blob: eaf679a5fa61276404e51fdcd36f59f669f9f7f3 [file] [log] [blame]
/*
* Copyright (C) 2011-2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <GLES2/gl2.h>
#include <GLES2/gl2ext.h>
#include <rs_hal.h>
#include <rsContext.h>
#include <rsProgram.h>
#include "rsdCore.h"
#include "rsdAllocation.h"
#include "rsdShader.h"
#include "rsdShaderCache.h"
using namespace android;
using namespace android::renderscript;
RsdShader::RsdShader(const Program *p, uint32_t type,
const char * shaderText, size_t shaderLength,
const char** textureNames, size_t textureNamesCount,
const size_t *textureNamesLength) {
mUserShader.replace(0, shaderLength, shaderText);
mRSProgram = p;
mType = type;
initMemberVars();
initAttribAndUniformArray();
init(textureNames, textureNamesCount, textureNamesLength);
for(size_t i=0; i < textureNamesCount; i++) {
mTextureNames.push(String8(textureNames[i], textureNamesLength[i]));
}
}
RsdShader::~RsdShader() {
for (uint32_t i = 0; i < mStateBasedShaders.size(); i ++) {
StateBasedKey *state = mStateBasedShaders.itemAt(i);
if (state->mShaderID) {
glDeleteShader(state->mShaderID);
}
delete state;
}
delete[] mAttribNames;
delete[] mUniformNames;
delete[] mUniformArraySizes;
}
void RsdShader::initMemberVars() {
mDirty = true;
mAttribCount = 0;
mUniformCount = 0;
mAttribNames = nullptr;
mUniformNames = nullptr;
mUniformArraySizes = nullptr;
mCurrentState = nullptr;
mIsValid = false;
}
RsdShader::StateBasedKey *RsdShader::getExistingState() {
RsdShader::StateBasedKey *returnKey = nullptr;
for (uint32_t i = 0; i < mStateBasedShaders.size(); i ++) {
returnKey = mStateBasedShaders.itemAt(i);
for (uint32_t ct = 0; ct < mRSProgram->mHal.state.texturesCount; ct ++) {
uint32_t texType = 0;
if (mRSProgram->mHal.state.textureTargets[ct] == RS_TEXTURE_2D) {
Allocation *a = mRSProgram->mHal.state.textures[ct];
if (a && a->mHal.state.surfaceTextureID) {
texType = GL_TEXTURE_EXTERNAL_OES;
} else {
texType = GL_TEXTURE_2D;
}
} else {
texType = GL_TEXTURE_CUBE_MAP;
}
if (texType != returnKey->mTextureTargets[ct]) {
returnKey = nullptr;
break;
}
}
}
return returnKey;
}
uint32_t RsdShader::getStateBasedShaderID(const Context *rsc) {
StateBasedKey *state = getExistingState();
if (state != nullptr) {
mCurrentState = state;
return mCurrentState->mShaderID;
}
// We have not created a shader for this particular state yet
state = new StateBasedKey(mTextureCount);
mCurrentState = state;
mStateBasedShaders.add(state);
createShader();
loadShader(rsc);
return mCurrentState->mShaderID;
}
void RsdShader::init(const char** textureNames, size_t textureNamesCount,
const size_t *textureNamesLength) {
uint32_t attribCount = 0;
uint32_t uniformCount = 0;
for (uint32_t ct=0; ct < mRSProgram->mHal.state.inputElementsCount; ct++) {
initAddUserElement(mRSProgram->mHal.state.inputElements[ct], mAttribNames,
nullptr, &attribCount, RS_SHADER_ATTR);
}
for (uint32_t ct=0; ct < mRSProgram->mHal.state.constantsCount; ct++) {
initAddUserElement(mRSProgram->mHal.state.constantTypes[ct]->getElement(),
mUniformNames, mUniformArraySizes, &uniformCount, RS_SHADER_UNI);
}
mTextureUniformIndexStart = uniformCount;
for (uint32_t ct=0; ct < mRSProgram->mHal.state.texturesCount; ct++) {
mUniformNames[uniformCount] = "UNI_";
mUniformNames[uniformCount].append(textureNames[ct], textureNamesLength[ct]);
mUniformArraySizes[uniformCount] = 1;
uniformCount++;
}
}
std::string RsdShader::getGLSLInputString() const {
std::string s;
for (uint32_t ct=0; ct < mRSProgram->mHal.state.inputElementsCount; ct++) {
const Element *e = mRSProgram->mHal.state.inputElements[ct];
for (uint32_t field=0; field < e->mHal.state.fieldsCount; field++) {
const Element *f = e->mHal.state.fields[field];
// Cannot be complex
rsAssert(!f->mHal.state.fieldsCount);
switch (f->mHal.state.vectorSize) {
case 1: s.append("attribute float ATTRIB_"); break;
case 2: s.append("attribute vec2 ATTRIB_"); break;
case 3: s.append("attribute vec3 ATTRIB_"); break;
case 4: s.append("attribute vec4 ATTRIB_"); break;
default:
rsAssert(0);
}
s.append(e->mHal.state.fieldNames[field]);
s.append(";\n");
}
}
return s;
}
void RsdShader::appendAttributes() {
for (uint32_t ct=0; ct < mRSProgram->mHal.state.inputElementsCount; ct++) {
const Element *e = mRSProgram->mHal.state.inputElements[ct];
for (uint32_t field=0; field < e->mHal.state.fieldsCount; field++) {
const Element *f = e->mHal.state.fields[field];
const char *fn = e->mHal.state.fieldNames[field];
// Cannot be complex
rsAssert(!f->mHal.state.fieldsCount);
switch (f->mHal.state.vectorSize) {
case 1: mShader.append("attribute float ATTRIB_"); break;
case 2: mShader.append("attribute vec2 ATTRIB_"); break;
case 3: mShader.append("attribute vec3 ATTRIB_"); break;
case 4: mShader.append("attribute vec4 ATTRIB_"); break;
default:
rsAssert(0);
}
mShader.append(fn);
mShader.append(";\n");
}
}
}
void RsdShader::appendTextures() {
// TODO: this does not yet handle cases where the texture changes between IO
// input and local
bool appendUsing = true;
for (uint32_t ct = 0; ct < mRSProgram->mHal.state.texturesCount; ct ++) {
if (mRSProgram->mHal.state.textureTargets[ct] == RS_TEXTURE_2D) {
Allocation *a = mRSProgram->mHal.state.textures[ct];
if (a && a->mHal.state.surfaceTextureID) {
if(appendUsing) {
mShader.append("#extension GL_OES_EGL_image_external : require\n");
appendUsing = false;
}
mShader.append("uniform samplerExternalOES UNI_");
mCurrentState->mTextureTargets[ct] = GL_TEXTURE_EXTERNAL_OES;
} else {
mShader.append("uniform sampler2D UNI_");
mCurrentState->mTextureTargets[ct] = GL_TEXTURE_2D;
}
} else {
mShader.append("uniform samplerCube UNI_");
mCurrentState->mTextureTargets[ct] = GL_TEXTURE_CUBE_MAP;
}
mShader.append(mTextureNames[ct]);
mShader.append(";\n");
}
}
bool RsdShader::createShader() {
mShader.clear();
if (mType == GL_FRAGMENT_SHADER) {
mShader.append("precision mediump float;\n");
}
appendUserConstants();
appendAttributes();
appendTextures();
mShader.append(mUserShader);
return true;
}
bool RsdShader::loadShader(const Context *rsc) {
mCurrentState->mShaderID = glCreateShader(mType);
rsAssert(mCurrentState->mShaderID);
if(!mShader.length()) {
createShader();
}
if (rsc->props.mLogShaders) {
ALOGV("Loading shader type %x, ID %i", mType, mCurrentState->mShaderID);
ALOGV("%s", mShader.c_str());
}
if (mCurrentState->mShaderID) {
const char * ss = mShader.c_str();
RSD_CALL_GL(glShaderSource, mCurrentState->mShaderID, 1, &ss, nullptr);
RSD_CALL_GL(glCompileShader, mCurrentState->mShaderID);
GLint compiled = 0;
RSD_CALL_GL(glGetShaderiv, mCurrentState->mShaderID, GL_COMPILE_STATUS, &compiled);
if (!compiled) {
GLint infoLen = 0;
RSD_CALL_GL(glGetShaderiv, mCurrentState->mShaderID, GL_INFO_LOG_LENGTH, &infoLen);
if (infoLen) {
char* buf = (char*) malloc(infoLen);
if (buf) {
RSD_CALL_GL(glGetShaderInfoLog, mCurrentState->mShaderID, infoLen, nullptr, buf);
rsc->setError(RS_ERROR_FATAL_PROGRAM_LINK, buf);
free(buf);
}
RSD_CALL_GL(glDeleteShader, mCurrentState->mShaderID);
mCurrentState->mShaderID = 0;
return false;
}
}
}
if (rsc->props.mLogShaders) {
ALOGV("--Shader load result %x ", glGetError());
}
mIsValid = true;
return true;
}
void RsdShader::appendUserConstants() {
for (uint32_t ct=0; ct < mRSProgram->mHal.state.constantsCount; ct++) {
const Element *e = mRSProgram->mHal.state.constantTypes[ct]->getElement();
for (uint32_t field=0; field < e->mHal.state.fieldsCount; field++) {
const Element *f = e->mHal.state.fields[field];
const char *fn = e->mHal.state.fieldNames[field];
// Cannot be complex
rsAssert(!f->mHal.state.fieldsCount);
if (f->mHal.state.dataType == RS_TYPE_MATRIX_4X4) {
mShader.append("uniform mat4 UNI_");
} else if (f->mHal.state.dataType == RS_TYPE_MATRIX_3X3) {
mShader.append("uniform mat3 UNI_");
} else if (f->mHal.state.dataType == RS_TYPE_MATRIX_2X2) {
mShader.append("uniform mat2 UNI_");
} else {
switch (f->mHal.state.vectorSize) {
case 1: mShader.append("uniform float UNI_"); break;
case 2: mShader.append("uniform vec2 UNI_"); break;
case 3: mShader.append("uniform vec3 UNI_"); break;
case 4: mShader.append("uniform vec4 UNI_"); break;
default:
rsAssert(0);
}
}
mShader.append(fn);
if (e->mHal.state.fieldArraySizes[field] > 1) {
mShader += "[";
mShader += std::to_string(e->mHal.state.fieldArraySizes[field]);
mShader += "]";
}
mShader.append(";\n");
}
}
}
void RsdShader::logUniform(const Element *field, const float *fd, uint32_t arraySize ) {
RsDataType dataType = field->mHal.state.dataType;
uint32_t elementSize = field->mHal.state.elementSizeBytes / sizeof(float);
for (uint32_t i = 0; i < arraySize; i ++) {
if (arraySize > 1) {
ALOGV("Array Element [%u]", i);
}
if (dataType == RS_TYPE_MATRIX_4X4) {
ALOGV("Matrix4x4");
ALOGV("{%f, %f, %f, %f", fd[0], fd[4], fd[8], fd[12]);
ALOGV(" %f, %f, %f, %f", fd[1], fd[5], fd[9], fd[13]);
ALOGV(" %f, %f, %f, %f", fd[2], fd[6], fd[10], fd[14]);
ALOGV(" %f, %f, %f, %f}", fd[3], fd[7], fd[11], fd[15]);
} else if (dataType == RS_TYPE_MATRIX_3X3) {
ALOGV("Matrix3x3");
ALOGV("{%f, %f, %f", fd[0], fd[3], fd[6]);
ALOGV(" %f, %f, %f", fd[1], fd[4], fd[7]);
ALOGV(" %f, %f, %f}", fd[2], fd[5], fd[8]);
} else if (dataType == RS_TYPE_MATRIX_2X2) {
ALOGV("Matrix2x2");
ALOGV("{%f, %f", fd[0], fd[2]);
ALOGV(" %f, %f}", fd[1], fd[3]);
} else {
switch (field->mHal.state.vectorSize) {
case 1:
ALOGV("Uniform 1 = %f", fd[0]);
break;
case 2:
ALOGV("Uniform 2 = %f %f", fd[0], fd[1]);
break;
case 3:
ALOGV("Uniform 3 = %f %f %f", fd[0], fd[1], fd[2]);
break;
case 4:
ALOGV("Uniform 4 = %f %f %f %f", fd[0], fd[1], fd[2], fd[3]);
break;
default:
rsAssert(0);
}
}
ALOGV("Element size %u data=%p", elementSize, fd);
fd += elementSize;
ALOGV("New data=%p", fd);
}
}
void RsdShader::setUniform(const Context *rsc, const Element *field, const float *fd,
int32_t slot, uint32_t arraySize ) {
RsDataType dataType = field->mHal.state.dataType;
if (dataType == RS_TYPE_MATRIX_4X4) {
RSD_CALL_GL(glUniformMatrix4fv, slot, arraySize, GL_FALSE, fd);
} else if (dataType == RS_TYPE_MATRIX_3X3) {
RSD_CALL_GL(glUniformMatrix3fv, slot, arraySize, GL_FALSE, fd);
} else if (dataType == RS_TYPE_MATRIX_2X2) {
RSD_CALL_GL(glUniformMatrix2fv, slot, arraySize, GL_FALSE, fd);
} else {
switch (field->mHal.state.vectorSize) {
case 1:
RSD_CALL_GL(glUniform1fv, slot, arraySize, fd);
break;
case 2:
RSD_CALL_GL(glUniform2fv, slot, arraySize, fd);
break;
case 3:
RSD_CALL_GL(glUniform3fv, slot, arraySize, fd);
break;
case 4:
RSD_CALL_GL(glUniform4fv, slot, arraySize, fd);
break;
default:
rsAssert(0);
}
}
}
void RsdShader::setupSampler(const Context *rsc, const Sampler *s, const Allocation *tex) {
RsdHal *dc = (RsdHal *)rsc->mHal.drv;
GLenum trans[] = {
GL_NEAREST, //RS_SAMPLER_NEAREST,
GL_LINEAR, //RS_SAMPLER_LINEAR,
GL_LINEAR_MIPMAP_LINEAR, //RS_SAMPLER_LINEAR_MIP_LINEAR,
GL_REPEAT, //RS_SAMPLER_WRAP,
GL_CLAMP_TO_EDGE, //RS_SAMPLER_CLAMP
GL_LINEAR_MIPMAP_NEAREST, //RS_SAMPLER_LINEAR_MIP_NEAREST
};
GLenum transNP[] = {
GL_NEAREST, //RS_SAMPLER_NEAREST,
GL_LINEAR, //RS_SAMPLER_LINEAR,
GL_LINEAR, //RS_SAMPLER_LINEAR_MIP_LINEAR,
GL_CLAMP_TO_EDGE, //RS_SAMPLER_WRAP,
GL_CLAMP_TO_EDGE, //RS_SAMPLER_CLAMP
GL_LINEAR, //RS_SAMPLER_LINEAR_MIP_NEAREST,
};
// This tells us the correct texture type
DrvAllocation *drvTex = (DrvAllocation *)tex->mHal.drv;
const GLenum target = drvTex->glTarget;
if (!target) {
// this can happen if the user set the wrong allocation flags.
rsc->setError(RS_ERROR_BAD_VALUE, "Allocation not compatible with sampler");
return;
}
if (!dc->gl.gl.OES_texture_npot && tex->getType()->getIsNp2()) {
if (tex->getHasGraphicsMipmaps() &&
(dc->gl.gl.NV_texture_npot_2D_mipmap || dc->gl.gl.IMG_texture_npot)) {
if (dc->gl.gl.NV_texture_npot_2D_mipmap) {
RSD_CALL_GL(glTexParameteri, target, GL_TEXTURE_MIN_FILTER,
trans[s->mHal.state.minFilter]);
} else {
switch (trans[s->mHal.state.minFilter]) {
case GL_LINEAR_MIPMAP_LINEAR:
RSD_CALL_GL(glTexParameteri, target, GL_TEXTURE_MIN_FILTER,
GL_LINEAR_MIPMAP_NEAREST);
break;
default:
RSD_CALL_GL(glTexParameteri, target, GL_TEXTURE_MIN_FILTER,
trans[s->mHal.state.minFilter]);
break;
}
}
} else {
RSD_CALL_GL(glTexParameteri, target, GL_TEXTURE_MIN_FILTER,
transNP[s->mHal.state.minFilter]);
}
RSD_CALL_GL(glTexParameteri, target, GL_TEXTURE_MAG_FILTER,
transNP[s->mHal.state.magFilter]);
RSD_CALL_GL(glTexParameteri, target, GL_TEXTURE_WRAP_S, transNP[s->mHal.state.wrapS]);
RSD_CALL_GL(glTexParameteri, target, GL_TEXTURE_WRAP_T, transNP[s->mHal.state.wrapT]);
} else {
if (tex->getHasGraphicsMipmaps()) {
RSD_CALL_GL(glTexParameteri, target, GL_TEXTURE_MIN_FILTER,
trans[s->mHal.state.minFilter]);
} else {
RSD_CALL_GL(glTexParameteri, target, GL_TEXTURE_MIN_FILTER,
transNP[s->mHal.state.minFilter]);
}
RSD_CALL_GL(glTexParameteri, target, GL_TEXTURE_MAG_FILTER, trans[s->mHal.state.magFilter]);
RSD_CALL_GL(glTexParameteri, target, GL_TEXTURE_WRAP_S, trans[s->mHal.state.wrapS]);
RSD_CALL_GL(glTexParameteri, target, GL_TEXTURE_WRAP_T, trans[s->mHal.state.wrapT]);
}
float anisoValue = rsMin(dc->gl.gl.EXT_texture_max_aniso, s->mHal.state.aniso);
if (dc->gl.gl.EXT_texture_max_aniso > 1.0f) {
RSD_CALL_GL(glTexParameterf, target, GL_TEXTURE_MAX_ANISOTROPY_EXT, anisoValue);
}
rsdGLCheckError(rsc, "Sampler::setup tex env");
}
void RsdShader::setupTextures(const Context *rsc, RsdShaderCache *sc) {
if (mRSProgram->mHal.state.texturesCount == 0) {
return;
}
RsdHal *dc = (RsdHal *)rsc->mHal.drv;
uint32_t numTexturesToBind = mRSProgram->mHal.state.texturesCount;
uint32_t numTexturesAvailable = dc->gl.gl.maxFragmentTextureImageUnits;
if (numTexturesToBind >= numTexturesAvailable) {
ALOGE("Attempting to bind %u textures on shader id %p, but only %u are available",
mRSProgram->mHal.state.texturesCount, this, numTexturesAvailable);
rsc->setError(RS_ERROR_BAD_SHADER, "Cannot bind more textuers than available");
numTexturesToBind = numTexturesAvailable;
}
for (uint32_t ct=0; ct < numTexturesToBind; ct++) {
RSD_CALL_GL(glActiveTexture, GL_TEXTURE0 + ct);
RSD_CALL_GL(glUniform1i, sc->fragUniformSlot(mTextureUniformIndexStart + ct), ct);
if (!mRSProgram->mHal.state.textures[ct]) {
// if nothing is bound, reset to default GL texture
RSD_CALL_GL(glBindTexture, mCurrentState->mTextureTargets[ct], 0);
continue;
}
DrvAllocation *drvTex = (DrvAllocation *)mRSProgram->mHal.state.textures[ct]->mHal.drv;
if (mCurrentState->mTextureTargets[ct] != GL_TEXTURE_2D &&
mCurrentState->mTextureTargets[ct] != GL_TEXTURE_CUBE_MAP &&
mCurrentState->mTextureTargets[ct] != GL_TEXTURE_EXTERNAL_OES) {
ALOGE("Attempting to bind unknown texture to shader id %p, texture unit %u",
this, ct);
rsc->setError(RS_ERROR_BAD_SHADER, "Non-texture allocation bound to a shader");
}
RSD_CALL_GL(glBindTexture, mCurrentState->mTextureTargets[ct], drvTex->textureID);
rsdGLCheckError(rsc, "ProgramFragment::setup tex bind");
if (mRSProgram->mHal.state.samplers[ct]) {
setupSampler(rsc, mRSProgram->mHal.state.samplers[ct],
mRSProgram->mHal.state.textures[ct]);
} else {
RSD_CALL_GL(glTexParameteri, mCurrentState->mTextureTargets[ct],
GL_TEXTURE_MIN_FILTER, GL_NEAREST);
RSD_CALL_GL(glTexParameteri, mCurrentState->mTextureTargets[ct],
GL_TEXTURE_MAG_FILTER, GL_NEAREST);
RSD_CALL_GL(glTexParameteri, mCurrentState->mTextureTargets[ct],
GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
RSD_CALL_GL(glTexParameteri, mCurrentState->mTextureTargets[ct],
GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
rsdGLCheckError(rsc, "ProgramFragment::setup basic tex env");
}
rsdGLCheckError(rsc, "ProgramFragment::setup uniforms");
}
RSD_CALL_GL(glActiveTexture, GL_TEXTURE0);
mDirty = false;
rsdGLCheckError(rsc, "ProgramFragment::setup");
}
void RsdShader::setupUserConstants(const Context *rsc, RsdShaderCache *sc, bool isFragment) {
uint32_t uidx = 0;
for (uint32_t ct=0; ct < mRSProgram->mHal.state.constantsCount; ct++) {
Allocation *alloc = mRSProgram->mHal.state.constants[ct];
if (!alloc) {
ALOGE("Attempting to set constants on shader id %p, but alloc at slot %u is not set",
this, ct);
rsc->setError(RS_ERROR_BAD_SHADER, "No constant allocation bound");
continue;
}
const uint8_t *data = static_cast<const uint8_t *>(alloc->mHal.drvState.lod[0].mallocPtr);
const Element *e = mRSProgram->mHal.state.constantTypes[ct]->getElement();
for (uint32_t field=0; field < e->mHal.state.fieldsCount; field++) {
const Element *f = e->mHal.state.fields[field];
const char *fieldName = e->mHal.state.fieldNames[field];
uint32_t offset = e->mHal.state.fieldOffsetBytes[field];
const float *fd = reinterpret_cast<const float *>(&data[offset]);
int32_t slot = -1;
uint32_t arraySize = 1;
if (!isFragment) {
slot = sc->vtxUniformSlot(uidx);
arraySize = sc->vtxUniformSize(uidx);
} else {
slot = sc->fragUniformSlot(uidx);
arraySize = sc->fragUniformSize(uidx);
}
if (rsc->props.mLogShadersUniforms) {
ALOGV("Uniform slot=%i, offset=%i, constant=%i, field=%i, uidx=%i, name=%s",
slot, offset, ct, field, uidx, fieldName);
}
uidx ++;
if (slot < 0) {
continue;
}
if (rsc->props.mLogShadersUniforms) {
logUniform(f, fd, arraySize);
}
setUniform(rsc, f, fd, slot, arraySize);
}
}
}
void RsdShader::setup(const android::renderscript::Context *rsc, RsdShaderCache *sc) {
setupUserConstants(rsc, sc, mType == GL_FRAGMENT_SHADER);
setupTextures(rsc, sc);
}
void RsdShader::initAttribAndUniformArray() {
mAttribCount = 0;
for (uint32_t ct=0; ct < mRSProgram->mHal.state.inputElementsCount; ct++) {
const Element *elem = mRSProgram->mHal.state.inputElements[ct];
mAttribCount += elem->mHal.state.fieldsCount;
}
mUniformCount = 0;
for (uint32_t ct=0; ct < mRSProgram->mHal.state.constantsCount; ct++) {
const Element *elem = mRSProgram->mHal.state.constantTypes[ct]->getElement();
mUniformCount += elem->mHal.state.fieldsCount;
}
mUniformCount += mRSProgram->mHal.state.texturesCount;
if (mAttribCount) {
mAttribNames = new std::string[mAttribCount];
}
if (mUniformCount) {
mUniformNames = new std::string[mUniformCount];
mUniformArraySizes = new uint32_t[mUniformCount];
}
mTextureCount = mRSProgram->mHal.state.texturesCount;
}
void RsdShader::initAddUserElement(const Element *e, std::string *names,
uint32_t *arrayLengths, uint32_t *count,
const char *prefix) {
rsAssert(e->mHal.state.fieldsCount);
for (uint32_t ct=0; ct < e->mHal.state.fieldsCount; ct++) {
const Element *ce = e->mHal.state.fields[ct];
if (ce->mHal.state.fieldsCount) {
initAddUserElement(ce, names, arrayLengths, count, prefix);
} else {
std::string tmp(prefix);
tmp.append(e->mHal.state.fieldNames[ct]);
names[*count] = tmp;
if (arrayLengths) {
arrayLengths[*count] = e->mHal.state.fieldArraySizes[ct];
}
(*count)++;
}
}
}