blob: d0ee69c7706c83f83d736baa7b2f6ea7ada682c5 [file] [log] [blame]
Alex Vakulenkoe4eec202017-01-27 14:41:04 -08001#ifndef ANDROID_DVR_FIELD_OF_VIEW_H_
2#define ANDROID_DVR_FIELD_OF_VIEW_H_
3
4#include <cmath>
5
6#include <private/dvr/eigen.h>
7
8namespace android {
9namespace dvr {
10
11// Encapsulates a generalized, asymmetric field of view with four half angles.
12// Each half angle denotes the angle between the corresponding frustum plane.
13// Together with a near and far plane, a FieldOfView forms the frustum of an
14// off-axis perspective projection.
15class FieldOfView {
16 public:
17 // The default constructor sets an angle of 0 (in any unit) for all four
18 // half-angles.
19 FieldOfView() : left_(0.0f), right_(0.0f), bottom_(0.0f), top_(0.0f) {}
20
21 // Constructs a FieldOfView from four angles.
22 FieldOfView(float left, float right, float bottom, float top)
23 : left_(left), right_(right), bottom_(bottom), top_(top) {}
24
25 explicit FieldOfView(const float* fov)
26 : FieldOfView(fov[0], fov[1], fov[2], fov[3]) {}
27
28 // Accessors for all four half-angles.
29 float GetLeft() const { return left_; }
30 float GetRight() const { return right_; }
31 float GetBottom() const { return bottom_; }
32 float GetTop() const { return top_; }
33
34 // Setters for all four half-angles.
35 void SetLeft(float left) { left_ = left; }
36 void SetRight(float right) { right_ = right; }
37 void SetBottom(float bottom) { bottom_ = bottom; }
38 void SetTop(float top) { top_ = top; }
39
40 Eigen::AffineMatrix<float, 4> GetProjectionMatrix(float z_near,
41 float z_far) const {
42 float x_left = -std::tan(left_) * z_near;
43 float x_right = std::tan(right_) * z_near;
44 float y_bottom = -std::tan(bottom_) * z_near;
45 float y_top = std::tan(top_) * z_near;
46
47 float zero = 0.0f;
48 if (x_left == x_right || y_bottom == y_top || z_near == z_far ||
49 z_near <= zero || z_far <= zero) {
50 return Eigen::AffineMatrix<float, 4>::Identity();
51 }
52
53 float x = (2 * z_near) / (x_right - x_left);
54 float y = (2 * z_near) / (y_top - y_bottom);
55 float a = (x_right + x_left) / (x_right - x_left);
56 float b = (y_top + y_bottom) / (y_top - y_bottom);
57 float c = (z_near + z_far) / (z_near - z_far);
58 float d = (2 * z_near * z_far) / (z_near - z_far);
59
60 // Note: Eigen matrix initialization syntax is always 'column-major'
61 // even if the storage is row-major. Or in other words, just write the
62 // matrix like you'd see in a math textbook.
63 Eigen::AffineMatrix<float, 4> result;
64 result.matrix() << x, 0, a, 0,
65 0, y, b, 0,
66 0, 0, c, d,
67 0, 0, -1, 0;
68 return result;
69 }
70
71 static FieldOfView FromProjectionMatrix(
72 const Eigen::AffineMatrix<float, 4>& m) {
73 // Compute tangents.
74 float tan_vert_fov = 1.0f / m(1, 1);
75 float tan_horz_fov = 1.0f / m(0, 0);
76 float t = (m(1, 2) + 1.0f) * tan_vert_fov;
77 float b = (m(1, 2) - 1.0f) * tan_vert_fov;
78 float l = (m(0, 2) - 1.0f) * tan_horz_fov;
79 float r = (m(0, 2) + 1.0f) * tan_horz_fov;
80
81 return FieldOfView(std::atan(-l), std::atan(r), std::atan(-b),
82 std::atan(t));
83 }
84
85 private:
86 float left_;
87 float right_;
88 float bottom_;
89 float top_;
90};
91
92} // namespace dvr
93} // namespace android
94
95#endif // ANDROID_DVR_FIELD_OF_VIEW_H_