| Jason Sams | 87fe59a | 2011-04-20 15:09:01 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  * Copyright (C) 2011 The Android Open Source Project | 
 | 3 |  * | 
 | 4 |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
 | 5 |  * you may not use this file except in compliance with the License. | 
 | 6 |  * You may obtain a copy of the License at | 
 | 7 |  * | 
 | 8 |  *      http://www.apache.org/licenses/LICENSE-2.0 | 
 | 9 |  * | 
 | 10 |  * Unless required by applicable law or agreed to in writing, software | 
 | 11 |  * distributed under the License is distributed on an "AS IS" BASIS, | 
 | 12 |  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 | 13 |  * See the License for the specific language governing permissions and | 
 | 14 |  * limitations under the License. | 
 | 15 |  */ | 
 | 16 |  | 
 | 17 | #include "rsMatrix2x2.h" | 
 | 18 | #include "rsMatrix3x3.h" | 
 | 19 | #include "rsMatrix4x4.h" | 
 | 20 |  | 
 | 21 | #include "stdlib.h" | 
 | 22 | #include "string.h" | 
 | 23 | #include "math.h" | 
 | 24 |  | 
 | 25 | using namespace android; | 
 | 26 | using namespace android::renderscript; | 
 | 27 |  | 
 | 28 | ////////////////////////////////////////////////////////////////////////////// | 
 | 29 | // Heavy math functions | 
 | 30 | ////////////////////////////////////////////////////////////////////////////// | 
 | 31 |  | 
 | 32 |  | 
 | 33 |  | 
 | 34 |  | 
 | 35 |  | 
 | 36 | // Returns true if the matrix was successfully inversed | 
 | 37 | bool Matrix4x4::inverse() { | 
 | 38 |     rs_matrix4x4 result; | 
 | 39 |  | 
 | 40 |     int i, j; | 
 | 41 |     for (i = 0; i < 4; ++i) { | 
 | 42 |         for (j = 0; j < 4; ++j) { | 
 | 43 |             // computeCofactor for int i, int j | 
 | 44 |             int c0 = (i+1) % 4; | 
 | 45 |             int c1 = (i+2) % 4; | 
 | 46 |             int c2 = (i+3) % 4; | 
 | 47 |             int r0 = (j+1) % 4; | 
 | 48 |             int r1 = (j+2) % 4; | 
 | 49 |             int r2 = (j+3) % 4; | 
 | 50 |  | 
 | 51 |             float minor = | 
 | 52 |                 (m[c0 + 4*r0] * (m[c1 + 4*r1] * m[c2 + 4*r2] - m[c1 + 4*r2] * m[c2 + 4*r1])) | 
 | 53 |                 - (m[c0 + 4*r1] * (m[c1 + 4*r0] * m[c2 + 4*r2] - m[c1 + 4*r2] * m[c2 + 4*r0])) | 
 | 54 |                 + (m[c0 + 4*r2] * (m[c1 + 4*r0] * m[c2 + 4*r1] - m[c1 + 4*r1] * m[c2 + 4*r0])); | 
 | 55 |  | 
 | 56 |             float cofactor = (i+j) & 1 ? -minor : minor; | 
 | 57 |  | 
 | 58 |             result.m[4*i + j] = cofactor; | 
 | 59 |         } | 
 | 60 |     } | 
 | 61 |  | 
 | 62 |     // Dot product of 0th column of source and 0th row of result | 
 | 63 |     float det = m[0]*result.m[0] + m[4]*result.m[1] + | 
 | 64 |                  m[8]*result.m[2] + m[12]*result.m[3]; | 
 | 65 |  | 
 | 66 |     if (fabs(det) < 1e-6) { | 
 | 67 |         return false; | 
 | 68 |     } | 
 | 69 |  | 
 | 70 |     det = 1.0f / det; | 
 | 71 |     for (i = 0; i < 16; ++i) { | 
 | 72 |         m[i] = result.m[i] * det; | 
 | 73 |     } | 
 | 74 |  | 
 | 75 |     return true; | 
 | 76 | } | 
 | 77 |  | 
 | 78 | // Returns true if the matrix was successfully inversed | 
 | 79 | bool Matrix4x4::inverseTranspose() { | 
 | 80 |     rs_matrix4x4 result; | 
 | 81 |  | 
 | 82 |     int i, j; | 
 | 83 |     for (i = 0; i < 4; ++i) { | 
 | 84 |         for (j = 0; j < 4; ++j) { | 
 | 85 |             // computeCofactor for int i, int j | 
 | 86 |             int c0 = (i+1) % 4; | 
 | 87 |             int c1 = (i+2) % 4; | 
 | 88 |             int c2 = (i+3) % 4; | 
 | 89 |             int r0 = (j+1) % 4; | 
 | 90 |             int r1 = (j+2) % 4; | 
 | 91 |             int r2 = (j+3) % 4; | 
 | 92 |  | 
 | 93 |             float minor = (m[c0 + 4*r0] * (m[c1 + 4*r1] * m[c2 + 4*r2] - m[c1 + 4*r2] * m[c2 + 4*r1])) | 
 | 94 |                          - (m[c0 + 4*r1] * (m[c1 + 4*r0] * m[c2 + 4*r2] - m[c1 + 4*r2] * m[c2 + 4*r0])) | 
 | 95 |                          + (m[c0 + 4*r2] * (m[c1 + 4*r0] * m[c2 + 4*r1] - m[c1 + 4*r1] * m[c2 + 4*r0])); | 
 | 96 |  | 
 | 97 |             float cofactor = (i+j) & 1 ? -minor : minor; | 
 | 98 |  | 
 | 99 |             result.m[4*j + i] = cofactor; | 
 | 100 |         } | 
 | 101 |     } | 
 | 102 |  | 
 | 103 |     // Dot product of 0th column of source and 0th column of result | 
 | 104 |     float det = m[0]*result.m[0] + m[4]*result.m[4] + | 
 | 105 |                  m[8]*result.m[8] + m[12]*result.m[12]; | 
 | 106 |  | 
 | 107 |     if (fabs(det) < 1e-6) { | 
 | 108 |         return false; | 
 | 109 |     } | 
 | 110 |  | 
 | 111 |     det = 1.0f / det; | 
 | 112 |     for (i = 0; i < 16; ++i) { | 
 | 113 |         m[i] = result.m[i] * det; | 
 | 114 |     } | 
 | 115 |  | 
 | 116 |     return true; | 
 | 117 | } | 
 | 118 |  | 
 | 119 | void Matrix4x4::transpose() { | 
 | 120 |     int i, j; | 
 | 121 |     float temp; | 
 | 122 |     for (i = 0; i < 3; ++i) { | 
 | 123 |         for (j = i + 1; j < 4; ++j) { | 
 | 124 |             temp = m[i*4 + j]; | 
 | 125 |             m[i*4 + j] = m[j*4 + i]; | 
 | 126 |             m[j*4 + i] = temp; | 
 | 127 |         } | 
 | 128 |     } | 
 | 129 | } | 
 | 130 |  | 
 | 131 |  | 
 | 132 | /////////////////////////////////////////////////////////////////////////////////// | 
 | 133 |  | 
 | 134 | void Matrix4x4::loadIdentity() { | 
 | 135 |     m[0] = 1.f; | 
 | 136 |     m[1] = 0.f; | 
 | 137 |     m[2] = 0.f; | 
 | 138 |     m[3] = 0.f; | 
 | 139 |     m[4] = 0.f; | 
 | 140 |     m[5] = 1.f; | 
 | 141 |     m[6] = 0.f; | 
 | 142 |     m[7] = 0.f; | 
 | 143 |     m[8] = 0.f; | 
 | 144 |     m[9] = 0.f; | 
 | 145 |     m[10] = 1.f; | 
 | 146 |     m[11] = 0.f; | 
 | 147 |     m[12] = 0.f; | 
 | 148 |     m[13] = 0.f; | 
 | 149 |     m[14] = 0.f; | 
 | 150 |     m[15] = 1.f; | 
 | 151 | } | 
 | 152 |  | 
 | 153 | void Matrix4x4::load(const float *v) { | 
 | 154 |     memcpy(m, v, sizeof(m)); | 
 | 155 | } | 
 | 156 |  | 
 | 157 | void Matrix4x4::load(const rs_matrix4x4 *v) { | 
 | 158 |     memcpy(m, v->m, sizeof(m)); | 
 | 159 | } | 
 | 160 |  | 
 | 161 | void Matrix4x4::load(const rs_matrix3x3 *v) { | 
 | 162 |     m[0] = v->m[0]; | 
 | 163 |     m[1] = v->m[1]; | 
 | 164 |     m[2] = v->m[2]; | 
 | 165 |     m[3] = 0.f; | 
 | 166 |     m[4] = v->m[3]; | 
 | 167 |     m[5] = v->m[4]; | 
 | 168 |     m[6] = v->m[5]; | 
 | 169 |     m[7] = 0.f; | 
 | 170 |     m[8] = v->m[6]; | 
 | 171 |     m[9] = v->m[7]; | 
 | 172 |     m[10] = v->m[8]; | 
 | 173 |     m[11] = 0.f; | 
 | 174 |     m[12] = 0.f; | 
 | 175 |     m[13] = 0.f; | 
 | 176 |     m[14] = 0.f; | 
 | 177 |     m[15] = 1.f; | 
 | 178 | } | 
 | 179 |  | 
 | 180 | void Matrix4x4::load(const rs_matrix2x2 *v) { | 
 | 181 |     m[0] = v->m[0]; | 
 | 182 |     m[1] = v->m[1]; | 
 | 183 |     m[2] = 0.f; | 
 | 184 |     m[3] = 0.f; | 
 | 185 |     m[4] = v->m[2]; | 
 | 186 |     m[5] = v->m[3]; | 
 | 187 |     m[6] = 0.f; | 
 | 188 |     m[7] = 0.f; | 
 | 189 |     m[8] = 0.f; | 
 | 190 |     m[9] = 0.f; | 
 | 191 |     m[10] = 1.f; | 
 | 192 |     m[11] = 0.f; | 
 | 193 |     m[12] = 0.f; | 
 | 194 |     m[13] = 0.f; | 
 | 195 |     m[14] = 0.f; | 
 | 196 |     m[15] = 1.f; | 
 | 197 | } | 
 | 198 |  | 
 | 199 |  | 
 | 200 | void Matrix4x4::loadRotate(float rot, float x, float y, float z) { | 
 | 201 |     float c, s; | 
 | 202 |     m[3] = 0; | 
 | 203 |     m[7] = 0; | 
 | 204 |     m[11]= 0; | 
 | 205 |     m[12]= 0; | 
 | 206 |     m[13]= 0; | 
 | 207 |     m[14]= 0; | 
 | 208 |     m[15]= 1; | 
 | 209 |     rot *= float(M_PI / 180.0f); | 
 | 210 |     c = cosf(rot); | 
 | 211 |     s = sinf(rot); | 
 | 212 |  | 
 | 213 |     const float len = x*x + y*y + z*z; | 
 | 214 |     if (len != 1) { | 
 | 215 |         const float recipLen = 1.f / sqrtf(len); | 
 | 216 |         x *= recipLen; | 
 | 217 |         y *= recipLen; | 
 | 218 |         z *= recipLen; | 
 | 219 |     } | 
 | 220 |     const float nc = 1.0f - c; | 
 | 221 |     const float xy = x * y; | 
 | 222 |     const float yz = y * z; | 
 | 223 |     const float zx = z * x; | 
 | 224 |     const float xs = x * s; | 
 | 225 |     const float ys = y * s; | 
 | 226 |     const float zs = z * s; | 
 | 227 |     m[ 0] = x*x*nc +  c; | 
 | 228 |     m[ 4] =  xy*nc - zs; | 
 | 229 |     m[ 8] =  zx*nc + ys; | 
 | 230 |     m[ 1] =  xy*nc + zs; | 
 | 231 |     m[ 5] = y*y*nc +  c; | 
 | 232 |     m[ 9] =  yz*nc - xs; | 
 | 233 |     m[ 2] =  zx*nc - ys; | 
 | 234 |     m[ 6] =  yz*nc + xs; | 
 | 235 |     m[10] = z*z*nc +  c; | 
 | 236 | } | 
 | 237 |  | 
 | 238 | void Matrix4x4::loadScale(float x, float y, float z) { | 
 | 239 |     loadIdentity(); | 
 | 240 |     set(0, 0, x); | 
 | 241 |     set(1, 1, y); | 
 | 242 |     set(2, 2, z); | 
 | 243 | } | 
 | 244 |  | 
 | 245 | void Matrix4x4::loadTranslate(float x, float y, float z) { | 
 | 246 |     loadIdentity(); | 
 | 247 |     m[12] = x; | 
 | 248 |     m[13] = y; | 
 | 249 |     m[14] = z; | 
 | 250 | } | 
 | 251 |  | 
 | 252 | void Matrix4x4::loadMultiply(const rs_matrix4x4 *lhs, const rs_matrix4x4 *rhs) { | 
| Jean-Luc Brouillet | 1bb2eed | 2014-09-05 17:44:48 -0700 | [diff] [blame] | 253 |     // Use a temporary variable to support the case where one of the inputs | 
 | 254 |     // is also the destination, e.g. left.loadMultiply(left, right); | 
 | 255 |     Matrix4x4 temp; | 
| Jason Sams | 87fe59a | 2011-04-20 15:09:01 -0700 | [diff] [blame] | 256 |     for (int i=0 ; i<4 ; i++) { | 
 | 257 |         float ri0 = 0; | 
 | 258 |         float ri1 = 0; | 
 | 259 |         float ri2 = 0; | 
 | 260 |         float ri3 = 0; | 
 | 261 |         for (int j=0 ; j<4 ; j++) { | 
 | 262 |             const float rhs_ij = ((const Matrix4x4 *)rhs)->get(i,j); | 
 | 263 |             ri0 += ((const Matrix4x4 *)lhs)->get(j,0) * rhs_ij; | 
 | 264 |             ri1 += ((const Matrix4x4 *)lhs)->get(j,1) * rhs_ij; | 
 | 265 |             ri2 += ((const Matrix4x4 *)lhs)->get(j,2) * rhs_ij; | 
 | 266 |             ri3 += ((const Matrix4x4 *)lhs)->get(j,3) * rhs_ij; | 
 | 267 |         } | 
| Jean-Luc Brouillet | 1bb2eed | 2014-09-05 17:44:48 -0700 | [diff] [blame] | 268 |         temp.set(i,0, ri0); | 
 | 269 |         temp.set(i,1, ri1); | 
 | 270 |         temp.set(i,2, ri2); | 
 | 271 |         temp.set(i,3, ri3); | 
| Jason Sams | 87fe59a | 2011-04-20 15:09:01 -0700 | [diff] [blame] | 272 |     } | 
| Jean-Luc Brouillet | 1bb2eed | 2014-09-05 17:44:48 -0700 | [diff] [blame] | 273 |     load(&temp); | 
| Jason Sams | 87fe59a | 2011-04-20 15:09:01 -0700 | [diff] [blame] | 274 | } | 
 | 275 |  | 
 | 276 | void Matrix4x4::loadOrtho(float left, float right, float bottom, float top, float near, float far) { | 
 | 277 |     loadIdentity(); | 
 | 278 |     m[0] = 2.f / (right - left); | 
 | 279 |     m[5] = 2.f / (top - bottom); | 
 | 280 |     m[10]= -2.f / (far - near); | 
 | 281 |     m[12]= -(right + left) / (right - left); | 
 | 282 |     m[13]= -(top + bottom) / (top - bottom); | 
 | 283 |     m[14]= -(far + near) / (far - near); | 
 | 284 | } | 
 | 285 |  | 
 | 286 | void Matrix4x4::loadFrustum(float left, float right, float bottom, float top, float near, float far) { | 
 | 287 |     loadIdentity(); | 
 | 288 |     m[0] = 2.f * near / (right - left); | 
 | 289 |     m[5] = 2.f * near / (top - bottom); | 
 | 290 |     m[8] = (right + left) / (right - left); | 
 | 291 |     m[9] = (top + bottom) / (top - bottom); | 
 | 292 |     m[10]= -(far + near) / (far - near); | 
 | 293 |     m[11]= -1.f; | 
 | 294 |     m[14]= -2.f * far * near / (far - near); | 
 | 295 |     m[15]= 0.f; | 
 | 296 | } | 
 | 297 |  | 
 | 298 | void Matrix4x4::loadPerspective(float fovy, float aspect, float near, float far) { | 
 | 299 |     float top = near * tan((float) (fovy * M_PI / 360.0f)); | 
 | 300 |     float bottom = -top; | 
 | 301 |     float left = bottom * aspect; | 
 | 302 |     float right = top * aspect; | 
 | 303 |     loadFrustum(left, right, bottom, top, near, far); | 
 | 304 | } | 
 | 305 |  | 
| Jean-Luc Brouillet | 1bb2eed | 2014-09-05 17:44:48 -0700 | [diff] [blame] | 306 | // Note: This assumes that the input vector (in) is of length 3. | 
| Jason Sams | 87fe59a | 2011-04-20 15:09:01 -0700 | [diff] [blame] | 307 | void Matrix4x4::vectorMultiply(float *out, const float *in) const { | 
 | 308 |     out[0] = (m[0] * in[0]) + (m[4] * in[1]) + (m[8] * in[2]) + m[12]; | 
 | 309 |     out[1] = (m[1] * in[0]) + (m[5] * in[1]) + (m[9] * in[2]) + m[13]; | 
 | 310 |     out[2] = (m[2] * in[0]) + (m[6] * in[1]) + (m[10] * in[2]) + m[14]; | 
 | 311 |     out[3] = (m[3] * in[0]) + (m[7] * in[1]) + (m[11] * in[2]) + m[15]; | 
 | 312 | } | 
| Jason Sams | f47fb9b | 2011-04-22 14:24:17 -0700 | [diff] [blame] | 313 |  | 
 | 314 | void Matrix4x4::logv(const char *s) const { | 
| Steve Block | 6598201 | 2011-10-20 11:56:00 +0100 | [diff] [blame] | 315 |     ALOGV("%s {%f, %f, %f, %f",  s, m[0], m[4], m[8], m[12]); | 
 | 316 |     ALOGV("%s  %f, %f, %f, %f",  s, m[1], m[5], m[9], m[13]); | 
 | 317 |     ALOGV("%s  %f, %f, %f, %f",  s, m[2], m[6], m[10], m[14]); | 
 | 318 |     ALOGV("%s  %f, %f, %f, %f}", s, m[3], m[7], m[11], m[15]); | 
| Jason Sams | f47fb9b | 2011-04-22 14:24:17 -0700 | [diff] [blame] | 319 | } |