blob: b4e761004f4e45393f253ac328ddb6bac5384fc5 [file] [log] [blame]
/*
* Copyright 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#undef LOG_TAG
#define LOG_TAG "Planner"
// #define LOG_NDEBUG 0
#include <compositionengine/impl/planner/Flattener.h>
#include <compositionengine/impl/planner/LayerState.h>
#include <compositionengine/impl/planner/Predictor.h>
using time_point = std::chrono::steady_clock::time_point;
using namespace std::chrono_literals;
namespace android::compositionengine::impl::planner {
namespace {
// True if the underlying layer stack is the same modulo state that would be expected to be
// different like specific buffers, false otherwise.
bool isSameStack(const std::vector<const LayerState*>& incomingLayers,
const std::vector<CachedSet>& cachedSets) {
std::vector<const LayerState*> existingLayers;
for (auto& cachedSet : cachedSets) {
for (auto& layer : cachedSet.getConstituentLayers()) {
existingLayers.push_back(layer.getState());
}
}
if (incomingLayers.size() != existingLayers.size()) {
return false;
}
for (size_t i = 0; i < incomingLayers.size(); i++) {
if (incomingLayers[i]->getDifferingFields(*(existingLayers[i])) != LayerStateField::None) {
return false;
}
}
return true;
}
} // namespace
NonBufferHash Flattener::flattenLayers(const std::vector<const LayerState*>& layers,
NonBufferHash hash, time_point now) {
const size_t unflattenedDisplayCost = calculateDisplayCost(layers);
mUnflattenedDisplayCost += unflattenedDisplayCost;
// We invalidate the layer cache if:
// 1. We're not tracking any layers, or
// 2. The last seen hashed geometry changed between frames, or
// 3. A stricter equality check demonstrates that the layer stack really did change, since the
// hashed geometry does not guarantee uniqueness.
if (mCurrentGeometry != hash || (!mLayers.empty() && !isSameStack(layers, mLayers))) {
resetActivities(hash, now);
mFlattenedDisplayCost += unflattenedDisplayCost;
return hash;
}
++mInitialLayerCounts[layers.size()];
// Only buildCachedSets if these layers are already stored in mLayers.
// Otherwise (i.e. mergeWithCachedSets returns false), the time has not
// changed, so buildCachedSets will never find any runs.
const bool alreadyHadCachedSets = mergeWithCachedSets(layers, now);
++mFinalLayerCounts[mLayers.size()];
if (alreadyHadCachedSets) {
buildCachedSets(now);
hash = computeLayersHash();
}
return hash;
}
void Flattener::renderCachedSets(renderengine::RenderEngine& renderEngine,
const OutputCompositionState& outputState) {
if (!mNewCachedSet) {
return;
}
mNewCachedSet->render(renderEngine, outputState);
}
void Flattener::dump(std::string& result) const {
const auto now = std::chrono::steady_clock::now();
base::StringAppendF(&result, "Flattener state:\n");
result.append("\n Statistics:\n");
result.append(" Display cost (in screen-size buffers):\n");
const size_t displayArea = static_cast<size_t>(mDisplaySize.width * mDisplaySize.height);
base::StringAppendF(&result, " Unflattened: %.2f\n",
static_cast<float>(mUnflattenedDisplayCost) / displayArea);
base::StringAppendF(&result, " Flattened: %.2f\n",
static_cast<float>(mFlattenedDisplayCost) / displayArea);
const auto compareLayerCounts = [](const std::pair<size_t, size_t>& left,
const std::pair<size_t, size_t>& right) {
return left.first < right.first;
};
const size_t maxLayerCount = std::max_element(mInitialLayerCounts.cbegin(),
mInitialLayerCounts.cend(), compareLayerCounts)
->first;
result.append("\n Initial counts:\n");
for (size_t count = 1; count < maxLayerCount; ++count) {
size_t initial = mInitialLayerCounts.count(count) > 0 ? mInitialLayerCounts.at(count) : 0;
base::StringAppendF(&result, " % 2zd: %zd\n", count, initial);
}
result.append("\n Final counts:\n");
for (size_t count = 1; count < maxLayerCount; ++count) {
size_t final = mFinalLayerCounts.count(count) > 0 ? mFinalLayerCounts.at(count) : 0;
base::StringAppendF(&result, " % 2zd: %zd\n", count, final);
}
base::StringAppendF(&result, "\n Cached sets created: %zd\n", mCachedSetCreationCount);
base::StringAppendF(&result, " Cost: %.2f\n",
static_cast<float>(mCachedSetCreationCost) / displayArea);
const auto lastUpdate =
std::chrono::duration_cast<std::chrono::milliseconds>(now - mLastGeometryUpdate);
base::StringAppendF(&result, "\n Current hash %016zx, last update %sago\n\n", mCurrentGeometry,
durationString(lastUpdate).c_str());
result.append(" Current layers:");
for (const CachedSet& layer : mLayers) {
result.append("\n");
layer.dump(result);
}
}
size_t Flattener::calculateDisplayCost(const std::vector<const LayerState*>& layers) const {
Region coveredRegion;
size_t displayCost = 0;
bool hasClientComposition = false;
for (const LayerState* layer : layers) {
coveredRegion.orSelf(layer->getDisplayFrame());
// Regardless of composition type, we always have to read each input once
displayCost += static_cast<size_t>(layer->getDisplayFrame().width() *
layer->getDisplayFrame().height());
hasClientComposition |= layer->getCompositionType() == hal::Composition::CLIENT;
}
if (hasClientComposition) {
// If there is client composition, the client target buffer has to be both written by the
// GPU and read by the DPU, so we pay its cost twice
displayCost += 2 *
static_cast<size_t>(coveredRegion.bounds().width() *
coveredRegion.bounds().height());
}
return displayCost;
}
void Flattener::resetActivities(NonBufferHash hash, time_point now) {
ALOGV("[%s]", __func__);
mCurrentGeometry = hash;
mLastGeometryUpdate = now;
for (const CachedSet& cachedSet : mLayers) {
if (cachedSet.getLayerCount() > 1) {
++mInvalidatedCachedSetAges[cachedSet.getAge()];
}
}
mLayers.clear();
if (mNewCachedSet) {
++mInvalidatedCachedSetAges[mNewCachedSet->getAge()];
mNewCachedSet = std::nullopt;
}
}
NonBufferHash Flattener::computeLayersHash() const{
size_t hash = 0;
for (const auto& layer : mLayers) {
android::hashCombineSingleHashed(hash, layer.getNonBufferHash());
}
return hash;
}
// Only called if the geometry matches the last frame. Return true if mLayers
// was already populated with these layers, i.e. on the second and following
// calls with the same geometry.
bool Flattener::mergeWithCachedSets(const std::vector<const LayerState*>& layers, time_point now) {
std::vector<CachedSet> merged;
if (mLayers.empty()) {
merged.reserve(layers.size());
for (const LayerState* layer : layers) {
merged.emplace_back(layer, now);
mFlattenedDisplayCost += merged.back().getDisplayCost();
}
mLayers = std::move(merged);
return false;
}
ALOGV("[%s] Incoming layers:", __func__);
for (const LayerState* layer : layers) {
ALOGV("%s", layer->getName().c_str());
}
ALOGV("[%s] Current layers:", __func__);
for (const CachedSet& layer : mLayers) {
std::string dump;
layer.dump(dump);
ALOGV("%s", dump.c_str());
}
auto currentLayerIter = mLayers.begin();
auto incomingLayerIter = layers.begin();
while (incomingLayerIter != layers.end()) {
if (mNewCachedSet && mNewCachedSet->getFingerprint() == (*incomingLayerIter)->getHash()) {
if (mNewCachedSet->hasBufferUpdate()) {
ALOGV("[%s] Dropping new cached set", __func__);
++mInvalidatedCachedSetAges[0];
mNewCachedSet = std::nullopt;
} else if (mNewCachedSet->hasReadyBuffer()) {
ALOGV("[%s] Found ready buffer", __func__);
size_t skipCount = mNewCachedSet->getLayerCount();
while (skipCount != 0) {
auto* peekThroughLayer = mNewCachedSet->getHolePunchLayer();
const size_t layerCount = currentLayerIter->getLayerCount();
for (size_t i = 0; i < layerCount; ++i) {
OutputLayer::CompositionState& state =
(*incomingLayerIter)->getOutputLayer()->editState();
state.overrideInfo = {
.buffer = mNewCachedSet->getBuffer(),
.acquireFence = mNewCachedSet->getDrawFence(),
.displayFrame = mNewCachedSet->getBounds(),
.dataspace = mNewCachedSet->getOutputDataspace(),
.displaySpace = mNewCachedSet->getOutputSpace(),
.damageRegion = Region::INVALID_REGION,
.visibleRegion = mNewCachedSet->getVisibleRegion(),
.peekThroughLayer = peekThroughLayer,
};
++incomingLayerIter;
}
if (currentLayerIter->getLayerCount() > 1) {
++mInvalidatedCachedSetAges[currentLayerIter->getAge()];
}
++currentLayerIter;
skipCount -= layerCount;
}
merged.emplace_back(std::move(*mNewCachedSet));
mNewCachedSet = std::nullopt;
continue;
}
}
if (!currentLayerIter->hasBufferUpdate()) {
currentLayerIter->incrementAge();
merged.emplace_back(*currentLayerIter);
// Skip the incoming layers corresponding to this valid current layer
const size_t layerCount = currentLayerIter->getLayerCount();
auto* peekThroughLayer = currentLayerIter->getHolePunchLayer();
for (size_t i = 0; i < layerCount; ++i) {
OutputLayer::CompositionState& state =
(*incomingLayerIter)->getOutputLayer()->editState();
state.overrideInfo = {
.buffer = currentLayerIter->getBuffer(),
.acquireFence = currentLayerIter->getDrawFence(),
.displayFrame = currentLayerIter->getBounds(),
.dataspace = currentLayerIter->getOutputDataspace(),
.displaySpace = currentLayerIter->getOutputSpace(),
.damageRegion = Region(),
.visibleRegion = currentLayerIter->getVisibleRegion(),
.peekThroughLayer = peekThroughLayer,
};
++incomingLayerIter;
}
} else if (currentLayerIter->getLayerCount() > 1) {
// Break the current layer into its constituent layers
++mInvalidatedCachedSetAges[currentLayerIter->getAge()];
for (CachedSet& layer : currentLayerIter->decompose()) {
layer.updateAge(now);
merged.emplace_back(layer);
++incomingLayerIter;
}
} else {
currentLayerIter->updateAge(now);
merged.emplace_back(*currentLayerIter);
++incomingLayerIter;
}
++currentLayerIter;
}
for (const CachedSet& layer : merged) {
mFlattenedDisplayCost += layer.getDisplayCost();
}
mLayers = std::move(merged);
return true;
}
void Flattener::buildCachedSets(time_point now) {
struct Run {
Run(std::vector<CachedSet>::const_iterator start, size_t length)
: start(start), length(length) {}
std::vector<CachedSet>::const_iterator start;
size_t length;
};
if (mLayers.empty()) {
ALOGV("[%s] No layers found, returning", __func__);
return;
}
std::vector<Run> runs;
bool isPartOfRun = false;
// Keep track of the layer that follows a run. It's possible that we will
// render it with a hole-punch.
const CachedSet* holePunchLayer = nullptr;
for (auto currentSet = mLayers.cbegin(); currentSet != mLayers.cend(); ++currentSet) {
if (now - currentSet->getLastUpdate() > kActiveLayerTimeout) {
// Layer is inactive
if (isPartOfRun) {
runs.back().length += currentSet->getLayerCount();
} else {
// Runs can't start with a non-buffer layer
if (currentSet->getFirstLayer().getBuffer() == nullptr) {
ALOGV("[%s] Skipping initial non-buffer layer", __func__);
} else {
runs.emplace_back(currentSet, currentSet->getLayerCount());
isPartOfRun = true;
}
}
} else if (isPartOfRun) {
// Runs must be at least 2 sets long or there's nothing to combine
if (runs.back().start->getLayerCount() == runs.back().length) {
runs.pop_back();
} else {
// The prior run contained at least two sets. Currently, we'll
// only possibly merge a single run, so only keep track of a
// holePunchLayer if this is the first run.
if (runs.size() == 1) {
holePunchLayer = &(*currentSet);
}
// TODO(b/185114532: Break out of the loop? We may find more runs, but we
// won't do anything with them.
}
isPartOfRun = false;
}
}
// Check for at least 2 sets one more time in case the set includes the last layer
if (isPartOfRun && runs.back().start->getLayerCount() == runs.back().length) {
runs.pop_back();
}
ALOGV("[%s] Found %zu candidate runs", __func__, runs.size());
if (runs.empty()) {
return;
}
mNewCachedSet.emplace(*runs[0].start);
mNewCachedSet->setLastUpdate(now);
auto currentSet = runs[0].start;
while (mNewCachedSet->getLayerCount() < runs[0].length) {
++currentSet;
mNewCachedSet->append(*currentSet);
}
if (mEnableHolePunch && holePunchLayer && holePunchLayer->requiresHolePunch()) {
// Add the pip layer to mNewCachedSet, but in a special way - it should
// replace the buffer with a clear round rect.
mNewCachedSet->addHolePunchLayerIfFeasible(*holePunchLayer,
runs[0].start == mLayers.cbegin());
}
// TODO(b/181192467): Actually compute new LayerState vector and corresponding hash for each run
mPredictor.getPredictedPlan({}, 0);
++mCachedSetCreationCount;
mCachedSetCreationCost += mNewCachedSet->getCreationCost();
std::string setDump;
mNewCachedSet->dump(setDump);
ALOGV("[%s] Added new cached set:\n%s", __func__, setDump.c_str());
}
} // namespace android::compositionengine::impl::planner