| /* |
| * Copyright (C) 2013 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "rsContext.h" |
| #include "rsAllocation.h" |
| #include "rs_hal.h" |
| |
| #ifndef RS_COMPATIBILITY_LIB |
| #include "rsGrallocConsumer.h" |
| #endif |
| |
| namespace android { |
| namespace renderscript { |
| |
| Allocation::Allocation(Context *rsc, const Type *type, uint32_t usages, |
| RsAllocationMipmapControl mc, void * ptr) |
| : ObjectBase(rsc) { |
| |
| memset(&mHal, 0, sizeof(mHal)); |
| mHal.state.mipmapControl = RS_ALLOCATION_MIPMAP_NONE; |
| mHal.state.usageFlags = usages; |
| mHal.state.mipmapControl = mc; |
| mHal.state.userProvidedPtr = ptr; |
| |
| setType(type); |
| updateCache(); |
| } |
| |
| Allocation::Allocation(Context *rsc, const Allocation *alloc, const Type *type) |
| : ObjectBase(rsc) { |
| |
| memset(&mHal, 0, sizeof(mHal)); |
| mHal.state.baseAlloc = alloc; |
| mHal.state.usageFlags = alloc->mHal.state.usageFlags; |
| mHal.state.mipmapControl = RS_ALLOCATION_MIPMAP_NONE; |
| |
| setType(type); |
| updateCache(); |
| } |
| |
| void Allocation::operator delete(void* ptr) { |
| if (ptr) { |
| Allocation *a = (Allocation*) ptr; |
| a->getContext()->mHal.funcs.freeRuntimeMem(ptr); |
| } |
| } |
| |
| Allocation * Allocation::createAllocationStrided(Context *rsc, const Type *type, uint32_t usages, |
| RsAllocationMipmapControl mc, void * ptr, |
| size_t requiredAlignment) { |
| // Allocation objects must use allocator specified by the driver |
| void* allocMem = rsc->mHal.funcs.allocRuntimeMem(sizeof(Allocation), 0); |
| |
| if (!allocMem) { |
| rsc->setError(RS_ERROR_FATAL_DRIVER, "Couldn't allocate memory for Allocation"); |
| return nullptr; |
| } |
| |
| bool success = false; |
| Allocation *a = nullptr; |
| if (usages & RS_ALLOCATION_USAGE_OEM) { |
| if (rsc->mHal.funcs.allocation.initOem != nullptr) { |
| a = new (allocMem) Allocation(rsc, type, usages, mc, nullptr); |
| success = rsc->mHal.funcs.allocation.initOem(rsc, a, type->getElement()->getHasReferences(), ptr); |
| } else { |
| rsc->setError(RS_ERROR_FATAL_DRIVER, "Allocation Init called with USAGE_OEM but driver does not support it"); |
| return nullptr; |
| } |
| #ifdef RS_COMPATIBILITY_LIB |
| } else if (usages & RS_ALLOCATION_USAGE_INCREMENTAL_SUPPORT){ |
| a = new (allocMem) Allocation(rsc, type, usages, mc, ptr); |
| success = rsc->mHal.funcs.allocation.initStrided(rsc, a, type->getElement()->getHasReferences(), requiredAlignment); |
| #endif |
| } else { |
| a = new (allocMem) Allocation(rsc, type, usages, mc, ptr); |
| success = rsc->mHal.funcs.allocation.init(rsc, a, type->getElement()->getHasReferences()); |
| } |
| |
| if (!success) { |
| rsc->setError(RS_ERROR_FATAL_DRIVER, "Allocation::Allocation, alloc failure"); |
| delete a; |
| return nullptr; |
| } |
| |
| return a; |
| } |
| |
| Allocation * Allocation::createAllocation(Context *rsc, const Type *type, uint32_t usages, |
| RsAllocationMipmapControl mc, void * ptr) { |
| return Allocation::createAllocationStrided(rsc, type, usages, mc, ptr, kMinimumRSAlignment); |
| } |
| |
| Allocation * Allocation::createAdapter(Context *rsc, const Allocation *alloc, const Type *type) { |
| // Allocation objects must use allocator specified by the driver |
| void* allocMem = rsc->mHal.funcs.allocRuntimeMem(sizeof(Allocation), 0); |
| |
| if (!allocMem) { |
| rsc->setError(RS_ERROR_FATAL_DRIVER, "Couldn't allocate memory for Allocation"); |
| return nullptr; |
| } |
| |
| Allocation *a = new (allocMem) Allocation(rsc, alloc, type); |
| |
| if (!rsc->mHal.funcs.allocation.initAdapter(rsc, a)) { |
| rsc->setError(RS_ERROR_FATAL_DRIVER, "Allocation::Allocation, alloc failure"); |
| delete a; |
| return nullptr; |
| } |
| |
| return a; |
| } |
| |
| void Allocation::adapterOffset(Context *rsc, const uint32_t *offsets, size_t len) { |
| if (len >= sizeof(uint32_t) * 9) { |
| mHal.state.originX = offsets[0]; |
| mHal.state.originY = offsets[1]; |
| mHal.state.originZ = offsets[2]; |
| mHal.state.originLOD = offsets[3]; |
| mHal.state.originFace = offsets[4]; |
| mHal.state.originArray[0] = offsets[5]; |
| mHal.state.originArray[1] = offsets[6]; |
| mHal.state.originArray[2] = offsets[7]; |
| mHal.state.originArray[3] = offsets[8]; |
| } |
| |
| rsc->mHal.funcs.allocation.adapterOffset(rsc, this); |
| } |
| |
| |
| |
| void Allocation::updateCache() { |
| const Type *type = mHal.state.type; |
| mHal.state.yuv = type->getDimYuv(); |
| mHal.state.hasFaces = type->getDimFaces(); |
| mHal.state.hasMipmaps = type->getDimLOD(); |
| mHal.state.elementSizeBytes = type->getElementSizeBytes(); |
| mHal.state.hasReferences = mHal.state.type->getElement()->getHasReferences(); |
| } |
| |
| Allocation::~Allocation() { |
| #ifndef RS_COMPATIBILITY_LIB |
| if (mGrallocConsumer) { |
| mGrallocConsumer->releaseIdx(mCurrentIdx); |
| if (!mGrallocConsumer->isActive()) { |
| delete mGrallocConsumer; |
| } |
| mGrallocConsumer = nullptr; |
| } |
| #endif |
| |
| freeChildrenUnlocked(); |
| mRSC->mHal.funcs.allocation.destroy(mRSC, this); |
| } |
| |
| void Allocation::syncAll(Context *rsc, RsAllocationUsageType src) { |
| rsc->mHal.funcs.allocation.syncAll(rsc, this, src); |
| } |
| |
| void * Allocation::getPointer(const Context *rsc, uint32_t lod, RsAllocationCubemapFace face, |
| uint32_t z, uint32_t array, size_t *stride) { |
| |
| if ((lod >= mHal.drvState.lodCount) || |
| (z && (z >= mHal.drvState.lod[lod].dimZ)) || |
| ((face != RS_ALLOCATION_CUBEMAP_FACE_POSITIVE_X) && !mHal.state.hasFaces) || |
| (array != 0)) { |
| return nullptr; |
| } |
| |
| if (mRSC->mHal.funcs.allocation.getPointer != nullptr) { |
| // Notify the driver, if present that the user is mapping the buffer |
| mRSC->mHal.funcs.allocation.getPointer(rsc, this, lod, face, z, array); |
| } |
| |
| size_t s = 0; |
| if ((stride != nullptr) && mHal.drvState.lod[0].dimY) { |
| *stride = mHal.drvState.lod[lod].stride; |
| } |
| return mHal.drvState.lod[lod].mallocPtr; |
| } |
| |
| void Allocation::data(Context *rsc, uint32_t xoff, uint32_t lod, |
| uint32_t count, const void *data, size_t sizeBytes) { |
| const size_t eSize = mHal.state.type->getElementSizeBytes(); |
| |
| if ((count * eSize) != sizeBytes) { |
| char buf[1024]; |
| snprintf(buf, sizeof(buf), |
| "Allocation::subData called with mismatched size expected %zu, got %zu", |
| (count * eSize), sizeBytes); |
| rsc->setError(RS_ERROR_BAD_VALUE, buf); |
| mHal.state.type->dumpLOGV("type info"); |
| return; |
| } |
| |
| rsc->mHal.funcs.allocation.data1D(rsc, this, xoff, lod, count, data, sizeBytes); |
| sendDirty(rsc); |
| } |
| |
| void Allocation::data(Context *rsc, uint32_t xoff, uint32_t yoff, uint32_t lod, RsAllocationCubemapFace face, |
| uint32_t w, uint32_t h, const void *data, size_t sizeBytes, size_t stride) { |
| rsc->mHal.funcs.allocation.data2D(rsc, this, xoff, yoff, lod, face, w, h, data, sizeBytes, stride); |
| sendDirty(rsc); |
| } |
| |
| void Allocation::data(Context *rsc, uint32_t xoff, uint32_t yoff, uint32_t zoff, |
| uint32_t lod, |
| uint32_t w, uint32_t h, uint32_t d, const void *data, size_t sizeBytes, size_t stride) { |
| rsc->mHal.funcs.allocation.data3D(rsc, this, xoff, yoff, zoff, lod, w, h, d, data, sizeBytes, stride); |
| sendDirty(rsc); |
| } |
| |
| void Allocation::read(Context *rsc, uint32_t xoff, uint32_t lod, |
| uint32_t count, void *data, size_t sizeBytes) { |
| const size_t eSize = mHal.state.type->getElementSizeBytes(); |
| |
| if ((count * eSize) != sizeBytes) { |
| char buf[1024]; |
| snprintf(buf, sizeof(buf), |
| "Allocation::read called with mismatched size expected %zu, got %zu", |
| (count * eSize), sizeBytes); |
| rsc->setError(RS_ERROR_BAD_VALUE, buf); |
| mHal.state.type->dumpLOGV("type info"); |
| return; |
| } |
| |
| rsc->mHal.funcs.allocation.read1D(rsc, this, xoff, lod, count, data, sizeBytes); |
| } |
| |
| void Allocation::read(Context *rsc, uint32_t xoff, uint32_t yoff, uint32_t lod, RsAllocationCubemapFace face, |
| uint32_t w, uint32_t h, void *data, size_t sizeBytes, size_t stride) { |
| const size_t eSize = mHal.state.elementSizeBytes; |
| const size_t lineSize = eSize * w; |
| if (!stride) { |
| stride = lineSize; |
| } else { |
| if ((lineSize * h) != sizeBytes) { |
| char buf[1024]; |
| snprintf(buf, sizeof(buf), "Allocation size mismatch, expected %zu, got %zu", |
| (lineSize * h), sizeBytes); |
| rsc->setError(RS_ERROR_BAD_VALUE, buf); |
| return; |
| } |
| } |
| |
| rsc->mHal.funcs.allocation.read2D(rsc, this, xoff, yoff, lod, face, w, h, data, sizeBytes, stride); |
| } |
| |
| void Allocation::read(Context *rsc, uint32_t xoff, uint32_t yoff, uint32_t zoff, uint32_t lod, |
| uint32_t w, uint32_t h, uint32_t d, void *data, size_t sizeBytes, size_t stride) { |
| const size_t eSize = mHal.state.elementSizeBytes; |
| const size_t lineSize = eSize * w; |
| if (!stride) { |
| stride = lineSize; |
| } |
| |
| rsc->mHal.funcs.allocation.read3D(rsc, this, xoff, yoff, zoff, lod, w, h, d, data, sizeBytes, stride); |
| |
| } |
| |
| void Allocation::elementData(Context *rsc, uint32_t x, uint32_t y, uint32_t z, |
| const void *data, uint32_t cIdx, size_t sizeBytes) { |
| if (x >= mHal.drvState.lod[0].dimX) { |
| rsc->setError(RS_ERROR_BAD_VALUE, "subElementData X offset out of range."); |
| return; |
| } |
| |
| if (y > 0 && y >= mHal.drvState.lod[0].dimY) { |
| rsc->setError(RS_ERROR_BAD_VALUE, "subElementData Y offset out of range."); |
| return; |
| } |
| |
| if (z > 0 && z >= mHal.drvState.lod[0].dimZ) { |
| rsc->setError(RS_ERROR_BAD_VALUE, "subElementData Z offset out of range."); |
| return; |
| } |
| |
| if (cIdx >= mHal.state.type->getElement()->getFieldCount()) { |
| rsc->setError(RS_ERROR_BAD_VALUE, "subElementData component out of range."); |
| return; |
| } |
| |
| const Element * e = mHal.state.type->getElement()->getField(cIdx); |
| uint32_t elemArraySize = mHal.state.type->getElement()->getFieldArraySize(cIdx); |
| if (sizeBytes != e->getSizeBytes() * elemArraySize) { |
| rsc->setError(RS_ERROR_BAD_VALUE, "subElementData bad size."); |
| return; |
| } |
| |
| rsc->mHal.funcs.allocation.elementData(rsc, this, x, y, z, data, cIdx, sizeBytes); |
| sendDirty(rsc); |
| } |
| |
| void Allocation::elementRead(Context *rsc, uint32_t x, uint32_t y, uint32_t z, |
| void *data, uint32_t cIdx, size_t sizeBytes) { |
| if (x >= mHal.drvState.lod[0].dimX) { |
| rsc->setError(RS_ERROR_BAD_VALUE, "subElementData X offset out of range."); |
| return; |
| } |
| |
| if (y > 0 && y >= mHal.drvState.lod[0].dimY) { |
| rsc->setError(RS_ERROR_BAD_VALUE, "subElementData Y offset out of range."); |
| return; |
| } |
| |
| if (z > 0 && z >= mHal.drvState.lod[0].dimZ) { |
| rsc->setError(RS_ERROR_BAD_VALUE, "subElementData Z offset out of range."); |
| return; |
| } |
| |
| if (cIdx >= mHal.state.type->getElement()->getFieldCount()) { |
| rsc->setError(RS_ERROR_BAD_VALUE, "subElementData component out of range."); |
| return; |
| } |
| |
| const Element * e = mHal.state.type->getElement()->getField(cIdx); |
| uint32_t elemArraySize = mHal.state.type->getElement()->getFieldArraySize(cIdx); |
| if (sizeBytes != e->getSizeBytes() * elemArraySize) { |
| rsc->setError(RS_ERROR_BAD_VALUE, "subElementData bad size."); |
| return; |
| } |
| |
| rsc->mHal.funcs.allocation.elementRead(rsc, this, x, y, z, data, cIdx, sizeBytes); |
| } |
| |
| void Allocation::addProgramToDirty(const Program *p) { |
| mToDirtyList.push_back(p); |
| } |
| |
| void Allocation::removeProgramToDirty(const Program *p) { |
| for (size_t ct=0; ct < mToDirtyList.size(); ct++) { |
| if (mToDirtyList[ct] == p) { |
| mToDirtyList.erase(mToDirtyList.begin() + ct); |
| return; |
| } |
| } |
| rsAssert(0); |
| } |
| |
| void Allocation::dumpLOGV(const char *prefix) const { |
| ObjectBase::dumpLOGV(prefix); |
| char buf[1024]; |
| |
| if ((strlen(prefix) + 10) < sizeof(buf)) { |
| snprintf(buf, sizeof(buf), "%s type ", prefix); |
| if (mHal.state.type) { |
| mHal.state.type->dumpLOGV(buf); |
| } |
| } |
| ALOGV("%s allocation ptr=%p mUsageFlags=0x04%x, mMipmapControl=0x%04x", |
| prefix, mHal.drvState.lod[0].mallocPtr, mHal.state.usageFlags, mHal.state.mipmapControl); |
| } |
| |
| uint32_t Allocation::getPackedSize() const { |
| uint32_t numItems = mHal.state.type->getCellCount(); |
| return numItems * mHal.state.type->getElement()->getSizeBytesUnpadded(); |
| } |
| |
| void Allocation::writePackedData(Context *rsc, const Type *type, |
| uint8_t *dst, const uint8_t *src, bool dstPadded) { |
| const Element *elem = type->getElement(); |
| uint32_t unpaddedBytes = elem->getSizeBytesUnpadded(); |
| uint32_t paddedBytes = elem->getSizeBytes(); |
| uint32_t numItems = type->getPackedSizeBytes() / paddedBytes; |
| |
| uint32_t srcInc = !dstPadded ? paddedBytes : unpaddedBytes; |
| uint32_t dstInc = dstPadded ? paddedBytes : unpaddedBytes; |
| |
| // no sub-elements |
| uint32_t fieldCount = elem->getFieldCount(); |
| if (fieldCount == 0) { |
| for (uint32_t i = 0; i < numItems; i ++) { |
| memcpy(dst, src, unpaddedBytes); |
| src += srcInc; |
| dst += dstInc; |
| } |
| return; |
| } |
| |
| // Cache offsets |
| uint32_t *offsetsPadded = new uint32_t[fieldCount]; |
| uint32_t *offsetsUnpadded = new uint32_t[fieldCount]; |
| uint32_t *sizeUnpadded = new uint32_t[fieldCount]; |
| |
| for (uint32_t i = 0; i < fieldCount; i++) { |
| offsetsPadded[i] = elem->getFieldOffsetBytes(i); |
| offsetsUnpadded[i] = elem->getFieldOffsetBytesUnpadded(i); |
| sizeUnpadded[i] = elem->getField(i)->getSizeBytesUnpadded(); |
| } |
| |
| uint32_t *srcOffsets = !dstPadded ? offsetsPadded : offsetsUnpadded; |
| uint32_t *dstOffsets = dstPadded ? offsetsPadded : offsetsUnpadded; |
| |
| // complex elements, need to copy subelem after subelem |
| for (uint32_t i = 0; i < numItems; i ++) { |
| for (uint32_t fI = 0; fI < fieldCount; fI++) { |
| memcpy(dst + dstOffsets[fI], src + srcOffsets[fI], sizeUnpadded[fI]); |
| } |
| src += srcInc; |
| dst += dstInc; |
| } |
| |
| delete[] offsetsPadded; |
| delete[] offsetsUnpadded; |
| delete[] sizeUnpadded; |
| } |
| |
| void Allocation::unpackVec3Allocation(Context *rsc, const void *data, size_t dataSize) { |
| const uint8_t *src = (const uint8_t*)data; |
| uint8_t *dst = (uint8_t *)rsc->mHal.funcs.allocation.lock1D(rsc, this); |
| |
| writePackedData(rsc, getType(), dst, src, true); |
| rsc->mHal.funcs.allocation.unlock1D(rsc, this); |
| } |
| |
| void Allocation::packVec3Allocation(Context *rsc, OStream *stream) const { |
| uint32_t unpaddedBytes = getType()->getElement()->getSizeBytesUnpadded(); |
| uint32_t numItems = mHal.state.type->getCellCount(); |
| |
| const uint8_t *src = (const uint8_t*)rsc->mHal.funcs.allocation.lock1D(rsc, this); |
| uint8_t *dst = new uint8_t[numItems * unpaddedBytes]; |
| |
| writePackedData(rsc, getType(), dst, src, false); |
| stream->addByteArray(dst, getPackedSize()); |
| |
| delete[] dst; |
| rsc->mHal.funcs.allocation.unlock1D(rsc, this); |
| } |
| |
| void Allocation::serialize(Context *rsc, OStream *stream) const { |
| // Need to identify ourselves |
| stream->addU32((uint32_t)getClassId()); |
| stream->addString(getName()); |
| |
| // First thing we need to serialize is the type object since it will be needed |
| // to initialize the class |
| mHal.state.type->serialize(rsc, stream); |
| |
| uint32_t dataSize = mHal.state.type->getPackedSizeBytes(); |
| // 3 element vectors are padded to 4 in memory, but padding isn't serialized |
| uint32_t packedSize = getPackedSize(); |
| // Write how much data we are storing |
| stream->addU32(packedSize); |
| if (dataSize == packedSize) { |
| // Now write the data |
| stream->addByteArray(rsc->mHal.funcs.allocation.lock1D(rsc, this), dataSize); |
| rsc->mHal.funcs.allocation.unlock1D(rsc, this); |
| } else { |
| // Now write the data |
| packVec3Allocation(rsc, stream); |
| } |
| } |
| |
| Allocation *Allocation::createFromStream(Context *rsc, IStream *stream) { |
| // First make sure we are reading the correct object |
| RsA3DClassID classID = (RsA3DClassID)stream->loadU32(); |
| if (classID != RS_A3D_CLASS_ID_ALLOCATION) { |
| rsc->setError(RS_ERROR_FATAL_DRIVER, |
| "allocation loading failed due to corrupt file. (invalid id)\n"); |
| return nullptr; |
| } |
| |
| const char *name = stream->loadString(); |
| |
| Type *type = Type::createFromStream(rsc, stream); |
| if (!type) { |
| return nullptr; |
| } |
| type->compute(); |
| |
| Allocation *alloc = Allocation::createAllocation(rsc, type, RS_ALLOCATION_USAGE_SCRIPT); |
| type->decUserRef(); |
| |
| // Number of bytes we wrote out for this allocation |
| uint32_t dataSize = stream->loadU32(); |
| // 3 element vectors are padded to 4 in memory, but padding isn't serialized |
| uint32_t packedSize = alloc->getPackedSize(); |
| if (dataSize != type->getPackedSizeBytes() && |
| dataSize != packedSize) { |
| rsc->setError(RS_ERROR_FATAL_DRIVER, |
| "allocation loading failed due to corrupt file. (invalid size)\n"); |
| ObjectBase::checkDelete(alloc); |
| ObjectBase::checkDelete(type); |
| return nullptr; |
| } |
| |
| alloc->assignName(name); |
| if (dataSize == type->getPackedSizeBytes()) { |
| uint32_t count = dataSize / type->getElementSizeBytes(); |
| // Read in all of our allocation data |
| alloc->data(rsc, 0, 0, count, stream->getPtr() + stream->getPos(), dataSize); |
| } else { |
| alloc->unpackVec3Allocation(rsc, stream->getPtr() + stream->getPos(), dataSize); |
| } |
| stream->reset(stream->getPos() + dataSize); |
| |
| return alloc; |
| } |
| |
| void Allocation::sendDirty(const Context *rsc) const { |
| #ifndef RS_COMPATIBILITY_LIB |
| for (size_t ct=0; ct < mToDirtyList.size(); ct++) { |
| mToDirtyList[ct]->forceDirty(); |
| } |
| #endif |
| mRSC->mHal.funcs.allocation.markDirty(rsc, this); |
| } |
| |
| void Allocation::incRefs(const void *ptr, size_t ct, size_t startOff) const { |
| mHal.state.type->incRefs(ptr, ct, startOff); |
| } |
| |
| void Allocation::decRefs(const void *ptr, size_t ct, size_t startOff) const { |
| if (!mHal.state.hasReferences || !getIsScript()) { |
| return; |
| } |
| mHal.state.type->decRefs(ptr, ct, startOff); |
| } |
| |
| void Allocation::callUpdateCacheObject(const Context *rsc, void *dstObj) const { |
| if (rsc->mHal.funcs.allocation.updateCachedObject != nullptr) { |
| rsc->mHal.funcs.allocation.updateCachedObject(rsc, this, (rs_allocation *)dstObj); |
| } else { |
| *((const void **)dstObj) = this; |
| } |
| } |
| |
| |
| void Allocation::freeChildrenUnlocked () { |
| void *ptr = mRSC->mHal.funcs.allocation.lock1D(mRSC, this); |
| decRefs(ptr, mHal.state.type->getCellCount(), 0); |
| mRSC->mHal.funcs.allocation.unlock1D(mRSC, this); |
| } |
| |
| bool Allocation::freeChildren() { |
| if (mHal.state.hasReferences) { |
| incSysRef(); |
| freeChildrenUnlocked(); |
| return decSysRef(); |
| } |
| return false; |
| } |
| |
| void Allocation::copyRange1D(Context *rsc, const Allocation *src, int32_t srcOff, int32_t destOff, int32_t len) { |
| } |
| |
| void Allocation::resize1D(Context *rsc, uint32_t dimX) { |
| uint32_t oldDimX = mHal.drvState.lod[0].dimX; |
| if (dimX == oldDimX) { |
| return; |
| } |
| |
| ObjectBaseRef<Type> t = mHal.state.type->cloneAndResize1D(rsc, dimX); |
| if (dimX < oldDimX) { |
| decRefs(rsc->mHal.funcs.allocation.lock1D(rsc, this), oldDimX - dimX, dimX); |
| rsc->mHal.funcs.allocation.unlock1D(rsc, this); |
| } |
| rsc->mHal.funcs.allocation.resize(rsc, this, t.get(), mHal.state.hasReferences); |
| setType(t.get()); |
| updateCache(); |
| } |
| |
| void Allocation::resize2D(Context *rsc, uint32_t dimX, uint32_t dimY) { |
| rsc->setError(RS_ERROR_FATAL_DRIVER, "resize2d not implemented"); |
| } |
| |
| void Allocation::setupGrallocConsumer(const Context *rsc, uint32_t numAlloc) { |
| #ifndef RS_COMPATIBILITY_LIB |
| // Configure GrallocConsumer to be in asynchronous mode |
| if (numAlloc > MAX_NUM_ALLOC || numAlloc <= 0) { |
| rsc->setError(RS_ERROR_FATAL_DRIVER, "resize2d not implemented"); |
| return; |
| } |
| mGrallocConsumer = new GrallocConsumer(rsc, this, numAlloc); |
| mCurrentIdx = 0; |
| mBufferQueueInited = true; |
| #endif |
| } |
| |
| void * Allocation::getSurface(const Context *rsc) { |
| #ifndef RS_COMPATIBILITY_LIB |
| // Configure GrallocConsumer to be in asynchronous mode |
| if (!mBufferQueueInited) { |
| // This case is only used for single frame processing, |
| // since we will always call setupGrallocConsumer first in |
| // multi-frame case. |
| setupGrallocConsumer(rsc, 1); |
| } |
| return mGrallocConsumer->getNativeWindow(); |
| #else |
| return nullptr; |
| #endif |
| } |
| |
| void Allocation::shareBufferQueue(const Context *rsc, const Allocation *alloc) { |
| #ifndef RS_COMPATIBILITY_LIB |
| mGrallocConsumer = alloc->mGrallocConsumer; |
| mCurrentIdx = mGrallocConsumer->getNextAvailableIdx(this); |
| if (mCurrentIdx >= mGrallocConsumer->mNumAlloc) { |
| rsc->setError(RS_ERROR_DRIVER, "Maximum allocations attached to a BufferQueue"); |
| return; |
| } |
| mBufferQueueInited = true; |
| #endif |
| } |
| |
| |
| void Allocation::setSurface(const Context *rsc, RsNativeWindow sur) { |
| ANativeWindow *nw = (ANativeWindow *)sur; |
| rsc->mHal.funcs.allocation.setSurface(rsc, this, nw); |
| } |
| |
| void Allocation::ioSend(const Context *rsc) { |
| rsc->mHal.funcs.allocation.ioSend(rsc, this); |
| } |
| |
| void Allocation::ioReceive(const Context *rsc) { |
| void *ptr = nullptr; |
| size_t stride = 0; |
| #ifndef RS_COMPATIBILITY_LIB |
| if (mHal.state.usageFlags & RS_ALLOCATION_USAGE_SCRIPT) { |
| media_status_t ret = mGrallocConsumer->lockNextBuffer(mCurrentIdx); |
| |
| if (ret == AMEDIA_OK) { |
| rsc->mHal.funcs.allocation.ioReceive(rsc, this); |
| } else if (ret == AMEDIA_IMGREADER_NO_BUFFER_AVAILABLE) { |
| // No new frame, don't do anything |
| } else { |
| rsc->setError(RS_ERROR_DRIVER, "Error receiving IO input buffer."); |
| } |
| |
| } |
| #endif |
| } |
| |
| bool Allocation::hasSameDims(const Allocation *other) const { |
| const Type *type0 = this->getType(), |
| *type1 = other->getType(); |
| |
| return (type0->getCellCount() == type1->getCellCount()) && |
| (type0->getDimLOD() == type1->getDimLOD()) && |
| (type0->getDimFaces() == type1->getDimFaces()) && |
| (type0->getDimYuv() == type1->getDimYuv()) && |
| (type0->getDimX() == type1->getDimX()) && |
| (type0->getDimY() == type1->getDimY()) && |
| (type0->getDimZ() == type1->getDimZ()); |
| } |
| |
| |
| ///////////////// |
| // |
| |
| void rsi_AllocationSyncAll(Context *rsc, RsAllocation va, RsAllocationUsageType src) { |
| Allocation *a = static_cast<Allocation *>(va); |
| a->sendDirty(rsc); |
| a->syncAll(rsc, src); |
| } |
| |
| void rsi_AllocationGenerateMipmaps(Context *rsc, RsAllocation va) { |
| Allocation *alloc = static_cast<Allocation *>(va); |
| rsc->mHal.funcs.allocation.generateMipmaps(rsc, alloc); |
| } |
| |
| void rsi_AllocationCopyToBitmap(Context *rsc, RsAllocation va, void *data, size_t sizeBytes) { |
| Allocation *a = static_cast<Allocation *>(va); |
| const Type * t = a->getType(); |
| a->read(rsc, 0, 0, 0, RS_ALLOCATION_CUBEMAP_FACE_POSITIVE_X, |
| t->getDimX(), t->getDimY(), data, sizeBytes, 0); |
| } |
| |
| void rsi_Allocation1DData(Context *rsc, RsAllocation va, uint32_t xoff, uint32_t lod, |
| uint32_t count, const void *data, size_t sizeBytes) { |
| Allocation *a = static_cast<Allocation *>(va); |
| a->data(rsc, xoff, lod, count, data, sizeBytes); |
| } |
| |
| void rsi_Allocation1DElementData(Context *rsc, RsAllocation va, uint32_t x, |
| uint32_t lod, const void *data, size_t sizeBytes, size_t eoff) { |
| Allocation *a = static_cast<Allocation *>(va); |
| a->elementData(rsc, x, 0, 0, data, eoff, sizeBytes); |
| } |
| |
| void rsi_AllocationElementData(Context *rsc, RsAllocation va, uint32_t x, uint32_t y, uint32_t z, |
| uint32_t lod, const void *data, size_t sizeBytes, size_t eoff) { |
| Allocation *a = static_cast<Allocation *>(va); |
| a->elementData(rsc, x, y, z, data, eoff, sizeBytes); |
| } |
| |
| void rsi_Allocation2DData(Context *rsc, RsAllocation va, uint32_t xoff, uint32_t yoff, uint32_t lod, RsAllocationCubemapFace face, |
| uint32_t w, uint32_t h, const void *data, size_t sizeBytes, size_t stride) { |
| Allocation *a = static_cast<Allocation *>(va); |
| a->data(rsc, xoff, yoff, lod, face, w, h, data, sizeBytes, stride); |
| } |
| |
| void rsi_Allocation3DData(Context *rsc, RsAllocation va, uint32_t xoff, uint32_t yoff, uint32_t zoff, uint32_t lod, |
| uint32_t w, uint32_t h, uint32_t d, const void *data, size_t sizeBytes, size_t stride) { |
| Allocation *a = static_cast<Allocation *>(va); |
| a->data(rsc, xoff, yoff, zoff, lod, w, h, d, data, sizeBytes, stride); |
| } |
| |
| |
| void rsi_AllocationRead(Context *rsc, RsAllocation va, void *data, size_t sizeBytes) { |
| Allocation *a = static_cast<Allocation *>(va); |
| const Type * t = a->getType(); |
| if(t->getDimZ()) { |
| a->read(rsc, 0, 0, 0, 0, t->getDimX(), t->getDimY(), t->getDimZ(), |
| data, sizeBytes, 0); |
| } else if(t->getDimY()) { |
| a->read(rsc, 0, 0, 0, RS_ALLOCATION_CUBEMAP_FACE_POSITIVE_X, |
| t->getDimX(), t->getDimY(), data, sizeBytes, 0); |
| } else { |
| a->read(rsc, 0, 0, t->getDimX(), data, sizeBytes); |
| } |
| |
| } |
| |
| void rsi_AllocationResize1D(Context *rsc, RsAllocation va, uint32_t dimX) { |
| Allocation *a = static_cast<Allocation *>(va); |
| a->resize1D(rsc, dimX); |
| } |
| |
| void rsi_AllocationResize2D(Context *rsc, RsAllocation va, uint32_t dimX, uint32_t dimY) { |
| Allocation *a = static_cast<Allocation *>(va); |
| a->resize2D(rsc, dimX, dimY); |
| } |
| |
| RsAllocation rsi_AllocationCreateTyped(Context *rsc, RsType vtype, |
| RsAllocationMipmapControl mipmaps, |
| uint32_t usages, uintptr_t ptr) { |
| Allocation * alloc = Allocation::createAllocation(rsc, static_cast<Type *>(vtype), usages, mipmaps, (void*)ptr); |
| if (!alloc) { |
| return nullptr; |
| } |
| alloc->incUserRef(); |
| return alloc; |
| } |
| |
| RsAllocation rsi_AllocationCreateStrided(Context *rsc, RsType vtype, |
| RsAllocationMipmapControl mipmaps, |
| uint32_t usages, uintptr_t ptr, |
| size_t requiredAlignment) { |
| Allocation * alloc = Allocation::createAllocationStrided(rsc, static_cast<Type *>(vtype), usages, mipmaps, |
| (void*)ptr, requiredAlignment); |
| if (!alloc) { |
| return nullptr; |
| } |
| alloc->incUserRef(); |
| return alloc; |
| } |
| |
| RsAllocation rsi_AllocationCreateFromBitmap(Context *rsc, RsType vtype, |
| RsAllocationMipmapControl mipmaps, |
| const void *data, size_t sizeBytes, uint32_t usages) { |
| Type *t = static_cast<Type *>(vtype); |
| |
| RsAllocation vTexAlloc = rsi_AllocationCreateTyped(rsc, vtype, mipmaps, usages, 0); |
| Allocation *texAlloc = static_cast<Allocation *>(vTexAlloc); |
| if (texAlloc == nullptr) { |
| ALOGE("Memory allocation failure"); |
| return nullptr; |
| } |
| |
| texAlloc->data(rsc, 0, 0, 0, RS_ALLOCATION_CUBEMAP_FACE_POSITIVE_X, |
| t->getDimX(), t->getDimY(), data, sizeBytes, 0); |
| if (mipmaps == RS_ALLOCATION_MIPMAP_FULL) { |
| rsc->mHal.funcs.allocation.generateMipmaps(rsc, texAlloc); |
| } |
| |
| texAlloc->sendDirty(rsc); |
| return texAlloc; |
| } |
| |
| RsAllocation rsi_AllocationCubeCreateFromBitmap(Context *rsc, RsType vtype, |
| RsAllocationMipmapControl mipmaps, |
| const void *data, size_t sizeBytes, uint32_t usages) { |
| Type *t = static_cast<Type *>(vtype); |
| |
| // Cubemap allocation's faces should be Width by Width each. |
| // Source data should have 6 * Width by Width pixels |
| // Error checking is done in the java layer |
| RsAllocation vTexAlloc = rsi_AllocationCreateTyped(rsc, vtype, mipmaps, usages, 0); |
| Allocation *texAlloc = static_cast<Allocation *>(vTexAlloc); |
| if (texAlloc == nullptr) { |
| ALOGE("Memory allocation failure"); |
| return nullptr; |
| } |
| |
| uint32_t faceSize = t->getDimX(); |
| uint32_t strideBytes = faceSize * 6 * t->getElementSizeBytes(); |
| uint32_t copySize = faceSize * t->getElementSizeBytes(); |
| |
| uint8_t *sourcePtr = (uint8_t*)data; |
| for (uint32_t face = 0; face < 6; face ++) { |
| for (uint32_t dI = 0; dI < faceSize; dI ++) { |
| texAlloc->data(rsc, 0, dI, 0, (RsAllocationCubemapFace)face, |
| t->getDimX(), 1, sourcePtr + strideBytes * dI, copySize, 0); |
| } |
| |
| // Move the data pointer to the next cube face |
| sourcePtr += copySize; |
| } |
| |
| if (mipmaps == RS_ALLOCATION_MIPMAP_FULL) { |
| rsc->mHal.funcs.allocation.generateMipmaps(rsc, texAlloc); |
| } |
| |
| texAlloc->sendDirty(rsc); |
| return texAlloc; |
| } |
| |
| void rsi_AllocationCopy2DRange(Context *rsc, |
| RsAllocation dstAlloc, |
| uint32_t dstXoff, uint32_t dstYoff, |
| uint32_t dstMip, uint32_t dstFace, |
| uint32_t width, uint32_t height, |
| RsAllocation srcAlloc, |
| uint32_t srcXoff, uint32_t srcYoff, |
| uint32_t srcMip, uint32_t srcFace) { |
| Allocation *dst = static_cast<Allocation *>(dstAlloc); |
| Allocation *src= static_cast<Allocation *>(srcAlloc); |
| rsc->mHal.funcs.allocation.allocData2D(rsc, dst, dstXoff, dstYoff, dstMip, |
| (RsAllocationCubemapFace)dstFace, |
| width, height, |
| src, srcXoff, srcYoff,srcMip, |
| (RsAllocationCubemapFace)srcFace); |
| } |
| |
| void rsi_AllocationCopy3DRange(Context *rsc, |
| RsAllocation dstAlloc, |
| uint32_t dstXoff, uint32_t dstYoff, uint32_t dstZoff, |
| uint32_t dstMip, |
| uint32_t width, uint32_t height, uint32_t depth, |
| RsAllocation srcAlloc, |
| uint32_t srcXoff, uint32_t srcYoff, uint32_t srcZoff, |
| uint32_t srcMip) { |
| Allocation *dst = static_cast<Allocation *>(dstAlloc); |
| Allocation *src= static_cast<Allocation *>(srcAlloc); |
| rsc->mHal.funcs.allocation.allocData3D(rsc, dst, dstXoff, dstYoff, dstZoff, dstMip, |
| width, height, depth, |
| src, srcXoff, srcYoff, srcZoff, srcMip); |
| } |
| |
| void rsi_AllocationSetupBufferQueue(Context *rsc, RsAllocation valloc, uint32_t numAlloc) { |
| Allocation *alloc = static_cast<Allocation *>(valloc); |
| alloc->setupGrallocConsumer(rsc, numAlloc); |
| } |
| |
| void * rsi_AllocationGetSurface(Context *rsc, RsAllocation valloc) { |
| Allocation *alloc = static_cast<Allocation *>(valloc); |
| void *s = alloc->getSurface(rsc); |
| return s; |
| } |
| |
| void rsi_AllocationShareBufferQueue(Context *rsc, RsAllocation valloc1, RsAllocation valloc2) { |
| Allocation *alloc1 = static_cast<Allocation *>(valloc1); |
| Allocation *alloc2 = static_cast<Allocation *>(valloc2); |
| alloc1->shareBufferQueue(rsc, alloc2); |
| } |
| |
| void rsi_AllocationSetSurface(Context *rsc, RsAllocation valloc, RsNativeWindow sur) { |
| Allocation *alloc = static_cast<Allocation *>(valloc); |
| alloc->setSurface(rsc, sur); |
| } |
| |
| void rsi_AllocationIoSend(Context *rsc, RsAllocation valloc) { |
| Allocation *alloc = static_cast<Allocation *>(valloc); |
| alloc->ioSend(rsc); |
| } |
| |
| int64_t rsi_AllocationIoReceive(Context *rsc, RsAllocation valloc) { |
| Allocation *alloc = static_cast<Allocation *>(valloc); |
| alloc->ioReceive(rsc); |
| return alloc->getTimeStamp(); |
| } |
| |
| void *rsi_AllocationGetPointer(Context *rsc, RsAllocation valloc, |
| uint32_t lod, RsAllocationCubemapFace face, |
| uint32_t z, uint32_t array, size_t *stride, size_t strideLen) { |
| Allocation *alloc = static_cast<Allocation *>(valloc); |
| rsAssert(strideLen == sizeof(size_t)); |
| |
| return alloc->getPointer(rsc, lod, face, z, array, stride); |
| } |
| |
| void rsi_Allocation1DRead(Context *rsc, RsAllocation va, uint32_t xoff, uint32_t lod, |
| uint32_t count, void *data, size_t sizeBytes) { |
| Allocation *a = static_cast<Allocation *>(va); |
| rsc->mHal.funcs.allocation.read1D(rsc, a, xoff, lod, count, data, sizeBytes); |
| } |
| |
| void rsi_AllocationElementRead(Context *rsc, RsAllocation va, uint32_t x, uint32_t y, uint32_t z, |
| uint32_t lod, void *data, size_t sizeBytes, size_t eoff) { |
| Allocation *a = static_cast<Allocation *>(va); |
| a->elementRead(rsc, x, y, z, data, eoff, sizeBytes); |
| } |
| |
| void rsi_Allocation2DRead(Context *rsc, RsAllocation va, uint32_t xoff, uint32_t yoff, |
| uint32_t lod, RsAllocationCubemapFace face, uint32_t w, |
| uint32_t h, void *data, size_t sizeBytes, size_t stride) { |
| Allocation *a = static_cast<Allocation *>(va); |
| a->read(rsc, xoff, yoff, lod, face, w, h, data, sizeBytes, stride); |
| } |
| |
| void rsi_Allocation3DRead(Context *rsc, RsAllocation va, |
| uint32_t xoff, uint32_t yoff, uint32_t zoff, |
| uint32_t lod, uint32_t w, uint32_t h, uint32_t d, |
| void *data, size_t sizeBytes, size_t stride) { |
| Allocation *a = static_cast<Allocation *>(va); |
| a->read(rsc, xoff, yoff, zoff, lod, w, h, d, data, sizeBytes, stride); |
| } |
| |
| RsAllocation rsi_AllocationAdapterCreate(Context *rsc, RsType vwindow, RsAllocation vbase) { |
| |
| |
| Allocation * alloc = Allocation::createAdapter(rsc, |
| static_cast<Allocation *>(vbase), static_cast<Type *>(vwindow)); |
| if (!alloc) { |
| return nullptr; |
| } |
| alloc->incUserRef(); |
| return alloc; |
| } |
| |
| void rsi_AllocationAdapterOffset(Context *rsc, RsAllocation va, const uint32_t *offsets, size_t len) { |
| Allocation *a = static_cast<Allocation *>(va); |
| a->adapterOffset(rsc, offsets, len); |
| } |
| |
| |
| } // namespace renderscript |
| } // namespace android |