blob: 5a1c2916f407d8def930948142693160a036dc8e [file] [log] [blame]
#ifndef __RS_CORE_RSH__
#define __RS_CORE_RSH__
#ifdef BCC_PREPARE_BC
#define _RS_STATIC extern
#else
#define _RS_STATIC static
#endif
// Debugging, print to the LOG a description string and a value.
extern void __attribute__((overloadable))
rsDebug(const char *, float);
extern void __attribute__((overloadable))
rsDebug(const char *, float, float);
extern void __attribute__((overloadable))
rsDebug(const char *, float, float, float);
extern void __attribute__((overloadable))
rsDebug(const char *, float, float, float, float);
extern void __attribute__((overloadable))
rsDebug(const char *, double);
extern void __attribute__((overloadable))
rsDebug(const char *, const rs_matrix4x4 *);
extern void __attribute__((overloadable))
rsDebug(const char *, const rs_matrix3x3 *);
extern void __attribute__((overloadable))
rsDebug(const char *, const rs_matrix2x2 *);
extern void __attribute__((overloadable))
rsDebug(const char *, int);
extern void __attribute__((overloadable))
rsDebug(const char *, uint);
extern void __attribute__((overloadable))
rsDebug(const char *, long);
extern void __attribute__((overloadable))
rsDebug(const char *, unsigned long);
extern void __attribute__((overloadable))
rsDebug(const char *, long long);
extern void __attribute__((overloadable))
rsDebug(const char *, unsigned long long);
extern void __attribute__((overloadable))
rsDebug(const char *, const void *);
#define RS_DEBUG(a) rsDebug(#a, a)
#define RS_DEBUG_MARKER rsDebug(__FILE__, __LINE__)
_RS_STATIC void __attribute__((overloadable)) rsDebug(const char *s, float2 v) {
rsDebug(s, v.x, v.y);
}
_RS_STATIC void __attribute__((overloadable)) rsDebug(const char *s, float3 v) {
rsDebug(s, v.x, v.y, v.z);
}
_RS_STATIC void __attribute__((overloadable)) rsDebug(const char *s, float4 v) {
rsDebug(s, v.x, v.y, v.z, v.w);
}
_RS_STATIC uchar4 __attribute__((overloadable)) rsPackColorTo8888(float r, float g, float b)
{
uchar4 c;
c.x = (uchar)(r * 255.f);
c.y = (uchar)(g * 255.f);
c.z = (uchar)(b * 255.f);
c.w = 255;
return c;
}
_RS_STATIC uchar4 __attribute__((overloadable)) rsPackColorTo8888(float r, float g, float b, float a)
{
uchar4 c;
c.x = (uchar)(r * 255.f);
c.y = (uchar)(g * 255.f);
c.z = (uchar)(b * 255.f);
c.w = (uchar)(a * 255.f);
return c;
}
_RS_STATIC uchar4 __attribute__((overloadable)) rsPackColorTo8888(float3 color)
{
color *= 255.f;
uchar4 c = {color.x, color.y, color.z, 255};
return c;
}
_RS_STATIC uchar4 __attribute__((overloadable)) rsPackColorTo8888(float4 color)
{
color *= 255.f;
uchar4 c = {color.x, color.y, color.z, color.w};
return c;
}
_RS_STATIC float4 rsUnpackColor8888(uchar4 c)
{
float4 ret = (float4)0.0039156862745f;
ret *= convert_float4(c);
return ret;
}
//extern uchar4 __attribute__((overloadable)) rsPackColorTo565(float r, float g, float b);
//extern uchar4 __attribute__((overloadable)) rsPackColorTo565(float3);
//extern float4 rsUnpackColor565(uchar4);
/////////////////////////////////////////////////////
// Matrix ops
/////////////////////////////////////////////////////
_RS_STATIC void __attribute__((overloadable))
rsMatrixSet(rs_matrix4x4 *m, uint32_t row, uint32_t col, float v) {
m->m[row * 4 + col] = v;
}
_RS_STATIC float __attribute__((overloadable))
rsMatrixGet(const rs_matrix4x4 *m, uint32_t row, uint32_t col) {
return m->m[row * 4 + col];
}
_RS_STATIC void __attribute__((overloadable))
rsMatrixSet(rs_matrix3x3 *m, uint32_t row, uint32_t col, float v) {
m->m[row * 3 + col] = v;
}
_RS_STATIC float __attribute__((overloadable))
rsMatrixGet(const rs_matrix3x3 *m, uint32_t row, uint32_t col) {
return m->m[row * 3 + col];
}
_RS_STATIC void __attribute__((overloadable))
rsMatrixSet(rs_matrix2x2 *m, uint32_t row, uint32_t col, float v) {
m->m[row * 2 + col] = v;
}
_RS_STATIC float __attribute__((overloadable))
rsMatrixGet(const rs_matrix2x2 *m, uint32_t row, uint32_t col) {
return m->m[row * 2 + col];
}
extern void __attribute__((overloadable)) rsMatrixLoadIdentity(rs_matrix4x4 *m);
extern void __attribute__((overloadable)) rsMatrixLoadIdentity(rs_matrix3x3 *m);
extern void __attribute__((overloadable)) rsMatrixLoadIdentity(rs_matrix2x2 *m);
extern void __attribute__((overloadable)) rsMatrixLoad(rs_matrix4x4 *m, const float *v);
extern void __attribute__((overloadable)) rsMatrixLoad(rs_matrix3x3 *m, const float *v);
extern void __attribute__((overloadable)) rsMatrixLoad(rs_matrix2x2 *m, const float *v);
extern void __attribute__((overloadable)) rsMatrixLoad(rs_matrix4x4 *m, const rs_matrix4x4 *v);
extern void __attribute__((overloadable)) rsMatrixLoad(rs_matrix4x4 *m, const rs_matrix3x3 *v);
extern void __attribute__((overloadable)) rsMatrixLoad(rs_matrix4x4 *m, const rs_matrix2x2 *v);
extern void __attribute__((overloadable)) rsMatrixLoad(rs_matrix3x3 *m, const rs_matrix3x3 *v);
extern void __attribute__((overloadable)) rsMatrixLoad(rs_matrix2x2 *m, const rs_matrix2x2 *v);
extern void __attribute__((overloadable))
rsMatrixLoadRotate(rs_matrix4x4 *m, float rot, float x, float y, float z);
extern void __attribute__((overloadable))
rsMatrixLoadScale(rs_matrix4x4 *m, float x, float y, float z);
extern void __attribute__((overloadable))
rsMatrixLoadTranslate(rs_matrix4x4 *m, float x, float y, float z);
extern void __attribute__((overloadable))
rsMatrixLoadMultiply(rs_matrix4x4 *m, const rs_matrix4x4 *lhs, const rs_matrix4x4 *rhs);
extern void __attribute__((overloadable))
rsMatrixMultiply(rs_matrix4x4 *m, const rs_matrix4x4 *rhs);
extern void __attribute__((overloadable))
rsMatrixLoadMultiply(rs_matrix3x3 *m, const rs_matrix3x3 *lhs, const rs_matrix3x3 *rhs);
extern void __attribute__((overloadable))
rsMatrixMultiply(rs_matrix3x3 *m, const rs_matrix3x3 *rhs);
extern void __attribute__((overloadable))
rsMatrixLoadMultiply(rs_matrix2x2 *m, const rs_matrix2x2 *lhs, const rs_matrix2x2 *rhs);
extern void __attribute__((overloadable))
rsMatrixMultiply(rs_matrix2x2 *m, const rs_matrix2x2 *rhs);
extern void __attribute__((overloadable))
rsMatrixRotate(rs_matrix4x4 *m, float rot, float x, float y, float z);
extern void __attribute__((overloadable))
rsMatrixScale(rs_matrix4x4 *m, float x, float y, float z);
extern void __attribute__((overloadable))
rsMatrixTranslate(rs_matrix4x4 *m, float x, float y, float z);
extern void __attribute__((overloadable))
rsMatrixLoadOrtho(rs_matrix4x4 *m, float left, float right, float bottom, float top, float near, float far);
extern void __attribute__((overloadable))
rsMatrixLoadFrustum(rs_matrix4x4 *m, float left, float right, float bottom, float top, float near, float far);
extern void __attribute__((overloadable))
rsMatrixLoadPerspective(rs_matrix4x4* m, float fovy, float aspect, float near, float far);
_RS_STATIC float4 __attribute__((overloadable))
rsMatrixMultiply(rs_matrix4x4 *m, float4 in) {
float4 ret;
ret.x = (m->m[0] * in.x) + (m->m[4] * in.y) + (m->m[8] * in.z) + (m->m[12] * in.w);
ret.y = (m->m[1] * in.x) + (m->m[5] * in.y) + (m->m[9] * in.z) + (m->m[13] * in.w);
ret.z = (m->m[2] * in.x) + (m->m[6] * in.y) + (m->m[10] * in.z) + (m->m[14] * in.w);
ret.w = (m->m[3] * in.x) + (m->m[7] * in.y) + (m->m[11] * in.z) + (m->m[15] * in.w);
return ret;
}
_RS_STATIC float4 __attribute__((overloadable))
rsMatrixMultiply(rs_matrix4x4 *m, float3 in) {
float4 ret;
ret.x = (m->m[0] * in.x) + (m->m[4] * in.y) + (m->m[8] * in.z) + m->m[12];
ret.y = (m->m[1] * in.x) + (m->m[5] * in.y) + (m->m[9] * in.z) + m->m[13];
ret.z = (m->m[2] * in.x) + (m->m[6] * in.y) + (m->m[10] * in.z) + m->m[14];
ret.w = (m->m[3] * in.x) + (m->m[7] * in.y) + (m->m[11] * in.z) + m->m[15];
return ret;
}
_RS_STATIC float4 __attribute__((overloadable))
rsMatrixMultiply(rs_matrix4x4 *m, float2 in) {
float4 ret;
ret.x = (m->m[0] * in.x) + (m->m[4] * in.y) + m->m[12];
ret.y = (m->m[1] * in.x) + (m->m[5] * in.y) + m->m[13];
ret.z = (m->m[2] * in.x) + (m->m[6] * in.y) + m->m[14];
ret.w = (m->m[3] * in.x) + (m->m[7] * in.y) + m->m[15];
return ret;
}
_RS_STATIC float3 __attribute__((overloadable))
rsMatrixMultiply(rs_matrix3x3 *m, float3 in) {
float3 ret;
ret.x = (m->m[0] * in.x) + (m->m[3] * in.y) + (m->m[6] * in.z);
ret.y = (m->m[1] * in.x) + (m->m[4] * in.y) + (m->m[7] * in.z);
ret.z = (m->m[2] * in.x) + (m->m[5] * in.y) + (m->m[8] * in.z);
return ret;
}
_RS_STATIC float3 __attribute__((overloadable))
rsMatrixMultiply(rs_matrix3x3 *m, float2 in) {
float3 ret;
ret.x = (m->m[0] * in.x) + (m->m[3] * in.y);
ret.y = (m->m[1] * in.x) + (m->m[4] * in.y);
ret.z = (m->m[2] * in.x) + (m->m[5] * in.y);
return ret;
}
_RS_STATIC float2 __attribute__((overloadable))
rsMatrixMultiply(rs_matrix2x2 *m, float2 in) {
float2 ret;
ret.x = (m->m[0] * in.x) + (m->m[2] * in.y);
ret.y = (m->m[1] * in.x) + (m->m[3] * in.y);
return ret;
}
// Returns true if the matrix was successfully inversed
extern bool __attribute__((overloadable)) rsMatrixInverse(rs_matrix4x4 *m);
extern bool __attribute__((overloadable)) rsMatrixInverseTranspose(rs_matrix4x4 *m);
extern void __attribute__((overloadable)) rsMatrixTranspose(rs_matrix4x4 *m);
extern void __attribute__((overloadable)) rsMatrixTranspose(rs_matrix3x3 *m);
extern void __attribute__((overloadable)) rsMatrixTranspose(rs_matrix2x2 *m);
/////////////////////////////////////////////////////
// quaternion ops
/////////////////////////////////////////////////////
_RS_STATIC void __attribute__((overloadable))
rsQuaternionSet(rs_quaternion *q, float w, float x, float y, float z) {
q->w = w;
q->x = x;
q->y = y;
q->z = z;
}
_RS_STATIC void __attribute__((overloadable))
rsQuaternionSet(rs_quaternion *q, const rs_quaternion *rhs) {
q->w = rhs->w;
q->x = rhs->x;
q->y = rhs->y;
q->z = rhs->z;
}
_RS_STATIC void __attribute__((overloadable))
rsQuaternionMultiply(rs_quaternion *q, float s) {
q->w *= s;
q->x *= s;
q->y *= s;
q->z *= s;
}
_RS_STATIC void __attribute__((overloadable))
rsQuaternionMultiply(rs_quaternion *q, const rs_quaternion *rhs) {
q->w = -q->x*rhs->x - q->y*rhs->y - q->z*rhs->z + q->w*rhs->w;
q->x = q->x*rhs->w + q->y*rhs->z - q->z*rhs->y + q->w*rhs->x;
q->y = -q->x*rhs->z + q->y*rhs->w + q->z*rhs->x + q->w*rhs->y;
q->z = q->x*rhs->y - q->y*rhs->x + q->z*rhs->w + q->w*rhs->z;
}
_RS_STATIC void
rsQuaternionAdd(rs_quaternion *q, const rs_quaternion *rhs) {
q->w *= rhs->w;
q->x *= rhs->x;
q->y *= rhs->y;
q->z *= rhs->z;
}
_RS_STATIC void
rsQuaternionLoadRotateUnit(rs_quaternion *q, float rot, float x, float y, float z) {
rot *= (float)(M_PI / 180.0f) * 0.5f;
float c = cos(rot);
float s = sin(rot);
q->w = c;
q->x = x * s;
q->y = y * s;
q->z = z * s;
}
_RS_STATIC void
rsQuaternionLoadRotate(rs_quaternion *q, float rot, float x, float y, float z) {
const float len = x*x + y*y + z*z;
if (len != 1) {
const float recipLen = 1.f / sqrt(len);
x *= recipLen;
y *= recipLen;
z *= recipLen;
}
rsQuaternionLoadRotateUnit(q, rot, x, y, z);
}
_RS_STATIC void
rsQuaternionConjugate(rs_quaternion *q) {
q->x = -q->x;
q->y = -q->y;
q->z = -q->z;
}
_RS_STATIC float
rsQuaternionDot(const rs_quaternion *q0, const rs_quaternion *q1) {
return q0->w*q1->w + q0->x*q1->x + q0->y*q1->y + q0->z*q1->z;
}
_RS_STATIC void
rsQuaternionNormalize(rs_quaternion *q) {
const float len = rsQuaternionDot(q, q);
if (len != 1) {
const float recipLen = 1.f / sqrt(len);
rsQuaternionMultiply(q, recipLen);
}
}
_RS_STATIC void
rsQuaternionSlerp(rs_quaternion *q, const rs_quaternion *q0, const rs_quaternion *q1, float t) {
if (t <= 0.0f) {
rsQuaternionSet(q, q0);
return;
}
if (t >= 1.0f) {
rsQuaternionSet(q, q1);
return;
}
rs_quaternion tempq0, tempq1;
rsQuaternionSet(&tempq0, q0);
rsQuaternionSet(&tempq1, q1);
float angle = rsQuaternionDot(q0, q1);
if (angle < 0) {
rsQuaternionMultiply(&tempq0, -1.0f);
angle *= -1.0f;
}
float scale, invScale;
if (angle + 1.0f > 0.05f) {
if (1.0f - angle >= 0.05f) {
float theta = acos(angle);
float invSinTheta = 1.0f / sin(theta);
scale = sin(theta * (1.0f - t)) * invSinTheta;
invScale = sin(theta * t) * invSinTheta;
} else {
scale = 1.0f - t;
invScale = t;
}
} else {
rsQuaternionSet(&tempq1, tempq0.z, -tempq0.y, tempq0.x, -tempq0.w);
scale = sin(M_PI * (0.5f - t));
invScale = sin(M_PI * t);
}
rsQuaternionSet(q, tempq0.w*scale + tempq1.w*invScale, tempq0.x*scale + tempq1.x*invScale,
tempq0.y*scale + tempq1.y*invScale, tempq0.z*scale + tempq1.z*invScale);
}
_RS_STATIC void rsQuaternionGetMatrixUnit(rs_matrix4x4 *m, const rs_quaternion *q) {
float x2 = 2.0f * q->x * q->x;
float y2 = 2.0f * q->y * q->y;
float z2 = 2.0f * q->z * q->z;
float xy = 2.0f * q->x * q->y;
float wz = 2.0f * q->w * q->z;
float xz = 2.0f * q->x * q->z;
float wy = 2.0f * q->w * q->y;
float wx = 2.0f * q->w * q->x;
float yz = 2.0f * q->y * q->z;
m->m[0] = 1.0f - y2 - z2;
m->m[1] = xy - wz;
m->m[2] = xz + wy;
m->m[3] = 0.0f;
m->m[4] = xy + wz;
m->m[5] = 1.0f - x2 - z2;
m->m[6] = yz - wx;
m->m[7] = 0.0f;
m->m[8] = xz - wy;
m->m[9] = yz - wx;
m->m[10] = 1.0f - x2 - y2;
m->m[11] = 0.0f;
m->m[12] = 0.0f;
m->m[13] = 0.0f;
m->m[14] = 0.0f;
m->m[15] = 1.0f;
}
/////////////////////////////////////////////////////
// utility funcs
/////////////////////////////////////////////////////
__inline__ _RS_STATIC void __attribute__((overloadable, always_inline))
rsExtractFrustumPlanes(const rs_matrix4x4 *modelViewProj,
float4 *left, float4 *right,
float4 *top, float4 *bottom,
float4 *near, float4 *far) {
// x y z w = a b c d in the plane equation
left->x = modelViewProj->m[3] + modelViewProj->m[0];
left->y = modelViewProj->m[7] + modelViewProj->m[4];
left->z = modelViewProj->m[11] + modelViewProj->m[8];
left->w = modelViewProj->m[15] + modelViewProj->m[12];
right->x = modelViewProj->m[3] - modelViewProj->m[0];
right->y = modelViewProj->m[7] - modelViewProj->m[4];
right->z = modelViewProj->m[11] - modelViewProj->m[8];
right->w = modelViewProj->m[15] - modelViewProj->m[12];
top->x = modelViewProj->m[3] - modelViewProj->m[1];
top->y = modelViewProj->m[7] - modelViewProj->m[5];
top->z = modelViewProj->m[11] - modelViewProj->m[9];
top->w = modelViewProj->m[15] - modelViewProj->m[13];
bottom->x = modelViewProj->m[3] + modelViewProj->m[1];
bottom->y = modelViewProj->m[7] + modelViewProj->m[5];
bottom->z = modelViewProj->m[11] + modelViewProj->m[9];
bottom->w = modelViewProj->m[15] + modelViewProj->m[13];
near->x = modelViewProj->m[3] + modelViewProj->m[2];
near->y = modelViewProj->m[7] + modelViewProj->m[6];
near->z = modelViewProj->m[11] + modelViewProj->m[10];
near->w = modelViewProj->m[15] + modelViewProj->m[14];
far->x = modelViewProj->m[3] - modelViewProj->m[2];
far->y = modelViewProj->m[7] - modelViewProj->m[6];
far->z = modelViewProj->m[11] - modelViewProj->m[10];
far->w = modelViewProj->m[15] - modelViewProj->m[14];
float len = length(left->xyz);
*left /= len;
len = length(right->xyz);
*right /= len;
len = length(top->xyz);
*top /= len;
len = length(bottom->xyz);
*bottom /= len;
len = length(near->xyz);
*near /= len;
len = length(far->xyz);
*far /= len;
}
__inline__ _RS_STATIC bool __attribute__((overloadable, always_inline))
rsIsSphereInFrustum(float4 *sphere,
float4 *left, float4 *right,
float4 *top, float4 *bottom,
float4 *near, float4 *far) {
float distToCenter = dot(left->xyz, sphere->xyz) + left->w;
if (distToCenter < -sphere->w) {
return false;
}
distToCenter = dot(right->xyz, sphere->xyz) + right->w;
if (distToCenter < -sphere->w) {
return false;
}
distToCenter = dot(top->xyz, sphere->xyz) + top->w;
if (distToCenter < -sphere->w) {
return false;
}
distToCenter = dot(bottom->xyz, sphere->xyz) + bottom->w;
if (distToCenter < -sphere->w) {
return false;
}
distToCenter = dot(near->xyz, sphere->xyz) + near->w;
if (distToCenter < -sphere->w) {
return false;
}
distToCenter = dot(far->xyz, sphere->xyz) + far->w;
if (distToCenter < -sphere->w) {
return false;
}
return true;
}
/////////////////////////////////////////////////////
// int ops
/////////////////////////////////////////////////////
__inline__ _RS_STATIC uint __attribute__((overloadable, always_inline)) rsClamp(uint amount, uint low, uint high) {
return amount < low ? low : (amount > high ? high : amount);
}
__inline__ _RS_STATIC int __attribute__((overloadable, always_inline)) rsClamp(int amount, int low, int high) {
return amount < low ? low : (amount > high ? high : amount);
}
__inline__ _RS_STATIC ushort __attribute__((overloadable, always_inline)) rsClamp(ushort amount, ushort low, ushort high) {
return amount < low ? low : (amount > high ? high : amount);
}
__inline__ _RS_STATIC short __attribute__((overloadable, always_inline)) rsClamp(short amount, short low, short high) {
return amount < low ? low : (amount > high ? high : amount);
}
__inline__ _RS_STATIC uchar __attribute__((overloadable, always_inline)) rsClamp(uchar amount, uchar low, uchar high) {
return amount < low ? low : (amount > high ? high : amount);
}
__inline__ _RS_STATIC char __attribute__((overloadable, always_inline)) rsClamp(char amount, char low, char high) {
return amount < low ? low : (amount > high ? high : amount);
}
#undef _RS_STATIC
#endif