blob: de3ae7886f1b0ed9c07cbf06f42f8544817f2ea5 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cstdlib>
#include <stdio.h>
#include <hardware/camera3.h>
#include <sync/sync.h>
#include <system/camera_metadata.h>
#include <system/graphics.h>
#include <utils/Mutex.h>
#include "CameraHAL.h"
#include "Metadata.h"
#include "Stream.h"
//#define LOG_NDEBUG 0
#define LOG_TAG "Camera"
#include <cutils/log.h>
#define ATRACE_TAG (ATRACE_TAG_CAMERA | ATRACE_TAG_HAL)
#include <utils/Trace.h>
#include "Camera.h"
#define CAMERA_SYNC_TIMEOUT 5000 // in msecs
namespace default_camera_hal {
extern "C" {
// Shim passed to the framework to close an opened device.
static int close_device(hw_device_t* dev)
{
camera3_device_t* cam_dev = reinterpret_cast<camera3_device_t*>(dev);
Camera* cam = static_cast<Camera*>(cam_dev->priv);
return cam->close();
}
} // extern "C"
Camera::Camera(int id)
: mId(id),
mStaticInfo(NULL),
mBusy(false),
mCallbackOps(NULL),
mStreams(NULL),
mNumStreams(0),
mSettings(NULL)
{
memset(&mTemplates, 0, sizeof(mTemplates));
memset(&mDevice, 0, sizeof(mDevice));
mDevice.common.tag = HARDWARE_DEVICE_TAG;
mDevice.common.version = CAMERA_DEVICE_API_VERSION_3_0;
mDevice.common.close = close_device;
mDevice.ops = const_cast<camera3_device_ops_t*>(&sOps);
mDevice.priv = this;
}
Camera::~Camera()
{
if (mStaticInfo != NULL) {
free_camera_metadata(mStaticInfo);
}
}
int Camera::open(const hw_module_t *module, hw_device_t **device)
{
ALOGI("%s:%d: Opening camera device", __func__, mId);
ATRACE_CALL();
android::Mutex::Autolock al(mDeviceLock);
if (mBusy) {
ALOGE("%s:%d: Error! Camera device already opened", __func__, mId);
return -EBUSY;
}
// TODO: open camera dev nodes, etc
mBusy = true;
mDevice.common.module = const_cast<hw_module_t*>(module);
*device = &mDevice.common;
return 0;
}
int Camera::getInfo(struct camera_info *info)
{
android::Mutex::Autolock al(mStaticInfoLock);
info->facing = CAMERA_FACING_FRONT;
info->orientation = 0;
info->device_version = mDevice.common.version;
if (mStaticInfo == NULL) {
mStaticInfo = initStaticInfo();
}
info->static_camera_characteristics = mStaticInfo;
return 0;
}
int Camera::close()
{
ALOGI("%s:%d: Closing camera device", __func__, mId);
ATRACE_CALL();
android::Mutex::Autolock al(mDeviceLock);
if (!mBusy) {
ALOGE("%s:%d: Error! Camera device not open", __func__, mId);
return -EINVAL;
}
// TODO: close camera dev nodes, etc
mBusy = false;
return 0;
}
int Camera::initialize(const camera3_callback_ops_t *callback_ops)
{
int res;
ALOGV("%s:%d: callback_ops=%p", __func__, mId, callback_ops);
mCallbackOps = callback_ops;
// per-device specific initialization
res = initDevice();
if (res != 0) {
ALOGE("%s:%d: Failed to initialize device!", __func__, mId);
return res;
}
return 0;
}
int Camera::configureStreams(camera3_stream_configuration_t *stream_config)
{
camera3_stream_t *astream;
Stream **newStreams = NULL;
ALOGV("%s:%d: stream_config=%p", __func__, mId, stream_config);
ATRACE_CALL();
android::Mutex::Autolock al(mDeviceLock);
if (stream_config == NULL) {
ALOGE("%s:%d: NULL stream configuration array", __func__, mId);
return -EINVAL;
}
if (stream_config->num_streams == 0) {
ALOGE("%s:%d: Empty stream configuration array", __func__, mId);
return -EINVAL;
}
// Create new stream array
newStreams = new Stream*[stream_config->num_streams];
ALOGV("%s:%d: Number of Streams: %d", __func__, mId,
stream_config->num_streams);
// Mark all current streams unused for now
for (int i = 0; i < mNumStreams; i++)
mStreams[i]->mReuse = false;
// Fill new stream array with reused streams and new streams
for (unsigned int i = 0; i < stream_config->num_streams; i++) {
astream = stream_config->streams[i];
if (astream->max_buffers > 0) {
ALOGV("%s:%d: Reusing stream %d", __func__, mId, i);
newStreams[i] = reuseStream(astream);
} else {
ALOGV("%s:%d: Creating new stream %d", __func__, mId, i);
newStreams[i] = new Stream(mId, astream);
}
if (newStreams[i] == NULL) {
ALOGE("%s:%d: Error processing stream %d", __func__, mId, i);
goto err_out;
}
astream->priv = newStreams[i];
}
// Verify the set of streams in aggregate
if (!isValidStreamSet(newStreams, stream_config->num_streams)) {
ALOGE("%s:%d: Invalid stream set", __func__, mId);
goto err_out;
}
// Set up all streams (calculate usage/max_buffers for each)
setupStreams(newStreams, stream_config->num_streams);
// Destroy all old streams and replace stream array with new one
destroyStreams(mStreams, mNumStreams);
mStreams = newStreams;
mNumStreams = stream_config->num_streams;
// Clear out last seen settings metadata
setSettings(NULL);
return 0;
err_out:
// Clean up temporary streams, preserve existing mStreams/mNumStreams
destroyStreams(newStreams, stream_config->num_streams);
return -EINVAL;
}
void Camera::destroyStreams(Stream **streams, int count)
{
if (streams == NULL)
return;
for (int i = 0; i < count; i++) {
// Only destroy streams that weren't reused
if (streams[i] != NULL && !streams[i]->mReuse)
delete streams[i];
}
delete [] streams;
}
Stream *Camera::reuseStream(camera3_stream_t *astream)
{
Stream *priv = reinterpret_cast<Stream*>(astream->priv);
// Verify the re-used stream's parameters match
if (!priv->isValidReuseStream(mId, astream)) {
ALOGE("%s:%d: Mismatched parameter in reused stream", __func__, mId);
return NULL;
}
// Mark stream to be reused
priv->mReuse = true;
return priv;
}
bool Camera::isValidStreamSet(Stream **streams, int count)
{
int inputs = 0;
int outputs = 0;
if (streams == NULL) {
ALOGE("%s:%d: NULL stream configuration streams", __func__, mId);
return false;
}
if (count == 0) {
ALOGE("%s:%d: Zero count stream configuration streams", __func__, mId);
return false;
}
// Validate there is at most one input stream and at least one output stream
for (int i = 0; i < count; i++) {
// A stream may be both input and output (bidirectional)
if (streams[i]->isInputType())
inputs++;
if (streams[i]->isOutputType())
outputs++;
}
ALOGV("%s:%d: Configuring %d output streams and %d input streams",
__func__, mId, outputs, inputs);
if (outputs < 1) {
ALOGE("%s:%d: Stream config must have >= 1 output", __func__, mId);
return false;
}
if (inputs > 1) {
ALOGE("%s:%d: Stream config must have <= 1 input", __func__, mId);
return false;
}
// TODO: check for correct number of Bayer/YUV/JPEG/Encoder streams
return true;
}
void Camera::setupStreams(Stream **streams, int count)
{
/*
* This is where the HAL has to decide internally how to handle all of the
* streams, and then produce usage and max_buffer values for each stream.
* Note, the stream array has been checked before this point for ALL invalid
* conditions, so it must find a successful configuration for this stream
* array. The HAL may not return an error from this point.
*
* In this demo HAL, we just set all streams to be the same dummy values;
* real implementations will want to avoid USAGE_SW_{READ|WRITE}_OFTEN.
*/
for (int i = 0; i < count; i++) {
uint32_t usage = 0;
if (streams[i]->isOutputType())
usage |= GRALLOC_USAGE_SW_WRITE_OFTEN |
GRALLOC_USAGE_HW_CAMERA_WRITE;
if (streams[i]->isInputType())
usage |= GRALLOC_USAGE_SW_READ_OFTEN |
GRALLOC_USAGE_HW_CAMERA_READ;
streams[i]->setUsage(usage);
streams[i]->setMaxBuffers(1);
}
}
int Camera::registerStreamBuffers(const camera3_stream_buffer_set_t *buf_set)
{
ALOGV("%s:%d: buffer_set=%p", __func__, mId, buf_set);
if (buf_set == NULL) {
ALOGE("%s:%d: NULL buffer set", __func__, mId);
return -EINVAL;
}
if (buf_set->stream == NULL) {
ALOGE("%s:%d: NULL stream handle", __func__, mId);
return -EINVAL;
}
Stream *stream = reinterpret_cast<Stream*>(buf_set->stream->priv);
return stream->registerBuffers(buf_set);
}
bool Camera::isValidTemplateType(int type)
{
return type < 1 || type >= CAMERA3_TEMPLATE_COUNT;
}
const camera_metadata_t* Camera::constructDefaultRequestSettings(int type)
{
ALOGV("%s:%d: type=%d", __func__, mId, type);
if (!isValidTemplateType(type)) {
ALOGE("%s:%d: Invalid template request type: %d", __func__, mId, type);
return NULL;
}
return mTemplates[type];
}
int Camera::processCaptureRequest(camera3_capture_request_t *request)
{
camera3_capture_result result;
ALOGV("%s:%d: request=%p", __func__, mId, request);
ATRACE_CALL();
if (request == NULL) {
ALOGE("%s:%d: NULL request recieved", __func__, mId);
return -EINVAL;
}
ALOGV("%s:%d: Request Frame:%d Settings:%p", __func__, mId,
request->frame_number, request->settings);
// NULL indicates use last settings
if (request->settings == NULL) {
if (mSettings == NULL) {
ALOGE("%s:%d: NULL settings without previous set Frame:%d Req:%p",
__func__, mId, request->frame_number, request);
return -EINVAL;
}
} else {
setSettings(request->settings);
}
if (request->input_buffer != NULL) {
ALOGV("%s:%d: Reprocessing input buffer %p", __func__, mId,
request->input_buffer);
if (!isValidReprocessSettings(request->settings)) {
ALOGE("%s:%d: Invalid settings for reprocess request: %p",
__func__, mId, request->settings);
return -EINVAL;
}
} else {
ALOGV("%s:%d: Capturing new frame.", __func__, mId);
if (!isValidCaptureSettings(request->settings)) {
ALOGE("%s:%d: Invalid settings for capture request: %p",
__func__, mId, request->settings);
return -EINVAL;
}
}
if (request->num_output_buffers <= 0) {
ALOGE("%s:%d: Invalid number of output buffers: %d", __func__, mId,
request->num_output_buffers);
return -EINVAL;
}
result.num_output_buffers = request->num_output_buffers;
result.output_buffers = new camera3_stream_buffer_t[result.num_output_buffers];
for (unsigned int i = 0; i < request->num_output_buffers; i++) {
int res = processCaptureBuffer(&request->output_buffers[i],
const_cast<camera3_stream_buffer_t*>(&result.output_buffers[i]));
if (res)
goto err_out;
}
result.frame_number = request->frame_number;
// TODO: return actual captured/reprocessed settings
result.result = request->settings;
// TODO: asynchronously return results
notifyShutter(request->frame_number, 0);
mCallbackOps->process_capture_result(mCallbackOps, &result);
return 0;
err_out:
delete [] result.output_buffers;
// TODO: this should probably be a total device failure; transient for now
return -EINVAL;
}
void Camera::setSettings(const camera_metadata_t *new_settings)
{
if (mSettings != NULL) {
free_camera_metadata(mSettings);
mSettings = NULL;
}
if (new_settings != NULL)
mSettings = clone_camera_metadata(new_settings);
}
bool Camera::isValidReprocessSettings(const camera_metadata_t* /*settings*/)
{
// TODO: reject settings that cannot be reprocessed
// input buffers unimplemented, use this to reject reprocessing requests
ALOGE("%s:%d: Input buffer reprocessing not implemented", __func__, mId);
return false;
}
int Camera::processCaptureBuffer(const camera3_stream_buffer_t *in,
camera3_stream_buffer_t *out)
{
if (in->acquire_fence != -1) {
int res = sync_wait(in->acquire_fence, CAMERA_SYNC_TIMEOUT);
if (res == -ETIME) {
ALOGE("%s:%d: Timeout waiting on buffer acquire fence",
__func__, mId);
return res;
} else if (res) {
ALOGE("%s:%d: Error waiting on buffer acquire fence: %s(%d)",
__func__, mId, strerror(-res), res);
return res;
}
}
out->stream = in->stream;
out->buffer = in->buffer;
out->status = CAMERA3_BUFFER_STATUS_OK;
// TODO: use driver-backed release fences
out->acquire_fence = -1;
out->release_fence = -1;
// TODO: lock and software-paint buffer
return 0;
}
void Camera::notifyShutter(uint32_t frame_number, uint64_t timestamp)
{
int res;
struct timespec ts;
// If timestamp is 0, get timestamp from right now instead
if (timestamp == 0) {
ALOGW("%s:%d: No timestamp provided, using CLOCK_BOOTTIME",
__func__, mId);
res = clock_gettime(CLOCK_BOOTTIME, &ts);
if (res == 0) {
timestamp = ts.tv_sec * 1000000000ULL + ts.tv_nsec;
} else {
ALOGE("%s:%d: No timestamp and failed to get CLOCK_BOOTTIME %s(%d)",
__func__, mId, strerror(errno), errno);
}
}
camera3_notify_msg_t m;
memset(&m, 0, sizeof(m));
m.type = CAMERA3_MSG_SHUTTER;
m.message.shutter.frame_number = frame_number;
m.message.shutter.timestamp = timestamp;
mCallbackOps->notify(mCallbackOps, &m);
}
void Camera::dump(int fd)
{
ALOGV("%s:%d: Dumping to fd %d", __func__, mId, fd);
ATRACE_CALL();
android::Mutex::Autolock al(mDeviceLock);
dprintf(fd, "Camera ID: %d (Busy: %d)\n", mId, mBusy);
// TODO: dump all settings
dprintf(fd, "Most Recent Settings: (%p)\n", mSettings);
dprintf(fd, "Number of streams: %d\n", mNumStreams);
for (int i = 0; i < mNumStreams; i++) {
dprintf(fd, "Stream %d/%d:\n", i, mNumStreams);
mStreams[i]->dump(fd);
}
}
const char* Camera::templateToString(int type)
{
switch (type) {
case CAMERA3_TEMPLATE_PREVIEW:
return "CAMERA3_TEMPLATE_PREVIEW";
case CAMERA3_TEMPLATE_STILL_CAPTURE:
return "CAMERA3_TEMPLATE_STILL_CAPTURE";
case CAMERA3_TEMPLATE_VIDEO_RECORD:
return "CAMERA3_TEMPLATE_VIDEO_RECORD";
case CAMERA3_TEMPLATE_VIDEO_SNAPSHOT:
return "CAMERA3_TEMPLATE_VIDEO_SNAPSHOT";
case CAMERA3_TEMPLATE_ZERO_SHUTTER_LAG:
return "CAMERA3_TEMPLATE_ZERO_SHUTTER_LAG";
}
// TODO: support vendor templates
return "Invalid template type!";
}
int Camera::setTemplate(int type, camera_metadata_t *settings)
{
android::Mutex::Autolock al(mDeviceLock);
if (!isValidTemplateType(type)) {
ALOGE("%s:%d: Invalid template request type: %d", __func__, mId, type);
return -EINVAL;
}
if (mTemplates[type] != NULL) {
ALOGE("%s:%d: Setting already constructed template type %s(%d)",
__func__, mId, templateToString(type), type);
return -EINVAL;
}
// Make a durable copy of the underlying metadata
mTemplates[type] = clone_camera_metadata(settings);
if (mTemplates[type] == NULL) {
ALOGE("%s:%d: Failed to clone metadata %p for template type %s(%d)",
__func__, mId, settings, templateToString(type), type);
return -EINVAL;
}
return 0;
}
extern "C" {
// Get handle to camera from device priv data
static Camera *camdev_to_camera(const camera3_device_t *dev)
{
return reinterpret_cast<Camera*>(dev->priv);
}
static int initialize(const camera3_device_t *dev,
const camera3_callback_ops_t *callback_ops)
{
return camdev_to_camera(dev)->initialize(callback_ops);
}
static int configure_streams(const camera3_device_t *dev,
camera3_stream_configuration_t *stream_list)
{
return camdev_to_camera(dev)->configureStreams(stream_list);
}
static int register_stream_buffers(const camera3_device_t *dev,
const camera3_stream_buffer_set_t *buffer_set)
{
return camdev_to_camera(dev)->registerStreamBuffers(buffer_set);
}
static const camera_metadata_t *construct_default_request_settings(
const camera3_device_t *dev, int type)
{
return camdev_to_camera(dev)->constructDefaultRequestSettings(type);
}
static int process_capture_request(const camera3_device_t *dev,
camera3_capture_request_t *request)
{
return camdev_to_camera(dev)->processCaptureRequest(request);
}
static void dump(const camera3_device_t *dev, int fd)
{
camdev_to_camera(dev)->dump(fd);
}
static int flush(const camera3_device_t*)
{
ALOGE("%s: unimplemented.", __func__);
return -1;
}
} // extern "C"
const camera3_device_ops_t Camera::sOps = {
.initialize = default_camera_hal::initialize,
.configure_streams = default_camera_hal::configure_streams,
.register_stream_buffers = default_camera_hal::register_stream_buffers,
.construct_default_request_settings
= default_camera_hal::construct_default_request_settings,
.process_capture_request = default_camera_hal::process_capture_request,
.get_metadata_vendor_tag_ops = NULL,
.dump = default_camera_hal::dump,
.flush = default_camera_hal::flush,
.reserved = {0},
};
} // namespace default_camera_hal