus.inTouchMode = body.focus.inTouchMode;
break;
}
}
}
// --- InputChannel ---
std::unique_ptr<InputChannel> InputChannel::create(const std::string& name,
android::base::unique_fd fd, sp<IBinder> token) {
const int result = fcntl(fd, F_SETFL, O_NONBLOCK);
if (result != 0) {
LOG_ALWAYS_FATAL("channel '%s' ~ Could not make socket non-blocking: %s", name.c_str(),
strerror(errno));
return nullptr;
}
// using 'new' to access a non-public constructor
return std::unique_ptr<InputChannel>(new InputChannel(name, std::move(fd), token));
}
InputChannel::InputChannel(const std::string name, android::base::unique_fd fd, sp<IBinder> token)
: mName(std::move(name)), mFd(std::move(fd)), mToken(std::move(token)) {
if (DEBUG_CHANNEL_LIFECYCLE) {
ALOGD("Input channel constructed: name='%s', fd=%d", getName().c_str(), getFd().get());
}
}
InputChannel::~InputChannel() {
if (DEBUG_CHANNEL_LIFECYCLE) {
ALOGD("Input channel destroyed: name='%s', fd=%d", getName().c_str(), getFd().get());
}
}
status_t InputChannel::openInputChannelPair(const std::string& name,
std::unique_ptr<InputChannel>& outServerChannel,
std::unique_ptr<InputChannel>& outClientChannel) {
int sockets[2];
if (socketpair(AF_UNIX, SOCK_SEQPACKET, 0, sockets)) {
status_t result = -errno;
ALOGE("channel '%s' ~ Could not create socket pair. errno=%d", name.c_str(), errno);
outServerChannel.reset();
outClientChannel.reset();
return result;
}
int bufferSize = SOCKET_BUFFER_SIZE;
setsockopt(sockets[0], SOL_SOCKET, SO_SNDBUF, &bufferSize, sizeof(bufferSize));
setsockopt(sockets[0], SOL_SOCKET, SO_RCVBUF, &bufferSize, sizeof(bufferSize));
setsockopt(sockets[1], SOL_SOCKET, SO_SNDBUF, &bufferSize, sizeof(bufferSize));
setsockopt(sockets[1], SOL_SOCKET, SO_RCVBUF, &bufferSize, sizeof(bufferSize));
sp<IBinder> token = new BBinder();
std::string serverChannelName = name + " (server)";
android::base::unique_fd serverFd(sockets[0]);
outServerChannel = InputChannel::create(serverChannelName, std::move(serverFd), token);
std::string clientChannelName = name + " (client)";
android::base::unique_fd clientFd(sockets[1]);
outClientChannel = InputChannel::create(clientChannelName, std::move(clientFd), token);
return OK;
}
status_t InputChannel::sendMessage(const InputMessage* msg) {
const size_t msgLength = msg->size();
InputMessage cleanMsg;
msg->getSanitizedCopy(&cleanMsg);
ssize_t nWrite;
do {
nWrite = ::send(getFd(), &cleanMsg, msgLength, MSG_DONTWAIT | MSG_NOSIGNAL);
} while (nWrite == -1 && errno == EINTR);
if (nWrite < 0) {
int error = errno;
#if DEBUG_CHANNEL_MESSAGES
ALOGD("channel '%s' ~ error sending message of type %d, %s", mName.c_str(),
msg->header.type, strerror(error));
#endif
if (error == EAGAIN || error == EWOULDBLOCK) {
return WOULD_BLOCK;
}
if (error == EPIPE || error == ENOTCONN || error == ECONNREFUSED || error == ECONNRESET) {
return DEAD_OBJECT;
}
return -error;
}
if (size_t(nWrite) != msgLength) {
#if DEBUG_CHANNEL_MESSAGES
ALOGD("channel '%s' ~ error sending message type %d, send was incomplete",
mName.c_str(), msg->header.type);
#endif
return DEAD_OBJECT;
}
#if DEBUG_CHANNEL_MESSAGES
ALOGD("channel '%s' ~ sent message of type %d", mName.c_str(), msg->header.type);
#endif
return OK;
}
status_t InputChannel::receiveMessage(InputMessage* msg) {
ssize_t nRead;
do {
nRead = ::recv(getFd(), msg, sizeof(InputMessage), MSG_DONTWAIT);
} while (nRead == -1 && errno == EINTR);
if (nRead < 0) {
int error = errno;
#if DEBUG_CHANNEL_MESSAGES
ALOGD("channel '%s' ~ receive message failed, errno=%d", mName.c_str(), errno);
#endif
if (error == EAGAIN || error == EWOULDBLOCK) {
return WOULD_BLOCK;
}
if (error == EPIPE || error == ENOTCONN || error == ECONNREFUSED) {
return DEAD_OBJECT;
}
return -error;
}
if (nRead == 0) { // check for EOF
#if DEBUG_CHANNEL_MESSAGES
ALOGD("channel '%s' ~ receive message failed because peer was closed", mName.c_str());
#endif
return DEAD_OBJECT;
}
if (!msg->isValid(nRead)) {
#if DEBUG_CHANNEL_MESSAGES
ALOGD("channel '%s' ~ received invalid message", mName.c_str());
#endif
return BAD_VALUE;
}
#if DEBUG_CHANNEL_MESSAGES
ALOGD("channel '%s' ~ received message of type %d", mName.c_str(), msg->header.type);
#endif
return OK;
}
std::unique_ptr<InputChannel> InputChannel::dup() const {
base::unique_fd newFd(dupFd());
return InputChannel::create(getName(), std::move(newFd), getConnectionToken());
}
void InputChannel::copyTo(InputChannel& outChannel) const {
outChannel.mName = getName();
outChannel.mFd = dupFd();
outChannel.mToken = getConnectionToken();
}
status_t InputChannel::writeToParcel(android::Parcel* parcel) const {
if (parcel == nullptr) {
ALOGE("%s: Null parcel", __func__);
return BAD_VALUE;
}
return parcel->writeStrongBinder(mToken)
?: parcel->writeUtf8AsUtf16(mName) ?: parcel->writeUniqueFileDescriptor(mFd);
}
status_t InputChannel::readFromParcel(const android::Parcel* parcel) {
if (parcel == nullptr) {
ALOGE("%s: Null parcel", __func__);
return BAD_VALUE;
}
mToken = parcel->readStrongBinder();
return parcel->readUtf8FromUtf16(&mName) ?: parcel->readUniqueFileDescriptor(&mFd);
}
sp<IBinder> InputChannel::getConnectionToken() const {
return mToken;
}
base::unique_fd InputChannel::dupFd() const {
android::base::unique_fd newFd(::dup(getFd()));
if (!newFd.ok()) {
ALOGE("Could not duplicate fd %i for channel %s: %s", getFd().get(), getName().c_str(),
strerror(errno));
const bool hitFdLimit = errno == EMFILE || errno == ENFILE;
// If this process is out of file descriptors, then throwing that might end up exploding
// on the other side of a binder call, which isn't really helpful.
// Better to just crash here and hope that the FD leak is slow.
// Other failures could be client errors, so we still propagate those back to the caller.
LOG_ALWAYS_FATAL_IF(hitFdLimit, "Too many open files, could not duplicate input channel %s",
getName().c_str());
return {};
}
return newFd;
}
// --- InputPublisher ---
InputPublisher::InputPublisher(const std::shared_ptr<InputChannel>& channel) : mChannel(channel) {}
InputPublisher::~InputPublisher() {
}
status_t InputPublisher::publishKeyEvent(uint32_t seq, int32_t eventId, int32_t deviceId,
int32_t source, int32_t displayId,
std::array<uint8_t, 32> hmac, int32_t action,
int32_t flags, int32_t keyCode, int32_t scanCode,
int32_t metaState, int32_t repeatCount, nsecs_t downTime,
nsecs_t eventTime) {
if (ATRACE_ENABLED()) {
std::string message = StringPrintf("publishKeyEvent(inputChannel=%s, keyCode=%" PRId32 ")",
mChannel->getName().c_str(), keyCode);
ATRACE_NAME(message.c_str());
}
if (DEBUG_TRANSPORT_ACTIONS) {
ALOGD("channel '%s' publisher ~ publishKeyEvent: seq=%u, deviceId=%d, source=0x%x, "
"action=0x%x, flags=0x%x, keyCode=%d, scanCode=%d, metaState=0x%x, repeatCount=%d,"
"downTime=%" PRId64 ", eventTime=%" PRId64,
mChannel->getName().c_str(), seq, deviceId, source, action, flags, keyCode, scanCode,
metaState, repeatCount, downTime, eventTime);
}
if (!seq) {
ALOGE("Attempted to publish a key event with sequence number 0.");
return BAD_VALUE;
}
InputMessage msg;
msg.header.type = InputMessage::Type::KEY;
msg.header.seq = seq;
msg.body.key.eventId = eventId;
msg.body.key.deviceId = deviceId;
msg.body.key.source = source;
msg.body.key.displayId = displayId;
msg.body.key.hmac = std::move(hmac);
msg.body.key.action = action;
msg.body.key.flags = flags;
msg.body.key.keyCode = keyCode;
msg.body.key.scanCode = scanCode;
msg.body.key.metaState = metaState;
msg.body.key.repeatCount = repeatCount;
msg.body.key.downTime = downTime;
msg.body.key.eventTime = eventTime;
return mChannel->sendMessage(&msg);
}
status_t InputPublisher::publishMotionEvent(
uint32_t seq, int32_t eventId, int32_t deviceId, int32_t source, int32_t displayId,
std::array<uint8_t, 32> hmac, int32_t action, int32_t actionButton, int32_t flags,
int32_t edgeFlags, int32_t metaState, int32_t buttonState,
MotionClassification classification, const ui::Transform& transform, float xPrecision,
float yPrecision, float xCursorPosition, float yCursorPosition, nsecs_t downTime,
nsecs_t eventTime, uint32_t pointerCount, const PointerProperties* pointerProperties,
const PointerCoords* pointerCoords) {
if (ATRACE_ENABLED()) {
std::string message = StringPrintf(
"publishMotionEvent(inputChannel=%s, action=%" PRId32 ")",
mChannel->getName().c_str(), action);
ATRACE_NAME(message.c_str());
}
if (DEBUG_TRANSPORT_ACTIONS) {
std::string transformString;
transform.dump(transformString, "transform", " ");
ALOGD("channel '%s' publisher ~ publishMotionEvent: seq=%u, deviceId=%d, source=0x%x, "
"displayId=%" PRId32 ", "
"action=0x%x, actionButton=0x%08x, flags=0x%x, edgeFlags=0x%x, "
"metaState=0x%x, buttonState=0x%x, classification=%s,"
"xPrecision=%f, yPrecision=%f, downTime=%" PRId64 ", eventTime=%" PRId64 ", "
"pointerCount=%" PRIu32 " \n%s",
mChannel->getName().c_str(), seq, deviceId, source, displayId, action, actionButton,
flags, edgeFlags, metaState, buttonState,
motionClassificationToString(classification), xPrecision, yPrecision, downTime,
eventTime, pointerCount, transformString.c_str());
}
if (!seq) {
ALOGE("Attempted to publish a motion event with sequence number 0.");
return BAD_VALUE;
}
if (pointerCount > MAX_POINTERS || pointerCount < 1) {
ALOGE("channel '%s' publisher ~ Invalid number of pointers provided: %" PRIu32 ".",
mChannel->getName().c_str(), pointerCount);
return BAD_VALUE;
}
InputMessage msg;
msg.header.type = InputMessage::Type::MOTION;
msg.header.seq = seq;
msg.body.motion.eventId = eventId;
msg.body.motion.deviceId = deviceId;
msg.body.motion.source = source;
msg.body.motion.displayId = displayId;
msg.body.motion.hmac = std::move(hmac);
msg.body.motion.action = action;
msg.body.motion.actionButton = actionButton;
msg.body.motion.flags = flags;
msg.body.motion.edgeFlags = edgeFlags;
msg.body.motion.metaState = metaState;
msg.body.motion.buttonState = buttonState;
msg.body.motion.classification = classification;
msg.body.motion.dsdx = transform.dsdx();
msg.body.motion.dtdx = transform.dtdx();
msg.body.motion.dtdy = transform.dtdy();
msg.body.motion.dsdy = transform.dsdy();
msg.body.motion.tx = transform.tx();
msg.body.motion.ty = transform.ty();
msg.body.motion.xPrecision = xPrecision;
msg.body.motion.yPrecision = yPrecision;
msg.body.motion.xCursorPosition = xCursorPosition;
msg.body.motion.yCursorPosition = yCursorPosition;
msg.body.motion.downTime = downTime;
msg.body.motion.eventTime = eventTime;
msg.body.motion.pointerCount = pointerCount;
for (uint32_t i = 0; i < pointerCount; i++) {
msg.body.motion.pointers[i].properties.copyFrom(pointerProperties[i]);
msg.body.motion.pointers[i].coords.copyFrom(pointerCoords[i]);
}
return mChannel->sendMessage(&msg);
}
status_t InputPublisher::publishFocusEvent(uint32_t seq, int32_t eventId, bool hasFocus,
bool inTouchMode) {
if (ATRACE_ENABLED()) {
std::string message =
StringPrintf("publishFocusEvent(inputChannel=%s, hasFocus=%s, inTouchMode=%s)",
mChannel->getName().c_str(), toString(hasFocus),
toString(inTouchMode));
ATRACE_NAME(message.c_str());
}
InputMessage msg;
msg.header.type = InputMessage::Type::FOCUS;
msg.header.seq = seq;
msg.body.focus.eventId = eventId;
msg.body.focus.hasFocus = hasFocus ? 1 : 0;
msg.body.focus.inTouchMode = inTouchMode ? 1 : 0;
return mChannel->sendMessage(&msg);
}
status_t InputPublisher::receiveFinishedSignal(uint32_t* outSeq, bool* outHandled) {
if (DEBUG_TRANSPORT_ACTIONS) {
ALOGD("channel '%s' publisher ~ receiveFinishedSignal", mChannel->getName().c_str());
}
InputMessage msg;
status_t result = mChannel->receiveMessage(&msg);
if (result) {
*outSeq = 0;
*outHandled = false;
return result;
}
if (msg.header.type != InputMessage::Type::FINISHED) {
ALOGE("channel '%s' publisher ~ Received unexpected message of type %d from consumer",
mChannel->getName().c_str(), msg.header.type);
return UNKNOWN_ERROR;
}
*outSeq = msg.header.seq;
*outHandled = msg.body.finished.handled == 1;
return OK;
}
// --- InputConsumer ---
InputConsumer::InputConsumer(const std::shared_ptr<InputChannel>& channel)
: mResampleTouch(isTouchResamplingEnabled()), mChannel(channel), mMsgDeferred(false) {}
InputConsumer::~InputConsumer() {
}
bool InputConsumer::isTouchResamplingEnabled() {
return property_get_bool(PROPERTY_RESAMPLING_ENABLED, true);
}
status_t InputConsumer::consume(InputEventFactoryInterface* factory, bool consumeBatches,
nsecs_t frameTime, uint32_t* outSeq, InputEvent** outEvent) {
if (DEBUG_TRANSPORT_ACTIONS) {
ALOGD("channel '%s' consumer ~ consume: consumeBatches=%s, frameTime=%" PRId64,
mChannel->getName().c_str(), toString(consumeBatches), frameTime);
}
*outSeq = 0;
*outEvent = nullptr;
// Fetch the next input message.
// Loop until an event can be returned or no additional events are received.
while (!*outEvent) {
if (mMsgDeferred) {
// mMsg contains a valid input message from the previous call to consume
// that has not yet been processed.
mMsgDeferred = false;
} else {
// Receive a fresh message.
status_t result = mChannel->receiveMessage(&mMsg);
if (result) {
// Consume the next batched event unless batches are being held for later.
if (consumeBatches || result != WOULD_BLOCK) {
result = consumeBatch(factory, frameTime, outSeq, outEvent);
if (*outEvent) {
if (DEBUG_TRANSPORT_ACTIONS) {
ALOGD("channel '%s' consumer ~ consumed batch event, seq=%u",
mChannel->getName().c_str(), *outSeq);
}
break;
}
}
return result;
}
}
switch (mMsg.header.type) {
case InputMessage::Type::KEY: {
KeyEvent* keyEvent = factory->createKeyEvent();
if (!keyEvent) return NO_MEMORY;
initializeKeyEvent(keyEvent, &mMsg);
*outSeq = mMsg.header.seq;
*outEvent = keyEvent;
if (DEBUG_TRANSPORT_ACTIONS) {
ALOGD("channel '%s' consumer ~ consumed key event, seq=%u",
mChannel->getName().c_str(), *outSeq);
}
break;
}
case InputMessage::Type::MOTION: {
ssize_t batchIndex = findBatch(mMsg.body.motion.deviceId, mMsg.body.motion.source);
if (batchIndex >= 0) {
Batch& batch = mBatches[batchIndex];
if (canAddSample(batch, &mMsg)) {
batch.samples.push_back(mMsg);
if (DEBUG_TRANSPORT_ACTIONS) {
ALOGD("channel '%s' consumer ~ appended to batch event",
mChannel->getName().c_str());
}
break;
} else if (isPointerEvent(mMsg.body.motion.source) &&
mMsg.body.motion.action == AMOTION_EVENT_ACTION_CANCEL) {
// No need to process events that we are going to cancel anyways
const size_t count = batch.samples.size();
for (size_t i = 0; i < count; i++) {
const InputMessage& msg = batch.samples[i];
sendFinishedSignal(msg.header.seq, false);
}
batch.samples.erase(batch.samples.begin(), batch.samples.begin() + count);
mBatches.erase(mBatches.begin() + batchIndex);
} else {
// We cannot append to the batch in progress, so we need to consume
// the previous batch right now and defer the new message until later.
mMsgDeferred = true;
status_t result = consumeSamples(factory, batch, batch.samples.size(),
outSeq, outEvent);
mBatches.erase(mBatches.begin() + batchIndex);
if (result) {
return result;
}
if (DEBUG_TRANSPORT_ACTIONS) {
ALOGD("channel '%s' consumer ~ consumed batch event and "
"deferred current event, seq=%u",
mChannel->getName().c_str(), *outSeq);
}
break;
}
}
// Start a new batch if needed.
if (mMsg.body.motion.action == AMOTION_EVENT_ACTION_MOVE ||
mMsg.body.motion.action == AMOTION_EVENT_ACTION_HOVER_MOVE) {
Batch batch;
batch.samples.push_back(mMsg);
mBatches.push_back(batch);
if (DEBUG_TRANSPORT_ACTIONS) {
ALOGD("channel '%s' consumer ~ started batch event",
mChannel->getName().c_str());
}
break;
}
MotionEvent* motionEvent = factory->createMotionEvent();
if (!motionEvent) return NO_MEMORY;
updateTouchState(mMsg);
initializeMotionEvent(motionEvent, &mMsg);
*outSeq = mMsg.header.seq;
*outEvent = motionEvent;
if (DEBUG_TRANSPORT_ACTIONS) {
ALOGD("channel '%s' consumer ~ consumed motion event, seq=%u",
mChannel->getName().c_str(), *outSeq);
}
break;
}
case InputMessage::Type::FINISHED: {
LOG_ALWAYS_FATAL("Consumed a FINISHED message, which should never be seen by "
"InputConsumer!");
break;
}
case InputMessage::Type::FOCUS: {
FocusEvent* focusEvent = factory->createFocusEvent();
if (!focusEvent) return NO_MEMORY;
initializeFocusEvent(focusEvent, &mMsg);
*outSeq = mMsg.header.seq;
*outEvent = focusEvent;
break;
}
}
}
return OK;
}
status_t InputConsumer::consumeBatch(InputEventFactoryInterface* factory,
nsecs_t frameTime, uint32_t* outSeq, InputEvent** outEvent) {
status_t result;
for (size_t i = mBatches.size(); i > 0; ) {
i--;
Batch& batch = mBatches[i];
if (frameTime < 0) {
result = consumeSamples(factory, batch, batch.samples.size(), outSeq, outEvent);
mBatches.erase(mBatches.begin() + i);
return result;
}
nsecs_t sampleTime = frameTime;
if (mResampleTouch) {
sampleTime -= RESAMPLE_LATENCY;
}
ssize_t split = findSampleNoLaterThan(batch, sampleTime);
if (split < 0) {
continue;
}
result = consumeSamples(factory, batch, split + 1, outSeq, outEvent);
const InputMessage* next;
if (batch.samples.empty()) {
mBatches.erase(mBatches.begin() + i);
next = nullptr;
} else {
next = &batch.samples[0];
}
if (!result && mResampleTouch) {
resampleTouchState(sampleTime, static_cast<MotionEvent*>(*outEvent), next);
}
return result;
}
return WOULD_BLOCK;
}
status_t InputConsumer::consumeSamples(InputEventFactoryInterface* factory,
Batch& batch, size_t count, uint32_t* outSeq, InputEvent** outEvent) {
MotionEvent* motionEvent = factory->createMotionEvent();
if (! motionEvent) return NO_MEMORY;
uint32_t chain = 0;
for (size_t i = 0; i < count; i++) {
InputMessage& msg = batch.samples[i];
updateTouchState(msg);
if (i) {
SeqChain seqChain;
seqChain.seq = msg.header.seq;
seqChain.chain = chain;
mSeqChains.push_back(seqChain);
addSample(motionEvent, &msg);
} else {
initializeMotionEvent(motionEvent, &msg);
}
chain = msg.header.seq;
}
batch.samples.erase(batch.samples.begin(), batch.samples.begin() + count);
*outSeq = chain;
*outEvent = motionEvent;
return OK;
}
void InputConsumer::updateTouchState(InputMessage& msg) {
if (!mResampleTouch || !isPointerEvent(msg.body.motion.source)) {
return;
}
int32_t deviceId = msg.body.motion.deviceId;
int32_t source = msg.body.motion.source;
// Update the touch state history to incorporate the new input message.
// If the message is in the past relative to the most recently produced resampled
// touch, then use the resampled time and coordinates instead.
switch (msg.body.motion.action & AMOTION_EVENT_ACTION_MASK) {
case AMOTION_EVENT_ACTION_DOWN: {
ssize_t index = findTouchState(deviceId, source);
if (index < 0) {
mTouchStates.push_back({});
index = mTouchStates.size() - 1;
}
TouchState& touchState = mTouchStates[index];
touchState.initialize(deviceId, source);
touchState.addHistory(msg);
break;
}
case AMOTION_EVENT_ACTION_MOVE: {
ssize_t index = findTouchState(deviceId, source);
if (index >= 0) {
TouchState& touchState = mTouchStates[index];
touchState.addHistory(msg);
rewriteMessage(touchState, msg);
}
break;
}
case AMOTION_EVENT_ACTION_POINTER_DOWN: {
ssize_t index = findTouchState(deviceId, source);
if (index >= 0) {
TouchState& touchState = mTouchStates[index];
touchState.lastResample.idBits.clearBit(msg.body.motion.getActionId());
rewriteMessage(touchState, msg);
}
break;
}
case AMOTION_EVENT_ACTION_POINTER_UP: {
ssize_t index = findTouchState(deviceId, source);
if (index >= 0) {
TouchState& touchState = mTouchStates[index];
rewriteMessage(touchState, msg);
touchState.lastResample.idBits.clearBit(msg.body.motion.getActionId());
}
break;
}
case AMOTION_EVENT_ACTION_SCROLL: {
ssize_t index = findTouchState(deviceId, source);
if (index >= 0) {
TouchState& touchState = mTouchStates[index];
rewriteMessage(touchState, msg);
}
break;
}
case AMOTION_EVENT_ACTION_UP:
case AMOTION_EVENT_ACTION_CANCEL: {
ssize_t index = findTouchState(deviceId, source);
if (index >= 0) {
TouchState& touchState = mTouchStates[index];
rewriteMessage(touchState, msg);
mTouchStates.erase(mTouchStates.begin() + index);
}
break;
}
}
}
/**
* Replace the coordinates in msg with the coordinates in lastResample, if necessary.
*
* If lastResample is no longer valid for a specific pointer (i.e. the lastResample time
* is in the past relative to msg and the past two events do not contain identical coordinates),
* then invalidate the lastResample data for that pointer.
* If the two past events have identical coordinates, then lastResample data for that pointer will
* remain valid, and will be used to replace these coordinates. Thus, if a certain coordinate x0 is
* resampled to the new value x1, then x1 will always be used to replace x0 until some new value
* not equal to x0 is received.
*/
void InputConsumer::rewriteMessage(TouchState& state, InputMessage& msg) {
nsecs_t eventTime = msg.body.motion.eventTime;
for (uint32_t i = 0; i < msg.body.motion.pointerCount; i++) {
uint32_t id = msg.body.motion.pointers[i].properties.id;
if (state.lastResample.idBits.hasBit(id)) {
if (eventTime < state.lastResample.eventTime ||
state.recentCoordinatesAreIdentical(id)) {
PointerCoords& msgCoords = msg.body.motion.pointers[i].coords;
const PointerCoords& resampleCoords = state.lastResample.getPointerById(id);
#if DEBUG_RESAMPLING
ALOGD("[%d] - rewrite (%0.3f, %0.3f), old (%0.3f, %0.3f)", id,
resampleCoords.getX(), resampleCoords.getY(),
msgCoords.getX(), msgCoords.getY());
#endif
msgCoords.setAxisValue(AMOTION_EVENT_AXIS_X, resampleCoords.getX());
msgCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, resampleCoords.getY());
} else {
state.lastResample.idBits.clearBit(id);
}
}
}
}
void InputConsumer::resampleTouchState(nsecs_t sampleTime, MotionEvent* event,
const InputMessage* next) {
if (!mResampleTouch
|| !(isPointerEvent(event->getSource()))
|| event->getAction() != AMOTION_EVENT_ACTION_MOVE) {
return;
}
ssize_t index = findTouchState(event->getDeviceId(), event->getSource());
if (index < 0) {
#if DEBUG_RESAMPLING
ALOGD("Not resampled, no touch state for device.");
#endif
return;
}
TouchState& touchState = mTouchStates[index];
if (touchState.historySize < 1) {
#if DEBUG_RESAMPLING
ALOGD("Not resampled, no history for device.");
#endif
return;
}
// Ensure that the current sample has all of the pointers that need to be reported.
const History* current = touchState.getHistory(0);
size_t pointerCount = event->getPointerCount();
for (size_t i = 0; i < pointerCount; i++) {
uint32_t id = event->getPointerId(i);
if (!current->idBits.hasBit(id)) {
#if DEBUG_RESAMPLING
ALOGD("Not resampled, missing id %d", id);
#endif
return;
}
}
// Find the data to use for resampling.
const History* other;
History future;
float alpha;
if (next) {
// Interpolate between current sample and future sample.
// So current->eventTime <= sampleTime <= future.eventTime.
future.initializeFrom(*next);
other = &future;
nsecs_t delta = future.eventTime - current->eventTime;
if (delta < RESAMPLE_MIN_DELTA) {
#if DEBUG_RESAMPLING
ALOGD("Not resampled, delta time is too small: %" PRId64 " ns.", delta);
#endif
return;
}
alpha = float(sampleTime - current->eventTime) / delta;
} else if (touchState.historySize >= 2) {
// Extrapolate future sample using current sample and past sample.
// So other->eventTime <= current->eventTime <= sampleTime.
other = touchState.getHistory(1);
nsecs_t delta = current->eventTime - other->eventTime;
if (delta < RESAMPLE_MIN_DELTA) {
#if DEBUG_RESAMPLING
ALOGD("Not resampled, delta time is too small: %" PRId64 " ns.", delta);
#endif
return;
} else if (delta > RESAMPLE_MAX_DELTA) {
#if DEBUG_RESAMPLING
ALOGD("Not resampled, delta time is too large: %" PRId64 " ns.", delta);
#endif
return;
}
nsecs_t maxPredict = current->eventTime + min(delta / 2, RESAMPLE_MAX_PREDICTION);
if (sampleTime > maxPredict) {
#if DEBUG_RESAMPLING
ALOGD("Sample time is too far in the future, adjusting prediction "
"from %" PRId64 " to %" PRId64 " ns.",
sampleTime - current->eventTime, maxPredict - current->eventTime);
#endif
sampleTime = maxPredict;
}
alpha = float(current->eventTime - sampleTime) / delta;
} else {
#if DEBUG_RESAMPLING
ALOGD("Not resampled, insufficient data.");
#endif
return;
}
// Resample touch coordinates.
History oldLastResample;
oldLastResample.initializeFrom(touchState.lastResample);
touchState.lastResample.eventTime = sampleTime;
touchState.lastResample.idBits.clear();
for (size_t i = 0; i < pointerCount; i++) {
uint32_t id = event->getPointerId(i);
touchState.lastResample.idToIndex[id] = i;
touchState.lastResample.idBits.markBit(id);
if (oldLastResample.hasPointerId(id) && touchState.recentCoordinatesAreIdentical(id)) {
// We maintain the previously resampled value for this pointer (stored in
// oldLastResample) when the coordinates for this pointer haven't changed since then.
// This way we don't introduce artificial jitter when pointers haven't actually moved.
// We know here that the coordinates for the pointer haven't changed because we
// would've cleared the resampled bit in rewriteMessage if they had. We can't modify
// lastResample in place becasue the mapping from pointer ID to index may have changed.
touchState.lastResample.pointers[i].copyFrom(oldLastResample.getPointerById(id));
continue;
}
PointerCoords& resampledCoords = touchState.lastResample.pointers[i];
const PointerCoords& currentCoords = current->getPointerById(id);
resampledCoords.copyFrom(currentCoords);
if (other->idBits.hasBit(id)
&& shouldResampleTool(event->getToolType(i))) {
const PointerCoords& otherCoords = other->getPointerById(id);
resampledCoords.setAxisValue(AMOTION_EVENT_AXIS_X,
lerp(currentCoords.getX(), otherCoords.getX(), alpha));
resampledCoords.setAxisValue(AMOTION_EVENT_AXIS_Y,
lerp(currentCoords.getY(), otherCoords.getY(), alpha));
#if DEBUG_RESAMPLING
ALOGD("[%d] - out (%0.3f, %0.3f), cur (%0.3f, %0.3f), "
"other (%0.3f, %0.3f), alpha %0.3f",
id, resampledCoords.getX(), resampledCoords.getY(),
currentCoords.getX(), currentCoords.getY(),
otherCoords.getX(), otherCoords.getY(),
alpha);
#endif
} else {
#if DEBUG_RESAMPLING
ALOGD("[%d] - out (%0.3f, %0.3f), cur (%0.3f, %0.3f)",
id, resampledCoords.getX(), resampledCoords.getY(),
currentCoords.getX(), currentCoords.getY());
#endif
}
}
event->addSample(sampleTime, touchState.lastResample.pointers);
}
bool InputConsumer::shouldResampleTool(int32_t toolType) {
return toolType == AMOTION_EVENT_TOOL_TYPE_FINGER
|| toolType == AMOTION_EVENT_TOOL_TYPE_UNKNOWN;
}
status_t InputConsumer::sendFinishedSignal(uint32_t seq, bool handled) {
if (DEBUG_TRANSPORT_ACTIONS) {
ALOGD("channel '%s' consumer ~ sendFinishedSignal: seq=%u, handled=%s",
mChannel->getName().c_str(), seq, toString(handled));
}
if (!seq) {
ALOGE("Attempted to send a finished signal with sequence number 0.");
return BAD_VALUE;
}
// Send finished signals for the batch sequence chain first.
size_t seqChainCount = mSeqChains.size();
if (seqChainCount) {
uint32_t currentSeq = seq;
uint32_t chainSeqs[seqChainCount];
size_t chainIndex = 0;
for (size_t i = seqChainCount; i > 0; ) {
i--;
const SeqChain& seqChain = mSeqChains[i];
if (seqChain.seq == currentSeq) {
currentSeq = seqChain.chain;
chainSeqs[chainIndex++] = currentSeq;
mSeqChains.erase(mSeqChains.begin() + i);
}
}
status_t status = OK;
while (!status && chainIndex > 0) {
chainIndex--;
status = sendUnchainedFinishedSignal(chainSeqs[chainIndex], handled);
}
if (status) {
// An error occurred so at least one signal was not sent, reconstruct the chain.
for (;;) {
SeqChain seqChain;
seqChain.seq = chainIndex != 0 ? chainSeqs[chainIndex - 1] : seq;
seqChain.chain = chainSeqs[chainIndex];
mSeqChains.push_back(seqChain);
if (!chainIndex) break;
chainIndex--;
}
return status;
}
}
// Send finished signal for the last message in the batch.
return sendUnchainedFinishedSignal(seq, handled);
}
status_t InputConsumer::sendUnchainedFinishedSignal(uint32_t seq, bool handled) {
InputMessage msg;
msg.header.type = InputMessage::Type::FINISHED;
msg.header.seq = seq;
msg.body.finished.handled = handled ? 1 : 0;
return mChannel->sendMessage(&msg);
}
bool InputConsumer::hasDeferredEvent() const {
return mMsgDeferred;
}
bool InputConsumer::hasPendingBatch() const {
return !mBatches.empty();
}
int32_t InputConsumer::getPendingBatchSource() const {
if (mBatches.empty()) {
return AINPUT_SOURCE_CLASS_NONE;
}
const Batch& batch = mBatches[0];
const InputMessage& head = batch.samples[0];
return head.body.motion.source;
}
ssize_t InputConsumer::findBatch(int32_t deviceId, int32_t source) const {
for (size_t i = 0; i < mBatches.size(); i++) {
const Batch& batch = mBatches[i];
const InputMessage& head = batch.samples[0];
if (head.body.motion.deviceId == deviceId && head.body.motion.source == source) {
return i;
}
}
return -1;
}
ssize_t InputConsumer::findTouchState(int32_t deviceId, int32_t source) const {
for (size_t i = 0; i < mTouchStates.size(); i++) {
const TouchState& touchState = mTouchStates[i];
if (touchState.deviceId == deviceId && touchState.source == source) {
return i;
}
}
return -1;
}
void InputConsumer::initializeKeyEvent(KeyEvent* event, const InputMessage* msg) {
event->initialize(msg->body.key.eventId, msg->body.key.deviceId, msg->body.key.source,
msg->body.key.displayId, msg->body.key.hmac, msg->body.key.action,
msg->body.key.flags, msg->body.key.keyCode, msg->body.key.scanCode,
msg->body.key.metaState, msg->body.key.repeatCount, msg->body.key.downTime,
msg->body.key.eventTime);
}
void InputConsumer::initializeFocusEvent(FocusEvent* event, const InputMessage* msg) {
event->initialize(msg->body.focus.eventId, msg->body.focus.hasFocus == 1,
msg->body.focus.inTouchMode == 1);
}
void InputConsumer::initializeMotionEvent(MotionEvent* event, const InputMessage* msg) {
uint32_t pointerCount = msg->body.motion.pointerCount;
PointerProperties pointerProperties[pointerCount];
PointerCoords pointerCoords[pointerCount];
for (uint32_t i = 0; i < pointerCount; i++) {
pointerProperties[i].copyFrom(msg->body.motion.pointers[i].properties);
pointerCoords[i].copyFrom(msg->body.motion.pointers[i].coords);
}
ui::Transform transform;
transform.set({msg->body.motion.dsdx, msg->body.motion.dtdx, msg->body.motion.tx,
msg->body.motion.dtdy, msg->body.motion.dsdy, msg->body.motion.ty, 0, 0, 1});
event->initialize(msg->body.motion.eventId, msg->body.motion.deviceId, msg->body.motion.source,
msg->body.motion.displayId, msg->body.motion.hmac, msg->body.motion.action,
msg->body.motion.actionButton, msg->body.motion.flags,
msg->body.motion.edgeFlags, msg->body.motion.metaState,
msg->body.motion.buttonState, msg->body.motion.classification, transform,
msg->body.motion.xPrecision, msg->body.motion.yPrecision,
msg->body.motion.xCursorPosition, msg->body.motion.yCursorPosition,
msg->body.motion.downTime, msg->body.motion.eventTime, pointerCount,
pointerProperties, pointerCoords);
}
void InputConsumer::addSample(MotionEvent* event, const InputMessage* msg) {
uint32_t pointerCount = msg->body.motion.pointerCount;
PointerCoords pointerCoords[pointerCount];
for (uint32_t i = 0; i < pointerCount; i++) {
pointerCoords[i].copyFrom(msg->body.motion.pointers[i].coords);
}
event->setMetaState(event->getMetaState() | msg->body.motion.metaState);
event->addSample(msg->body.motion.eventTime, pointerCoords);
}
bool InputConsumer::canAddSample(const Batch& batch, const InputMessage *msg) {
const InputMessage& head = batch.samples[0];
uint32_t pointerCount = msg->body.motion.pointerCount;
if (head.body.motion.pointerCount != pointerCount
|| head.body.motion.action != msg->body.motion.action) {
return false;
}
for (size_t i = 0; i < pointerCount; i++) {
if (head.body.motion.pointers[i].properties
!= msg->body.motion.pointers[i].properties) {
return false;
}
}
return true;
}
ssize_t InputConsumer::findSampleNoLaterThan(const Batch& batch, nsecs_t time) {
size_t numSamples = batch.samples.size();
size_t index = 0;
while (index < numSamples && batch.samples[index].body.motion.eventTime <= time) {
index += 1;
}
return ssize_t(index) - 1;
}
std::string InputConsumer::dump() const {
std::string out;
out = out + "mResampleTouch = " + toString(mResampleTouch) + "\n";
out = out + "mChannel = " + mChannel->getName() + "\n";
out = out + "mMsgDeferred: " + toString(mMsgDeferred) + "\n";
if (mMsgDeferred) {
out = out + "mMsg : " + InputMessage::typeToString(mMsg.header.type) + "\n";
}
out += "Batches:\n";
for (const Batch& batch : mBatches) {
out += " Batch:\n";
for (const InputMessage& msg : batch.samples) {
out += android::base::StringPrintf(" Message %" PRIu32 ": %s ", msg.header.seq,
InputMessage::typeToString(msg.header.type));
switch (msg.header.type) {
case InputMessage::Type::KEY: {
out += android::base::StringPrintf("action=%s keycode=%" PRId32,
KeyEvent::actionToString(
msg.body.key.action),
msg.body.key.keyCode);
break;
}
case InputMessage::Type::MOTION: {
out = out + "action=" + MotionEvent::actionToString(msg.body.motion.action);
for (uint32_t i = 0; i < msg.body.motion.pointerCount; i++) {
const float x = msg.body.motion.pointers[i].coords.getX();
const float y = msg.body.motion.pointers[i].coords.getY();
out += android::base::StringPrintf("\n Pointer %" PRIu32
" : x=%.1f y=%.1f",
i, x, y);
}
break;
}
case InputMessage::Type::FINISHED: {
out += android::base::StringPrintf("handled=%s",
toString(msg.body.finished.handled));
break;
}
case InputMessage::Type::FOCUS: {
out += android::base::StringPrintf("hasFocus=%s inTouchMode=%s",
toString(msg.body.focus.hasFocus),
toString(msg.body.focus.inTouchMode));
break;
}
}
out += "\n";
}
}
if (mBatches.empty()) {
out += " <empty>\n";
}
out += "mSeqChains:\n";
for (const SeqChain& chain : mSeqChains) {
out += android::base::StringPrintf(" chain: seq = %" PRIu32 " chain=%" PRIu32, chain.seq,
chain.chain);
}
if (mSeqChains.empty()) {
out += " <empty>\n";
}
return out;
}
} // namespace android