blob: f8a7d6187dde86484645a934f2a8a7d265945504 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cstdint>
#include "RenderScriptToolkit.h"
#include "TaskProcessor.h"
#include "Utils.h"
namespace android {
namespace renderscript {
#define LOG_TAG "renderscript.toolkit.Lut3d"
/**
* Converts a RGBA buffer using a 3D cube.
*/
class Lut3dTask : public Task {
// The input array we're transforming.
const uchar4* mIn;
// Where we'll store the transformed result.
uchar4* mOut;
// The size of each of the three cube dimensions. We don't make use of the last value.
int4 mCubeDimension;
// The translation cube, in row major format.
const uchar* mCubeTable;
/**
* Converts a subset of a line of the 2D buffer.
*
* @param in The start of the data to transform.
* @param out Where to store the result.
* @param length The number of 4-byte vectors to transform.
*/
void kernel(const uchar4* in, uchar4* out, uint32_t length);
// Process a 2D tile of the overall work. threadIndex identifies which thread does the work.
virtual void processData(int threadIndex, size_t startX, size_t startY, size_t endX,
size_t endY) override;
public:
Lut3dTask(const uint8_t* input, uint8_t* output, size_t sizeX, size_t sizeY,
const uint8_t* cube, int cubeSizeX, int cubeSizeY, int cubeSizeZ,
const Restriction* restriction)
: Task{sizeX, sizeY, 4, true, restriction},
mIn{reinterpret_cast<const uchar4*>(input)},
mOut{reinterpret_cast<uchar4*>(output)},
mCubeDimension{cubeSizeX, cubeSizeY, cubeSizeZ, 0},
mCubeTable{cube} {}
};
extern "C" void rsdIntrinsic3DLUT_K(void* dst, void const* in, size_t count, void const* lut,
int32_t pitchy, int32_t pitchz, int dimx, int dimy, int dimz);
void Lut3dTask::kernel(const uchar4* in, uchar4* out, uint32_t length) {
uint32_t x1 = 0;
uint32_t x2 = length;
const uchar* bp = mCubeTable;
int4 dims = mCubeDimension - 1;
const float4 m = (float4)(1.f / 255.f) * convert<float4>(dims);
const int4 coordMul = convert<int4>(m * (float4)0x8000);
const size_t stride_y = mCubeDimension.x * 4;
const size_t stride_z = stride_y * mCubeDimension.y;
// ALOGE("strides %zu %zu", stride_y, stride_z);
#if defined(ARCH_ARM_USE_INTRINSICS)
if (mUsesSimd) {
int32_t len = x2 - x1;
if (len > 0) {
rsdIntrinsic3DLUT_K(out, in, len, bp, stride_y, stride_z, dims.x, dims.y, dims.z);
x1 += len;
out += len;
in += len;
}
}
#endif
while (x1 < x2) {
int4 baseCoord = convert<int4>(*in) * coordMul;
int4 coord1 = baseCoord >> (int4)15;
// int4 coord2 = min(coord1 + 1, gDims - 1);
int4 weight2 = baseCoord & 0x7fff;
int4 weight1 = (int4)0x8000 - weight2;
// ALOGE("coord1 %08x %08x %08x %08x", coord1.x, coord1.y, coord1.z, coord1.w);
const uchar* bp2 = bp + (coord1.x * 4) + (coord1.y * stride_y) + (coord1.z * stride_z);
const uchar4* pt_00 = (const uchar4*)&bp2[0];
const uchar4* pt_10 = (const uchar4*)&bp2[stride_y];
const uchar4* pt_01 = (const uchar4*)&bp2[stride_z];
const uchar4* pt_11 = (const uchar4*)&bp2[stride_y + stride_z];
uint4 v000 = convert<uint4>(pt_00[0]);
uint4 v100 = convert<uint4>(pt_00[1]);
uint4 v010 = convert<uint4>(pt_10[0]);
uint4 v110 = convert<uint4>(pt_10[1]);
uint4 v001 = convert<uint4>(pt_01[0]);
uint4 v101 = convert<uint4>(pt_01[1]);
uint4 v011 = convert<uint4>(pt_11[0]);
uint4 v111 = convert<uint4>(pt_11[1]);
uint4 yz00 = ((v000 * weight1.x) + (v100 * weight2.x)) >> (int4)7;
uint4 yz10 = ((v010 * weight1.x) + (v110 * weight2.x)) >> (int4)7;
uint4 yz01 = ((v001 * weight1.x) + (v101 * weight2.x)) >> (int4)7;
uint4 yz11 = ((v011 * weight1.x) + (v111 * weight2.x)) >> (int4)7;
uint4 z0 = ((yz00 * weight1.y) + (yz10 * weight2.y)) >> (int4)15;
uint4 z1 = ((yz01 * weight1.y) + (yz11 * weight2.y)) >> (int4)15;
uint4 v = ((z0 * weight1.z) + (z1 * weight2.z)) >> (int4)15;
uint4 v2 = (v + 0x7f) >> (int4)8;
uchar4 ret = convert<uchar4>(v2);
ret.w = in->w;
#if 0
if (!x1) {
ALOGE("in %08x %08x %08x %08x", in->r, in->g, in->b, in->a);
ALOGE("baseCoord %08x %08x %08x %08x", baseCoord.x, baseCoord.y, baseCoord.z,
baseCoord.w);
ALOGE("coord1 %08x %08x %08x %08x", coord1.x, coord1.y, coord1.z, coord1.w);
ALOGE("weight1 %08x %08x %08x %08x", weight1.x, weight1.y, weight1.z, weight1.w);
ALOGE("weight2 %08x %08x %08x %08x", weight2.x, weight2.y, weight2.z, weight2.w);
ALOGE("v000 %08x %08x %08x %08x", v000.x, v000.y, v000.z, v000.w);
ALOGE("v100 %08x %08x %08x %08x", v100.x, v100.y, v100.z, v100.w);
ALOGE("yz00 %08x %08x %08x %08x", yz00.x, yz00.y, yz00.z, yz00.w);
ALOGE("z0 %08x %08x %08x %08x", z0.x, z0.y, z0.z, z0.w);
ALOGE("v %08x %08x %08x %08x", v.x, v.y, v.z, v.w);
ALOGE("v2 %08x %08x %08x %08x", v2.x, v2.y, v2.z, v2.w);
}
#endif
*out = ret;
in++;
out++;
x1++;
}
}
void Lut3dTask::processData(int /* threadIndex */, size_t startX, size_t startY, size_t endX,
size_t endY) {
for (size_t y = startY; y < endY; y++) {
size_t offset = mSizeX * y + startX;
kernel(mIn + offset, mOut + offset, endX - startX);
}
}
void RenderScriptToolkit::lut3d(const uint8_t* input, uint8_t* output, size_t sizeX, size_t sizeY,
const uint8_t* cube, size_t cubeSizeX, size_t cubeSizeY,
size_t cubeSizeZ, const Restriction* restriction) {
#ifdef ANDROID_RENDERSCRIPT_TOOLKIT_VALIDATE
if (!validRestriction(LOG_TAG, sizeX, sizeY, restriction)) {
return;
}
#endif
Lut3dTask task(input, output, sizeX, sizeY, cube, cubeSizeX, cubeSizeY, cubeSizeZ, restriction);
processor->doTask(&task);
}
} // namespace renderscript
} // namespace android