blob: 564cda3ccc0117ee1f3f3474145b6329ed55f3f8 [file] [log] [blame]
Marissa Wall713b63f2018-10-17 15:42:43 -07001/*
2 * Copyright 2018 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#pragma once
18
19#include <GLES3/gl3.h>
20#include <math/vec2.h>
21#include <math/vec3.h>
22#include <math/vec4.h>
23
24static const char* VERTEX_SHADER = R"SHADER__(#version 300 es
25precision highp float;
26
27layout(location = 0) in vec4 mesh_position;
28
29void main() {
30 gl_Position = mesh_position;
31}
32)SHADER__";
33
34static const char* FRAGMENT_SHADER = R"SHADER__(#version 300 es
35precision highp float;
36
37layout(location = 0) uniform vec4 resolution;
38layout(location = 1) uniform float time;
39layout(location = 2) uniform vec3[4] SPHERICAL_HARMONICS;
40
41layout(location = 0) out vec4 fragColor;
42
43#define saturate(x) clamp(x, 0.0, 1.0)
44#define PI 3.14159265359
45
46//------------------------------------------------------------------------------
47// Distance field functions
48//------------------------------------------------------------------------------
49
50float sdPlane(in vec3 p) {
51 return p.y;
52}
53
54float sdSphere(in vec3 p, float s) {
55 return length(p) - s;
56}
57
58float sdTorus(in vec3 p, in vec2 t) {
59 return length(vec2(length(p.xz) - t.x, p.y)) - t.y;
60}
61
62vec2 opUnion(vec2 d1, vec2 d2) {
63 return d1.x < d2.x ? d1 : d2;
64}
65
66vec2 scene(in vec3 position) {
67 vec2 scene = opUnion(
68 vec2(sdPlane(position), 1.0),
69 vec2(sdSphere(position - vec3(0.0, 0.4, 0.0), 0.4), 12.0)
70 );
71 return scene;
72}
73
74//------------------------------------------------------------------------------
75// Ray casting
76//------------------------------------------------------------------------------
77
78float shadow(in vec3 origin, in vec3 direction, in float tmin, in float tmax) {
79 float hit = 1.0;
80
81 for (float t = tmin; t < tmax; ) {
82 float h = scene(origin + direction * t).x;
83 if (h < 0.001) return 0.0;
84 t += h;
85 hit = min(hit, 10.0 * h / t);
86 }
87
88 return clamp(hit, 0.0, 1.0);
89}
90
91vec2 traceRay(in vec3 origin, in vec3 direction) {
92 float tmin = 0.02;
93 float tmax = 20.0;
94
95 float material = -1.0;
96 float t = tmin;
97
98 for ( ; t < tmax; ) {
99 vec2 hit = scene(origin + direction * t);
100 if (hit.x < 0.002 || t > tmax) break;
101 t += hit.x;
102 material = hit.y;
103 }
104
105 if (t > tmax) {
106 material = -1.0;
107 }
108
109 return vec2(t, material);
110}
111
112vec3 normal(in vec3 position) {
113 vec3 epsilon = vec3(0.001, 0.0, 0.0);
114 vec3 n = vec3(
115 scene(position + epsilon.xyy).x - scene(position - epsilon.xyy).x,
116 scene(position + epsilon.yxy).x - scene(position - epsilon.yxy).x,
117 scene(position + epsilon.yyx).x - scene(position - epsilon.yyx).x);
118 return normalize(n);
119}
120
121//------------------------------------------------------------------------------
122// BRDF
123//------------------------------------------------------------------------------
124
125float pow5(float x) {
126 float x2 = x * x;
127 return x2 * x2 * x;
128}
129
130float D_GGX(float linearRoughness, float NoH, const vec3 h) {
131 // Walter et al. 2007, "Microfacet Models for Refraction through Rough Surfaces"
132 float oneMinusNoHSquared = 1.0 - NoH * NoH;
133 float a = NoH * linearRoughness;
134 float k = linearRoughness / (oneMinusNoHSquared + a * a);
135 float d = k * k * (1.0 / PI);
136 return d;
137}
138
139float V_SmithGGXCorrelated(float linearRoughness, float NoV, float NoL) {
140 // Heitz 2014, "Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs"
141 float a2 = linearRoughness * linearRoughness;
142 float GGXV = NoL * sqrt((NoV - a2 * NoV) * NoV + a2);
143 float GGXL = NoV * sqrt((NoL - a2 * NoL) * NoL + a2);
144 return 0.5 / (GGXV + GGXL);
145}
146
147vec3 F_Schlick(const vec3 f0, float VoH) {
148 // Schlick 1994, "An Inexpensive BRDF Model for Physically-Based Rendering"
149 return f0 + (vec3(1.0) - f0) * pow5(1.0 - VoH);
150}
151
152float F_Schlick(float f0, float f90, float VoH) {
153 return f0 + (f90 - f0) * pow5(1.0 - VoH);
154}
155
156float Fd_Burley(float linearRoughness, float NoV, float NoL, float LoH) {
157 // Burley 2012, "Physically-Based Shading at Disney"
158 float f90 = 0.5 + 2.0 * linearRoughness * LoH * LoH;
159 float lightScatter = F_Schlick(1.0, f90, NoL);
160 float viewScatter = F_Schlick(1.0, f90, NoV);
161 return lightScatter * viewScatter * (1.0 / PI);
162}
163
164float Fd_Lambert() {
165 return 1.0 / PI;
166}
167
168//------------------------------------------------------------------------------
169// Indirect lighting
170//------------------------------------------------------------------------------
171
172vec3 Irradiance_SphericalHarmonics(const vec3 n) {
173 return max(
174 SPHERICAL_HARMONICS[0]
175 + SPHERICAL_HARMONICS[1] * (n.y)
176 + SPHERICAL_HARMONICS[2] * (n.z)
177 + SPHERICAL_HARMONICS[3] * (n.x)
178 , 0.0);
179}
180
181vec2 PrefilteredDFG_Karis(float roughness, float NoV) {
182 // Karis 2014, "Physically Based Material on Mobile"
183 const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022);
184 const vec4 c1 = vec4( 1.0, 0.0425, 1.040, -0.040);
185
186 vec4 r = roughness * c0 + c1;
187 float a004 = min(r.x * r.x, exp2(-9.28 * NoV)) * r.x + r.y;
188
189 return vec2(-1.04, 1.04) * a004 + r.zw;
190}
191
192//------------------------------------------------------------------------------
193// Tone mapping and transfer functions
194//------------------------------------------------------------------------------
195
196vec3 Tonemap_ACES(const vec3 x) {
197 // Narkowicz 2015, "ACES Filmic Tone Mapping Curve"
198 const float a = 2.51;
199 const float b = 0.03;
200 const float c = 2.43;
201 const float d = 0.59;
202 const float e = 0.14;
203 return (x * (a * x + b)) / (x * (c * x + d) + e);
204}
205
206vec3 OECF_sRGBFast(const vec3 linear) {
207 return pow(linear, vec3(1.0 / 2.2));
208}
209
210//------------------------------------------------------------------------------
211// Rendering
212//------------------------------------------------------------------------------
213
214vec3 render(in vec3 origin, in vec3 direction, out float distance) {
215 // Sky gradient
216 vec3 color = vec3(0.65, 0.85, 1.0) + direction.y * 0.72;
217
218 // (distance, material)
219 vec2 hit = traceRay(origin, direction);
220 distance = hit.x;
221 float material = hit.y;
222
223 // We've hit something in the scene
224 if (material > 0.0) {
225 vec3 position = origin + distance * direction;
226
227 vec3 v = normalize(-direction);
228 vec3 n = normal(position);
229 vec3 l = normalize(vec3(0.6, 0.7, -0.7));
230 vec3 h = normalize(v + l);
231 vec3 r = normalize(reflect(direction, n));
232
233 float NoV = abs(dot(n, v)) + 1e-5;
234 float NoL = saturate(dot(n, l));
235 float NoH = saturate(dot(n, h));
236 float LoH = saturate(dot(l, h));
237
238 vec3 baseColor = vec3(0.0);
239 float roughness = 0.0;
240 float metallic = 0.0;
241
242 float intensity = 2.0;
243 float indirectIntensity = 0.64;
244
245 if (material < 4.0) {
246 // Checkerboard floor
247 float f = mod(floor(6.0 * position.z) + floor(6.0 * position.x), 2.0);
248 baseColor = 0.4 + f * vec3(0.6);
249 roughness = 0.1;
250 } else if (material < 16.0) {
251 // Metallic objects
252 baseColor = vec3(0.3, 0.0, 0.0);
253 roughness = 0.2;
254 }
255
256 float linearRoughness = roughness * roughness;
257 vec3 diffuseColor = (1.0 - metallic) * baseColor.rgb;
258 vec3 f0 = 0.04 * (1.0 - metallic) + baseColor.rgb * metallic;
259
260 float attenuation = shadow(position, l, 0.02, 2.5);
261
262 // specular BRDF
263 float D = D_GGX(linearRoughness, NoH, h);
264 float V = V_SmithGGXCorrelated(linearRoughness, NoV, NoL);
265 vec3 F = F_Schlick(f0, LoH);
266 vec3 Fr = (D * V) * F;
267
268 // diffuse BRDF
269 vec3 Fd = diffuseColor * Fd_Burley(linearRoughness, NoV, NoL, LoH);
270
271 color = Fd + Fr;
272 color *= (intensity * attenuation * NoL) * vec3(0.98, 0.92, 0.89);
273
274 // diffuse indirect
275 vec3 indirectDiffuse = Irradiance_SphericalHarmonics(n) * Fd_Lambert();
276
277 vec2 indirectHit = traceRay(position, r);
278 vec3 indirectSpecular = vec3(0.65, 0.85, 1.0) + r.y * 0.72;
279 if (indirectHit.y > 0.0) {
280 if (indirectHit.y < 4.0) {
281 vec3 indirectPosition = position + indirectHit.x * r;
282 // Checkerboard floor
283 float f = mod(floor(6.0 * indirectPosition.z) + floor(6.0 * indirectPosition.x), 2.0);
284 indirectSpecular = 0.4 + f * vec3(0.6);
285 } else if (indirectHit.y < 16.0) {
286 // Metallic objects
287 indirectSpecular = vec3(0.3, 0.0, 0.0);
288 }
289 }
290
291 // indirect contribution
292 vec2 dfg = PrefilteredDFG_Karis(roughness, NoV);
293 vec3 specularColor = f0 * dfg.x + dfg.y;
294 vec3 ibl = diffuseColor * indirectDiffuse + indirectSpecular * specularColor;
295
296 color += ibl * indirectIntensity;
297 }
298
299 return color;
300}
301
302//------------------------------------------------------------------------------
303// Setup and execution
304//------------------------------------------------------------------------------
305
306mat3 setCamera(in vec3 origin, in vec3 target, float rotation) {
307 vec3 forward = normalize(target - origin);
308 vec3 orientation = vec3(sin(rotation), cos(rotation), 0.0);
309 vec3 left = normalize(cross(forward, orientation));
310 vec3 up = normalize(cross(left, forward));
311 return mat3(left, up, forward);
312}
313
314void main() {
315 // Normalized coordinates
316 vec2 p = -1.0 + 2.0 * gl_FragCoord.xy / resolution.xy;
317 // Aspect ratio
318 p.x *= resolution.x / resolution.y;
319
320 // Camera position and "look at"
321 vec3 origin = vec3(0.0, 1.0, 0.0);
322 vec3 target = vec3(0.0);
323
324 origin.x += 2.0 * cos(time * 0.2);
325 origin.z += 2.0 * sin(time * 0.2);
326
327 mat3 toWorld = setCamera(origin, target, 0.0);
328 vec3 direction = toWorld * normalize(vec3(p.xy, 2.0));
329
330 // Render scene
331 float distance;
332 vec3 color = render(origin, direction, distance);
333
334 // Tone mapping
335 color = Tonemap_ACES(color);
336
337 // Exponential distance fog
338 color = mix(color, 0.8 * vec3(0.7, 0.8, 1.0), 1.0 - exp2(-0.011 * distance * distance));
339
340 // Gamma compression
341 color = OECF_sRGBFast(color);
342
343 fragColor = vec4(color, 1.0);
344}
345)SHADER__";
346
347static const android::vec3 SPHERICAL_HARMONICS[4] =
348 {{0.754554516862612, 0.748542953903366, 0.790921515418539},
349 {-0.083856548007422, 0.092533500963210, 0.322764661032516},
350 {0.308152705331738, 0.366796330467391, 0.466698181299906},
351 {-0.188884931542396, -0.277402551592231, -0.377844212327557}};
352
353static const android::vec4 TRIANGLE[3] = {{-1.0f, -1.0f, 1.0f, 1.0f},
354 {3.0f, -1.0f, 1.0f, 1.0f},
355 {-1.0f, 3.0f, 1.0f, 1.0f}};