blob: 6f2cb9cf71e0da5b2e32bfba0bd4049cb87027dd [file] [log] [blame]
/*
* Copyright (C) 2010 The Android Open Source Project
* Copyright (C) 2012-2013, The Linux Foundation All rights reserved.
*
* Not a Contribution, Apache license notifications and license are retained
* for attribution purposes only.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define ATRACE_TAG (ATRACE_TAG_GRAPHICS | ATRACE_TAG_HAL)
#define HWC_UTILS_DEBUG 0
#include <math.h>
#include <sys/ioctl.h>
#include <linux/fb.h>
#include <binder/IServiceManager.h>
#include <EGL/egl.h>
#include <cutils/properties.h>
#include <utils/Trace.h>
#include <gralloc_priv.h>
#include <overlay.h>
#include <overlayRotator.h>
#include <overlayWriteback.h>
#include "hwc_utils.h"
#include "hwc_mdpcomp.h"
#include "hwc_fbupdate.h"
#include "hwc_ad.h"
#include "mdp_version.h"
#include "hwc_copybit.h"
#include "hwc_dump_layers.h"
#include "hwc_vpuclient.h"
#include "external.h"
#include "virtual.h"
#include "hwc_qclient.h"
#include "QService.h"
#include "comptype.h"
using namespace qClient;
using namespace qService;
using namespace android;
using namespace overlay;
using namespace overlay::utils;
namespace ovutils = overlay::utils;
namespace qhwc {
static int openFramebufferDevice(hwc_context_t *ctx)
{
struct fb_fix_screeninfo finfo;
struct fb_var_screeninfo info;
int fb_fd = openFb(HWC_DISPLAY_PRIMARY);
if(fb_fd < 0) {
ALOGE("%s: Error Opening FB : %s", __FUNCTION__, strerror(errno));
return -errno;
}
if (ioctl(fb_fd, FBIOGET_VSCREENINFO, &info) == -1) {
ALOGE("%s:Error in ioctl FBIOGET_VSCREENINFO: %s", __FUNCTION__,
strerror(errno));
close(fb_fd);
return -errno;
}
if (int(info.width) <= 0 || int(info.height) <= 0) {
// the driver doesn't return that information
// default to 160 dpi
info.width = ((info.xres * 25.4f)/160.0f + 0.5f);
info.height = ((info.yres * 25.4f)/160.0f + 0.5f);
}
float xdpi = (info.xres * 25.4f) / info.width;
float ydpi = (info.yres * 25.4f) / info.height;
#ifdef MSMFB_METADATA_GET
struct msmfb_metadata metadata;
memset(&metadata, 0 , sizeof(metadata));
metadata.op = metadata_op_frame_rate;
if (ioctl(fb_fd, MSMFB_METADATA_GET, &metadata) == -1) {
ALOGE("%s:Error retrieving panel frame rate: %s", __FUNCTION__,
strerror(errno));
close(fb_fd);
return -errno;
}
float fps = metadata.data.panel_frame_rate;
#else
//XXX: Remove reserved field usage on all baselines
//The reserved[3] field is used to store FPS by the driver.
float fps = info.reserved[3] & 0xFF;
#endif
if (ioctl(fb_fd, FBIOGET_FSCREENINFO, &finfo) == -1) {
ALOGE("%s:Error in ioctl FBIOGET_FSCREENINFO: %s", __FUNCTION__,
strerror(errno));
close(fb_fd);
return -errno;
}
ctx->dpyAttr[HWC_DISPLAY_PRIMARY].fd = fb_fd;
//xres, yres may not be 32 aligned
ctx->dpyAttr[HWC_DISPLAY_PRIMARY].stride = finfo.line_length /(info.xres/8);
ctx->dpyAttr[HWC_DISPLAY_PRIMARY].xres = info.xres;
ctx->dpyAttr[HWC_DISPLAY_PRIMARY].yres = info.yres;
ctx->dpyAttr[HWC_DISPLAY_PRIMARY].xdpi = xdpi;
ctx->dpyAttr[HWC_DISPLAY_PRIMARY].ydpi = ydpi;
ctx->dpyAttr[HWC_DISPLAY_PRIMARY].vsync_period = 1000000000l / fps;
//Unblank primary on first boot
if(ioctl(fb_fd, FBIOBLANK,FB_BLANK_UNBLANK) < 0) {
ALOGE("%s: Failed to unblank display", __FUNCTION__);
return -errno;
}
ctx->dpyAttr[HWC_DISPLAY_PRIMARY].isActive = true;
return 0;
}
void initContext(hwc_context_t *ctx)
{
openFramebufferDevice(ctx);
ctx->mMDP.version = qdutils::MDPVersion::getInstance().getMDPVersion();
ctx->mMDP.hasOverlay = qdutils::MDPVersion::getInstance().hasOverlay();
ctx->mMDP.panel = qdutils::MDPVersion::getInstance().getPanelType();
overlay::Overlay::initOverlay();
ctx->mOverlay = overlay::Overlay::getInstance();
ctx->mRotMgr = new RotMgr();
//Is created and destroyed only once for primary
//For external it could get created and destroyed multiple times depending
//on what external we connect to.
ctx->mFBUpdate[HWC_DISPLAY_PRIMARY] =
IFBUpdate::getObject(ctx, HWC_DISPLAY_PRIMARY);
// Check if the target supports copybit compostion (dyn/mdp/c2d) to
// decide if we need to open the copybit module.
int compositionType =
qdutils::QCCompositionType::getInstance().getCompositionType();
if (compositionType & (qdutils::COMPOSITION_TYPE_DYN |
qdutils::COMPOSITION_TYPE_MDP |
qdutils::COMPOSITION_TYPE_C2D)) {
ctx->mCopyBit[HWC_DISPLAY_PRIMARY] = new CopyBit(ctx,
HWC_DISPLAY_PRIMARY);
}
ctx->mExtDisplay = new ExternalDisplay(ctx);
ctx->mVirtualDisplay = new VirtualDisplay(ctx);
ctx->mVirtualonExtActive = false;
ctx->dpyAttr[HWC_DISPLAY_EXTERNAL].isActive = false;
ctx->dpyAttr[HWC_DISPLAY_EXTERNAL].connected = false;
ctx->dpyAttr[HWC_DISPLAY_VIRTUAL].isActive = false;
ctx->dpyAttr[HWC_DISPLAY_VIRTUAL].connected = false;
ctx->dpyAttr[HWC_DISPLAY_PRIMARY].mDownScaleMode= false;
ctx->dpyAttr[HWC_DISPLAY_EXTERNAL].mDownScaleMode = false;
ctx->dpyAttr[HWC_DISPLAY_VIRTUAL].mDownScaleMode = false;
ctx->mMDPComp[HWC_DISPLAY_PRIMARY] =
MDPComp::getObject(ctx, HWC_DISPLAY_PRIMARY);
ctx->dpyAttr[HWC_DISPLAY_PRIMARY].connected = true;
for (uint32_t i = 0; i < HWC_NUM_DISPLAY_TYPES; i++) {
ctx->mHwcDebug[i] = new HwcDebug(i);
ctx->mLayerRotMap[i] = new LayerRotMap();
}
MDPComp::init(ctx);
ctx->mAD = new AssertiveDisplay(ctx);
ctx->vstate.enable = false;
ctx->vstate.fakevsync = false;
ctx->mExtOrientation = 0;
//Right now hwc starts the service but anybody could do it, or it could be
//independent process as well.
QService::init();
sp<IQClient> client = new QClient(ctx);
interface_cast<IQService>(
defaultServiceManager()->getService(
String16("display.qservice")))->connect(client);
// Initialize "No animation on external display" related parameters.
ctx->deviceOrientation = 0;
ctx->mPrevCropVideo.left = ctx->mPrevCropVideo.top =
ctx->mPrevCropVideo.right = ctx->mPrevCropVideo.bottom = 0;
ctx->mPrevDestVideo.left = ctx->mPrevDestVideo.top =
ctx->mPrevDestVideo.right = ctx->mPrevDestVideo.bottom = 0;
ctx->mPrevTransformVideo = 0;
ctx->mBufferMirrorMode = false;
#ifdef VPU_TARGET
ctx->mVPUClient = new VPUClient();
#endif
ALOGI("Initializing Qualcomm Hardware Composer");
ALOGI("MDP version: %d", ctx->mMDP.version);
}
void closeContext(hwc_context_t *ctx)
{
if(ctx->mOverlay) {
delete ctx->mOverlay;
ctx->mOverlay = NULL;
}
if(ctx->mRotMgr) {
delete ctx->mRotMgr;
ctx->mRotMgr = NULL;
}
for(int i = 0; i < HWC_NUM_DISPLAY_TYPES; i++) {
if(ctx->mCopyBit[i]) {
delete ctx->mCopyBit[i];
ctx->mCopyBit[i] = NULL;
}
}
if(ctx->dpyAttr[HWC_DISPLAY_PRIMARY].fd) {
close(ctx->dpyAttr[HWC_DISPLAY_PRIMARY].fd);
ctx->dpyAttr[HWC_DISPLAY_PRIMARY].fd = -1;
}
if(ctx->mExtDisplay) {
delete ctx->mExtDisplay;
ctx->mExtDisplay = NULL;
}
#ifdef VPU_TARGET
if(ctx->mVPUClient) {
delete ctx->mVPUClient;
}
#endif
for(int i = 0; i < HWC_NUM_DISPLAY_TYPES; i++) {
if(ctx->mFBUpdate[i]) {
delete ctx->mFBUpdate[i];
ctx->mFBUpdate[i] = NULL;
}
if(ctx->mMDPComp[i]) {
delete ctx->mMDPComp[i];
ctx->mMDPComp[i] = NULL;
}
if(ctx->mHwcDebug[i]) {
delete ctx->mHwcDebug[i];
ctx->mHwcDebug[i] = NULL;
}
if(ctx->mLayerRotMap[i]) {
delete ctx->mLayerRotMap[i];
ctx->mLayerRotMap[i] = NULL;
}
}
if(ctx->mAD) {
delete ctx->mAD;
ctx->mAD = NULL;
}
}
void dumpsys_log(android::String8& buf, const char* fmt, ...)
{
va_list varargs;
va_start(varargs, fmt);
buf.appendFormatV(fmt, varargs);
va_end(varargs);
}
int getExtOrientation(hwc_context_t* ctx) {
int extOrient = ctx->mExtOrientation;
if(ctx->mBufferMirrorMode)
extOrient = getMirrorModeOrientation(ctx);
return extOrient;
}
/* Calculates the destination position based on the action safe rectangle */
void getActionSafePosition(hwc_context_t *ctx, int dpy, hwc_rect_t& rect) {
// Position
int x = rect.left, y = rect.top;
int w = rect.right - rect.left;
int h = rect.bottom - rect.top;
// if external supports underscan, do nothing
// it will be taken care in the driver
if(ctx->mExtDisplay->isCEUnderscanSupported())
return;
char value[PROPERTY_VALUE_MAX];
// Read action safe properties
property_get("persist.sys.actionsafe.width", value, "0");
int asWidthRatio = atoi(value);
property_get("persist.sys.actionsafe.height", value, "0");
int asHeightRatio = atoi(value);
if(!asWidthRatio && !asHeightRatio) {
//No action safe ratio set, return
return;
}
float wRatio = 1.0;
float hRatio = 1.0;
float xRatio = 1.0;
float yRatio = 1.0;
float fbWidth = ctx->dpyAttr[dpy].xres;
float fbHeight = ctx->dpyAttr[dpy].yres;
if(ctx->dpyAttr[dpy].mDownScaleMode) {
// if downscale Mode is enabled for external, need to query
// the actual width and height, as that is the physical w & h
ctx->mExtDisplay->getAttributes((int&)fbWidth, (int&)fbHeight);
}
// Since external is rotated 90, need to swap width/height
int extOrient = getExtOrientation(ctx);
if(extOrient & HWC_TRANSFORM_ROT_90)
swap(fbWidth, fbHeight);
float asX = 0;
float asY = 0;
float asW = fbWidth;
float asH= fbHeight;
// based on the action safe ratio, get the Action safe rectangle
asW = fbWidth * (1.0f - asWidthRatio / 100.0f);
asH = fbHeight * (1.0f - asHeightRatio / 100.0f);
asX = (fbWidth - asW) / 2;
asY = (fbHeight - asH) / 2;
// calculate the position ratio
xRatio = (float)x/fbWidth;
yRatio = (float)y/fbHeight;
wRatio = (float)w/fbWidth;
hRatio = (float)h/fbHeight;
//Calculate the position...
x = (xRatio * asW) + asX;
y = (yRatio * asH) + asY;
w = (wRatio * asW);
h = (hRatio * asH);
// Convert it back to hwc_rect_t
rect.left = x;
rect.top = y;
rect.right = w + rect.left;
rect.bottom = h + rect.top;
return;
}
/* Calculates the aspect ratio for based on src & dest */
void getAspectRatioPosition(int destWidth, int destHeight, int srcWidth,
int srcHeight, hwc_rect_t& rect) {
int x =0, y =0;
if (srcWidth * destHeight > destWidth * srcHeight) {
srcHeight = destWidth * srcHeight / srcWidth;
srcWidth = destWidth;
} else if (srcWidth * destHeight < destWidth * srcHeight) {
srcWidth = destHeight * srcWidth / srcHeight;
srcHeight = destHeight;
} else {
srcWidth = destWidth;
srcHeight = destHeight;
}
if (srcWidth > destWidth) srcWidth = destWidth;
if (srcHeight > destHeight) srcHeight = destHeight;
x = (destWidth - srcWidth) / 2;
y = (destHeight - srcHeight) / 2;
ALOGD_IF(HWC_UTILS_DEBUG, "%s: AS Position: x = %d, y = %d w = %d h = %d",
__FUNCTION__, x, y, srcWidth , srcHeight);
// Convert it back to hwc_rect_t
rect.left = x;
rect.top = y;
rect.right = srcWidth + rect.left;
rect.bottom = srcHeight + rect.top;
}
// This function gets the destination position for Seconday display
// based on the position and aspect ratio with orientation
void getAspectRatioPosition(hwc_context_t* ctx, int dpy, int extOrientation,
hwc_rect_t& inRect, hwc_rect_t& outRect) {
// Physical display resolution
float fbWidth = ctx->dpyAttr[dpy].xres;
float fbHeight = ctx->dpyAttr[dpy].yres;
//display position(x,y,w,h) in correct aspectratio after rotation
int xPos = 0;
int yPos = 0;
float width = fbWidth;
float height = fbHeight;
// Width/Height used for calculation, after rotation
float actualWidth = fbWidth;
float actualHeight = fbHeight;
float wRatio = 1.0;
float hRatio = 1.0;
float xRatio = 1.0;
float yRatio = 1.0;
hwc_rect_t rect = {0, 0, (int)fbWidth, (int)fbHeight};
Dim inPos(inRect.left, inRect.top, inRect.right - inRect.left,
inRect.bottom - inRect.top);
Dim outPos(outRect.left, outRect.top, outRect.right - outRect.left,
outRect.bottom - outRect.top);
Whf whf(fbWidth, fbHeight, 0);
eTransform extorient = static_cast<eTransform>(extOrientation);
// To calculate the destination co-ordinates in the new orientation
preRotateSource(extorient, whf, inPos);
if(extOrientation & HAL_TRANSFORM_ROT_90) {
// Swap width/height for input position
swapWidthHeight(actualWidth, actualHeight);
getAspectRatioPosition(fbWidth, fbHeight, (int)actualWidth,
(int)actualHeight, rect);
xPos = rect.left;
yPos = rect.top;
width = rect.right - rect.left;
height = rect.bottom - rect.top;
}
//Calculate the position...
xRatio = inPos.x/actualWidth;
yRatio = inPos.y/actualHeight;
wRatio = inPos.w/actualWidth;
hRatio = inPos.h/actualHeight;
outPos.x = (xRatio * width) + xPos;
outPos.y = (yRatio * height) + yPos;
outPos.w = wRatio * width;
outPos.h = hRatio * height;
ALOGD_IF(HWC_UTILS_DEBUG, "%s: Calculated AspectRatio Position: x = %d,"
"y = %d w = %d h = %d", __FUNCTION__, outPos.x, outPos.y,
outPos.w, outPos.h);
// For sidesync, the dest fb will be in portrait orientation, and the crop
// will be updated to avoid the black side bands, and it will be upscaled
// to fit the dest RB, so recalculate
// the position based on the new width and height
if ((extOrientation & HWC_TRANSFORM_ROT_90) &&
isOrientationPortrait(ctx)) {
hwc_rect_t r;
//Calculate the position
xRatio = (outPos.x - xPos)/width;
// GetaspectRatio -- tricky to get the correct aspect ratio
// But we need to do this.
getAspectRatioPosition(width, height, width, height, r);
xPos = r.left;
yPos = r.top;
float tempWidth = r.right - r.left;
float tempHeight = r.bottom - r.top;
yRatio = yPos/height;
wRatio = outPos.w/width;
hRatio = tempHeight/height;
//Map the coordinates back to Framebuffer domain
outPos.x = (xRatio * fbWidth);
outPos.y = (yRatio * fbHeight);
outPos.w = wRatio * fbWidth;
outPos.h = hRatio * fbHeight;
ALOGD_IF(HWC_UTILS_DEBUG, "%s: Calculated AspectRatio for device in"
"portrait: x = %d,y = %d w = %d h = %d", __FUNCTION__,
outPos.x, outPos.y,
outPos.w, outPos.h);
}
if(ctx->dpyAttr[dpy].mDownScaleMode) {
int extW, extH;
if(dpy == HWC_DISPLAY_EXTERNAL)
ctx->mExtDisplay->getAttributes(extW, extH);
else
ctx->mVirtualDisplay->getAttributes(extW, extH);
fbWidth = ctx->dpyAttr[dpy].xres;
fbHeight = ctx->dpyAttr[dpy].yres;
//Calculate the position...
xRatio = outPos.x/fbWidth;
yRatio = outPos.y/fbHeight;
wRatio = outPos.w/fbWidth;
hRatio = outPos.h/fbHeight;
outPos.x = xRatio * extW;
outPos.y = yRatio * extH;
outPos.w = wRatio * extW;
outPos.h = hRatio * extH;
}
// Convert Dim to hwc_rect_t
outRect.left = outPos.x;
outRect.top = outPos.y;
outRect.right = outPos.x + outPos.w;
outRect.bottom = outPos.y + outPos.h;
return;
}
bool isPrimaryPortrait(hwc_context_t *ctx) {
int fbWidth = ctx->dpyAttr[HWC_DISPLAY_PRIMARY].xres;
int fbHeight = ctx->dpyAttr[HWC_DISPLAY_PRIMARY].yres;
if(fbWidth < fbHeight) {
return true;
}
return false;
}
bool isOrientationPortrait(hwc_context_t *ctx) {
if(isPrimaryPortrait(ctx)) {
return !(ctx->deviceOrientation & 0x1);
}
return (ctx->deviceOrientation & 0x1);
}
void calcExtDisplayPosition(hwc_context_t *ctx,
private_handle_t *hnd,
int dpy,
hwc_rect_t& sourceCrop,
hwc_rect_t& displayFrame,
int& transform,
ovutils::eTransform& orient) {
// Swap width and height when there is a 90deg transform
int extOrient = getExtOrientation(ctx);
if(dpy && !qdutils::MDPVersion::getInstance().is8x26()) {
if(!isYuvBuffer(hnd)) {
if(extOrient & HWC_TRANSFORM_ROT_90) {
int dstWidth = ctx->dpyAttr[dpy].xres;
int dstHeight = ctx->dpyAttr[dpy].yres;;
int srcWidth = ctx->dpyAttr[HWC_DISPLAY_PRIMARY].xres;
int srcHeight = ctx->dpyAttr[HWC_DISPLAY_PRIMARY].yres;
if(!isPrimaryPortrait(ctx)) {
swap(srcWidth, srcHeight);
} // Get Aspect Ratio for external
getAspectRatioPosition(dstWidth, dstHeight, srcWidth,
srcHeight, displayFrame);
// Crop - this is needed, because for sidesync, the dest fb will
// be in portrait orientation, so update the crop to not show the
// black side bands.
if (isOrientationPortrait(ctx)) {
sourceCrop = displayFrame;
displayFrame.left = 0;
displayFrame.top = 0;
displayFrame.right = dstWidth;
displayFrame.bottom = dstHeight;
}
}
if(ctx->dpyAttr[dpy].mDownScaleMode) {
int extW, extH;
// if downscale is enabled, map the co-ordinates to new
// domain(downscaled)
float fbWidth = ctx->dpyAttr[dpy].xres;
float fbHeight = ctx->dpyAttr[dpy].yres;
// query MDP configured attributes
if(dpy == HWC_DISPLAY_EXTERNAL)
ctx->mExtDisplay->getAttributes(extW, extH);
else
ctx->mVirtualDisplay->getAttributes(extW, extH);
//Calculate the ratio...
float wRatio = ((float)extW)/fbWidth;
float hRatio = ((float)extH)/fbHeight;
//convert Dim to hwc_rect_t
displayFrame.left *= wRatio;
displayFrame.top *= hRatio;
displayFrame.right *= wRatio;
displayFrame.bottom *= hRatio;
}
}else {
if(extOrient || ctx->dpyAttr[dpy].mDownScaleMode) {
getAspectRatioPosition(ctx, dpy, extOrient,
displayFrame, displayFrame);
}
}
// If there is a external orientation set, use that
if(extOrient) {
transform = extOrient;
orient = static_cast<ovutils::eTransform >(extOrient);
}
// Calculate the actionsafe dimensions for External(dpy = 1 or 2)
getActionSafePosition(ctx, dpy, displayFrame);
}
}
/* Returns the orientation which needs to be set on External for
* SideSync/Buffer Mirrormode
*/
int getMirrorModeOrientation(hwc_context_t *ctx) {
int extOrientation = 0;
int deviceOrientation = ctx->deviceOrientation;
if(!isPrimaryPortrait(ctx))
deviceOrientation = (deviceOrientation + 1) % 4;
if (deviceOrientation == 0)
extOrientation = HWC_TRANSFORM_ROT_270;
else if (deviceOrientation == 1)//90
extOrientation = 0;
else if (deviceOrientation == 2)//180
extOrientation = HWC_TRANSFORM_ROT_90;
else if (deviceOrientation == 3)//270
extOrientation = HWC_TRANSFORM_FLIP_V | HWC_TRANSFORM_FLIP_H;
return extOrientation;
}
bool needsScaling(hwc_context_t* ctx, hwc_layer_1_t const* layer,
const int& dpy) {
int dst_w, dst_h, src_w, src_h;
hwc_rect_t displayFrame = layer->displayFrame;
hwc_rect_t sourceCrop = integerizeSourceCrop(layer->sourceCropf);
dst_w = displayFrame.right - displayFrame.left;
dst_h = displayFrame.bottom - displayFrame.top;
src_w = sourceCrop.right - sourceCrop.left;
src_h = sourceCrop.bottom - sourceCrop.top;
if(((src_w != dst_w) || (src_h != dst_h)))
return true;
return false;
}
// Checks if layer needs scaling with split
bool needsScalingWithSplit(hwc_context_t* ctx, hwc_layer_1_t const* layer,
const int& dpy) {
int src_width_l, src_height_l;
int src_width_r, src_height_r;
int dst_width_l, dst_height_l;
int dst_width_r, dst_height_r;
int hw_w = ctx->dpyAttr[dpy].xres;
int hw_h = ctx->dpyAttr[dpy].yres;
hwc_rect_t cropL, dstL, cropR, dstR;
const int lSplit = getLeftSplit(ctx, dpy);
hwc_rect_t sourceCrop = integerizeSourceCrop(layer->sourceCropf);
hwc_rect_t displayFrame = layer->displayFrame;
private_handle_t *hnd = (private_handle_t *)layer->handle;
cropL = sourceCrop;
dstL = displayFrame;
hwc_rect_t scissorL = { 0, 0, lSplit, hw_h };
qhwc::calculate_crop_rects(cropL, dstL, scissorL, 0);
cropR = sourceCrop;
dstR = displayFrame;
hwc_rect_t scissorR = { lSplit, 0, hw_w, hw_h };
qhwc::calculate_crop_rects(cropR, dstR, scissorR, 0);
// Sanitize Crop to stitch
sanitizeSourceCrop(cropL, cropR, hnd);
// Calculate the left dst
dst_width_l = dstL.right - dstL.left;
dst_height_l = dstL.bottom - dstL.top;
src_width_l = cropL.right - cropL.left;
src_height_l = cropL.bottom - cropL.top;
// check if there is any scaling on the left
if(((src_width_l != dst_width_l) || (src_height_l != dst_height_l)))
return true;
// Calculate the right dst
dst_width_r = dstR.right - dstR.left;
dst_height_r = dstR.bottom - dstR.top;
src_width_r = cropR.right - cropR.left;
src_height_r = cropR.bottom - cropR.top;
// check if there is any scaling on the right
if(((src_width_r != dst_width_r) || (src_height_r != dst_height_r)))
return true;
return false;
}
bool isAlphaScaled(hwc_context_t* ctx, hwc_layer_1_t const* layer,
const int& dpy) {
if(needsScaling(ctx, layer, dpy) && isAlphaPresent(layer)) {
return true;
}
return false;
}
bool isAlphaPresent(hwc_layer_1_t const* layer) {
private_handle_t *hnd = (private_handle_t *)layer->handle;
if(hnd) {
int format = hnd->format;
switch(format) {
case HAL_PIXEL_FORMAT_RGBA_8888:
case HAL_PIXEL_FORMAT_BGRA_8888:
// In any more formats with Alpha go here..
return true;
default : return false;
}
}
return false;
}
static void trimLayer(hwc_context_t *ctx, const int& dpy, const int& transform,
hwc_rect_t& crop, hwc_rect_t& dst) {
int hw_w = ctx->dpyAttr[dpy].xres;
int hw_h = ctx->dpyAttr[dpy].yres;
if(dst.left < 0 || dst.top < 0 ||
dst.right > hw_w || dst.bottom > hw_h) {
hwc_rect_t scissor = {0, 0, hw_w, hw_h };
qhwc::calculate_crop_rects(crop, dst, scissor, transform);
}
}
static void trimList(hwc_context_t *ctx, hwc_display_contents_1_t *list,
const int& dpy) {
for(uint32_t i = 0; i < list->numHwLayers - 1; i++) {
hwc_layer_1_t *layer = &list->hwLayers[i];
hwc_rect_t crop = integerizeSourceCrop(layer->sourceCropf);
trimLayer(ctx, dpy,
list->hwLayers[i].transform,
(hwc_rect_t&)crop,
(hwc_rect_t&)list->hwLayers[i].displayFrame);
layer->sourceCropf.left = crop.left;
layer->sourceCropf.right = crop.right;
layer->sourceCropf.top = crop.top;
layer->sourceCropf.bottom = crop.bottom;
}
}
void setListStats(hwc_context_t *ctx,
hwc_display_contents_1_t *list, int dpy) {
const int prevYuvCount = ctx->listStats[dpy].yuvCount;
memset(&ctx->listStats[dpy], 0, sizeof(ListStats));
ctx->listStats[dpy].numAppLayers = list->numHwLayers - 1;
ctx->listStats[dpy].fbLayerIndex = list->numHwLayers - 1;
ctx->listStats[dpy].skipCount = 0;
ctx->listStats[dpy].needsAlphaScale = false;
ctx->listStats[dpy].preMultipliedAlpha = false;
ctx->listStats[dpy].isSecurePresent = false;
ctx->listStats[dpy].yuvCount = 0;
char property[PROPERTY_VALUE_MAX];
ctx->listStats[dpy].extOnlyLayerIndex = -1;
ctx->listStats[dpy].isDisplayAnimating = false;
ctx->listStats[dpy].roi = ovutils::Dim(0, 0,
(int)ctx->dpyAttr[dpy].xres, (int)ctx->dpyAttr[dpy].yres);
ctx->listStats[dpy].secureUI = false;
ctx->listStats[dpy].yuv4k2kCount = 0;
trimList(ctx, list, dpy);
optimizeLayerRects(ctx, list, dpy);
for (size_t i = 0; i < (size_t)ctx->listStats[dpy].numAppLayers; i++) {
hwc_layer_1_t const* layer = &list->hwLayers[i];
private_handle_t *hnd = (private_handle_t *)layer->handle;
#ifdef QCOM_BSP
if (layer->flags & HWC_SCREENSHOT_ANIMATOR_LAYER) {
ctx->listStats[dpy].isDisplayAnimating = true;
}
if(isSecureDisplayBuffer(hnd)) {
ctx->listStats[dpy].secureUI = true;
}
#endif
// continue if number of app layers exceeds MAX_NUM_APP_LAYERS
if(ctx->listStats[dpy].numAppLayers > MAX_NUM_APP_LAYERS)
continue;
//reset yuv indices
ctx->listStats[dpy].yuvIndices[i] = -1;
ctx->listStats[dpy].yuv4k2kIndices[i] = -1;
if (isSecureBuffer(hnd)) {
ctx->listStats[dpy].isSecurePresent = true;
}
if (isSkipLayer(&list->hwLayers[i])) {
ctx->listStats[dpy].skipCount++;
}
if (UNLIKELY(isYuvBuffer(hnd))) {
int& yuvCount = ctx->listStats[dpy].yuvCount;
ctx->listStats[dpy].yuvIndices[yuvCount] = i;
yuvCount++;
if(UNLIKELY(is4kx2kYuvBuffer(hnd))){
int& yuv4k2kCount = ctx->listStats[dpy].yuv4k2kCount;
ctx->listStats[dpy].yuv4k2kIndices[yuv4k2kCount] = i;
yuv4k2kCount++;
}
if((layer->transform & HWC_TRANSFORM_ROT_90) &&
canUseRotator(ctx, dpy)) {
if( (dpy == HWC_DISPLAY_PRIMARY) &&
ctx->mOverlay->isPipeTypeAttached(OV_MDP_PIPE_DMA)) {
ctx->isPaddingRound = true;
}
Overlay::setDMAMode(Overlay::DMA_BLOCK_MODE);
}
}
if(layer->blending == HWC_BLENDING_PREMULT)
ctx->listStats[dpy].preMultipliedAlpha = true;
if(!ctx->listStats[dpy].needsAlphaScale)
ctx->listStats[dpy].needsAlphaScale =
isAlphaScaled(ctx, layer, dpy);
if(UNLIKELY(isExtOnly(hnd))){
ctx->listStats[dpy].extOnlyLayerIndex = i;
}
}
if(ctx->listStats[dpy].yuvCount > 0) {
if (property_get("hw.cabl.yuv", property, NULL) > 0) {
if (atoi(property) != 1) {
property_set("hw.cabl.yuv", "1");
}
}
} else {
if (property_get("hw.cabl.yuv", property, NULL) > 0) {
if (atoi(property) != 0) {
property_set("hw.cabl.yuv", "0");
}
}
}
if(dpy) {
//uncomment the below code for testing purpose.
/* char value[PROPERTY_VALUE_MAX];
property_get("sys.ext_orientation", value, "0");
// Assuming the orientation value is in terms of HAL_TRANSFORM,
// This needs mapping to HAL, if its in different convention
ctx->mExtOrientation = atoi(value); */
// Assuming the orientation value is in terms of HAL_TRANSFORM,
// This needs mapping to HAL, if its in different convention
if(ctx->mExtOrientation || ctx->mBufferMirrorMode) {
ALOGD_IF(HWC_UTILS_DEBUG, "%s: ext orientation = %d"
"BufferMirrorMode = %d", __FUNCTION__,
ctx->mExtOrientation, ctx->mBufferMirrorMode);
if(ctx->mOverlay->isPipeTypeAttached(OV_MDP_PIPE_DMA)) {
ctx->isPaddingRound = true;
}
Overlay::setDMAMode(Overlay::DMA_BLOCK_MODE);
}
}
//The marking of video begin/end is useful on some targets where we need
//to have a padding round to be able to shift pipes across mixers.
if(prevYuvCount != ctx->listStats[dpy].yuvCount) {
ctx->mVideoTransFlag = true;
}
if(dpy == HWC_DISPLAY_PRIMARY) {
ctx->mAD->markDoable(ctx, list);
}
}
static void calc_cut(double& leftCutRatio, double& topCutRatio,
double& rightCutRatio, double& bottomCutRatio, int orient) {
if(orient & HAL_TRANSFORM_FLIP_H) {
swap(leftCutRatio, rightCutRatio);
}
if(orient & HAL_TRANSFORM_FLIP_V) {
swap(topCutRatio, bottomCutRatio);
}
if(orient & HAL_TRANSFORM_ROT_90) {
//Anti clock swapping
double tmpCutRatio = leftCutRatio;
leftCutRatio = topCutRatio;
topCutRatio = rightCutRatio;
rightCutRatio = bottomCutRatio;
bottomCutRatio = tmpCutRatio;
}
}
bool isSecuring(hwc_context_t* ctx, hwc_layer_1_t const* layer) {
if((ctx->mMDP.version < qdutils::MDSS_V5) &&
(ctx->mMDP.version > qdutils::MDP_V3_0) &&
ctx->mSecuring) {
return true;
}
if (isSecureModePolicy(ctx->mMDP.version)) {
private_handle_t *hnd = (private_handle_t *)layer->handle;
if(ctx->mSecureMode) {
if (! isSecureBuffer(hnd)) {
ALOGD_IF(HWC_UTILS_DEBUG,"%s:Securing Turning ON ...",
__FUNCTION__);
return true;
}
} else {
if (isSecureBuffer(hnd)) {
ALOGD_IF(HWC_UTILS_DEBUG,"%s:Securing Turning OFF ...",
__FUNCTION__);
return true;
}
}
}
return false;
}
bool isSecureModePolicy(int mdpVersion) {
if (mdpVersion < qdutils::MDSS_V5)
return true;
else
return false;
}
int getBlending(int blending) {
switch(blending) {
case HWC_BLENDING_NONE:
return overlay::utils::OVERLAY_BLENDING_OPAQUE;
case HWC_BLENDING_PREMULT:
return overlay::utils::OVERLAY_BLENDING_PREMULT;
case HWC_BLENDING_COVERAGE :
default:
return overlay::utils::OVERLAY_BLENDING_COVERAGE;
}
}
//Crops source buffer against destination and FB boundaries
void calculate_crop_rects(hwc_rect_t& crop, hwc_rect_t& dst,
const hwc_rect_t& scissor, int orient) {
int& crop_l = crop.left;
int& crop_t = crop.top;
int& crop_r = crop.right;
int& crop_b = crop.bottom;
int crop_w = crop.right - crop.left;
int crop_h = crop.bottom - crop.top;
int& dst_l = dst.left;
int& dst_t = dst.top;
int& dst_r = dst.right;
int& dst_b = dst.bottom;
int dst_w = abs(dst.right - dst.left);
int dst_h = abs(dst.bottom - dst.top);
const int& sci_l = scissor.left;
const int& sci_t = scissor.top;
const int& sci_r = scissor.right;
const int& sci_b = scissor.bottom;
int sci_w = abs(sci_r - sci_l);
int sci_h = abs(sci_b - sci_t);
double leftCutRatio = 0.0, rightCutRatio = 0.0, topCutRatio = 0.0,
bottomCutRatio = 0.0;
if(dst_l < sci_l) {
leftCutRatio = (double)(sci_l - dst_l) / (double)dst_w;
dst_l = sci_l;
}
if(dst_r > sci_r) {
rightCutRatio = (double)(dst_r - sci_r) / (double)dst_w;
dst_r = sci_r;
}
if(dst_t < sci_t) {
topCutRatio = (double)(sci_t - dst_t) / (double)dst_h;
dst_t = sci_t;
}
if(dst_b > sci_b) {
bottomCutRatio = (double)(dst_b - sci_b) / (double)dst_h;
dst_b = sci_b;
}
calc_cut(leftCutRatio, topCutRatio, rightCutRatio, bottomCutRatio, orient);
crop_l += crop_w * leftCutRatio;
crop_t += crop_h * topCutRatio;
crop_r -= crop_w * rightCutRatio;
crop_b -= crop_h * bottomCutRatio;
}
bool areLayersIntersecting(const hwc_layer_1_t* layer1,
const hwc_layer_1_t* layer2) {
hwc_rect_t irect = getIntersection(layer1->displayFrame,
layer2->displayFrame);
return isValidRect(irect);
}
bool isValidRect(const hwc_rect& rect)
{
return ((rect.bottom > rect.top) && (rect.right > rect.left)) ;
}
/* computes the intersection of two rects */
hwc_rect_t getIntersection(const hwc_rect_t& rect1, const hwc_rect_t& rect2)
{
hwc_rect_t res;
if(!isValidRect(rect1) || !isValidRect(rect2)){
return (hwc_rect_t){0, 0, 0, 0};
}
res.left = max(rect1.left, rect2.left);
res.top = max(rect1.top, rect2.top);
res.right = min(rect1.right, rect2.right);
res.bottom = min(rect1.bottom, rect2.bottom);
if(!isValidRect(res))
return (hwc_rect_t){0, 0, 0, 0};
return res;
}
/* computes the union of two rects */
hwc_rect_t getUnion(const hwc_rect &rect1, const hwc_rect &rect2)
{
hwc_rect_t res;
if(!isValidRect(rect1)){
return rect2;
}
if(!isValidRect(rect2)){
return rect1;
}
res.left = min(rect1.left, rect2.left);
res.top = min(rect1.top, rect2.top);
res.right = max(rect1.right, rect2.right);
res.bottom = max(rect1.bottom, rect2.bottom);
return res;
}
/* Not a geometrical rect deduction. Deducts rect2 from rect1 only if it results
* a single rect */
hwc_rect_t deductRect(const hwc_rect_t& rect1, const hwc_rect_t& rect2) {
hwc_rect_t res = rect1;
if((rect1.left == rect2.left) && (rect1.right == rect2.right)) {
if((rect1.top == rect2.top) && (rect2.bottom <= rect1.bottom))
res.top = rect2.bottom;
else if((rect1.bottom == rect2.bottom)&& (rect2.top >= rect1.top))
res.bottom = rect2.top;
}
else if((rect1.top == rect2.top) && (rect1.bottom == rect2.bottom)) {
if((rect1.left == rect2.left) && (rect2.right <= rect1.right))
res.left = rect2.right;
else if((rect1.right == rect2.right)&& (rect2.left >= rect1.left))
res.right = rect2.left;
}
return res;
}
void optimizeLayerRects(hwc_context_t *ctx,
const hwc_display_contents_1_t *list, const int& dpy) {
int i=list->numHwLayers-2;
hwc_rect_t irect;
while(i > 0) {
//see if there is no blending required.
//If it is opaque see if we can substract this region from below layers.
if(list->hwLayers[i].blending == HWC_BLENDING_NONE) {
int j= i-1;
hwc_rect_t& topframe =
(hwc_rect_t&)list->hwLayers[i].displayFrame;
while(j >= 0) {
if(!needsScaling(ctx, &list->hwLayers[j], dpy)) {
hwc_layer_1_t* layer = (hwc_layer_1_t*)&list->hwLayers[j];
hwc_rect_t& bottomframe = layer->displayFrame;
hwc_rect_t& bottomCrop = layer->sourceCrop;
int transform =layer->transform;
hwc_rect_t irect = getIntersection(bottomframe, topframe);
if(isValidRect(irect)) {
//if intersection is valid rect, deduct it
bottomframe = deductRect(bottomframe, irect);
qhwc::calculate_crop_rects(bottomCrop, bottomframe,
bottomframe, transform);
}
}
j--;
}
}
i--;
}
}
void getNonWormholeRegion(hwc_display_contents_1_t* list,
hwc_rect_t& nwr)
{
uint32_t last = list->numHwLayers - 1;
hwc_rect_t fbDisplayFrame = list->hwLayers[last].displayFrame;
//Initiliaze nwr to first frame
nwr.left = list->hwLayers[0].displayFrame.left;
nwr.top = list->hwLayers[0].displayFrame.top;
nwr.right = list->hwLayers[0].displayFrame.right;
nwr.bottom = list->hwLayers[0].displayFrame.bottom;
for (uint32_t i = 1; i < last; i++) {
hwc_rect_t displayFrame = list->hwLayers[i].displayFrame;
nwr = getUnion(nwr, displayFrame);
}
//Intersect with the framebuffer
nwr = getIntersection(nwr, fbDisplayFrame);
}
bool isExternalActive(hwc_context_t* ctx) {
return ctx->dpyAttr[HWC_DISPLAY_EXTERNAL].isActive;
}
void closeAcquireFds(hwc_display_contents_1_t* list) {
for(uint32_t i = 0; list && i < list->numHwLayers; i++) {
//Close the acquireFenceFds
//HWC_FRAMEBUFFER are -1 already by SF, rest we close.
if(list->hwLayers[i].acquireFenceFd >= 0) {
close(list->hwLayers[i].acquireFenceFd);
list->hwLayers[i].acquireFenceFd = -1;
}
}
}
int hwc_sync(hwc_context_t *ctx, hwc_display_contents_1_t* list, int dpy,
int fd) {
ATRACE_CALL();
int ret = 0;
int acquireFd[MAX_NUM_APP_LAYERS];
int count = 0;
int releaseFd = -1;
int fbFd = -1;
bool swapzero = false;
int mdpVersion = qdutils::MDPVersion::getInstance().getMDPVersion();
struct mdp_buf_sync data;
memset(&data, 0, sizeof(data));
data.acq_fen_fd = acquireFd;
data.rel_fen_fd = &releaseFd;
char property[PROPERTY_VALUE_MAX];
if(property_get("debug.egl.swapinterval", property, "1") > 0) {
if(atoi(property) == 0)
swapzero = true;
}
bool isExtAnimating = false;
if(dpy)
isExtAnimating = ctx->listStats[dpy].isDisplayAnimating;
//Send acquireFenceFds to rotator
for(uint32_t i = 0; i < ctx->mLayerRotMap[dpy]->getCount(); i++) {
int rotFd = ctx->mRotMgr->getRotDevFd();
int rotReleaseFd = -1;
struct mdp_buf_sync rotData;
memset(&rotData, 0, sizeof(rotData));
rotData.acq_fen_fd =
&ctx->mLayerRotMap[dpy]->getLayer(i)->acquireFenceFd;
rotData.rel_fen_fd = &rotReleaseFd; //driver to populate this
rotData.session_id = ctx->mLayerRotMap[dpy]->getRot(i)->getSessId();
int ret = 0;
ret = ioctl(rotFd, MSMFB_BUFFER_SYNC, &rotData);
if(ret < 0) {
ALOGE("%s: ioctl MSMFB_BUFFER_SYNC failed for rot sync, err=%s",
__FUNCTION__, strerror(errno));
} else {
close(ctx->mLayerRotMap[dpy]->getLayer(i)->acquireFenceFd);
//For MDP to wait on.
ctx->mLayerRotMap[dpy]->getLayer(i)->acquireFenceFd =
dup(rotReleaseFd);
//A buffer is free to be used by producer as soon as its copied to
//rotator
ctx->mLayerRotMap[dpy]->getLayer(i)->releaseFenceFd =
rotReleaseFd;
}
}
//Accumulate acquireFenceFds for MDP
for(uint32_t i = 0; i < list->numHwLayers; i++) {
if(list->hwLayers[i].compositionType == HWC_OVERLAY &&
list->hwLayers[i].acquireFenceFd >= 0) {
if(UNLIKELY(swapzero))
acquireFd[count++] = -1;
else
acquireFd[count++] = list->hwLayers[i].acquireFenceFd;
}
if(list->hwLayers[i].compositionType == HWC_FRAMEBUFFER_TARGET) {
if(UNLIKELY(swapzero))
acquireFd[count++] = -1;
else if(fd >= 0) {
//set the acquireFD from fd - which is coming from c2d
acquireFd[count++] = fd;
// Buffer sync IOCTL should be async when using c2d fence is
// used
data.flags &= ~MDP_BUF_SYNC_FLAG_WAIT;
} else if(list->hwLayers[i].acquireFenceFd >= 0)
acquireFd[count++] = list->hwLayers[i].acquireFenceFd;
}
}
data.acq_fen_fd_cnt = count;
fbFd = ctx->dpyAttr[dpy].fd;
//Waits for acquire fences, returns a release fence
if(LIKELY(!swapzero)) {
uint64_t start = systemTime();
ret = ioctl(fbFd, MSMFB_BUFFER_SYNC, &data);
ALOGD_IF(HWC_UTILS_DEBUG, "%s: time taken for MSMFB_BUFFER_SYNC IOCTL = %d",
__FUNCTION__, (size_t) ns2ms(systemTime() - start));
}
if(ret < 0) {
ALOGE("%s: ioctl MSMFB_BUFFER_SYNC failed, err=%s",
__FUNCTION__, strerror(errno));
ALOGE("%s: acq_fen_fd_cnt=%d flags=%d fd=%d dpy=%d numHwLayers=%d",
__FUNCTION__, data.acq_fen_fd_cnt, data.flags, fbFd,
dpy, list->numHwLayers);
}
for(uint32_t i = 0; i < list->numHwLayers; i++) {
if(list->hwLayers[i].compositionType == HWC_OVERLAY ||
list->hwLayers[i].compositionType == HWC_FRAMEBUFFER_TARGET) {
//Populate releaseFenceFds.
if(UNLIKELY(swapzero)) {
list->hwLayers[i].releaseFenceFd = -1;
} else if(isExtAnimating) {
// Release all the app layer fds immediately,
// if animation is in progress.
hwc_layer_1_t const* layer = &list->hwLayers[i];
private_handle_t *hnd = (private_handle_t *)layer->handle;
if(isYuvBuffer(hnd)) {
list->hwLayers[i].releaseFenceFd = dup(releaseFd);
} else
list->hwLayers[i].releaseFenceFd = -1;
} else if(list->hwLayers[i].releaseFenceFd < 0) {
//If rotator has not already populated this field.
list->hwLayers[i].releaseFenceFd = dup(releaseFd);
}
}
}
if(fd >= 0) {
close(fd);
fd = -1;
}
if (ctx->mCopyBit[dpy])
ctx->mCopyBit[dpy]->setReleaseFd(releaseFd);
//Signals when MDP finishes reading rotator buffers.
ctx->mLayerRotMap[dpy]->setReleaseFd(releaseFd);
// if external is animating, close the relaseFd
if(isExtAnimating) {
close(releaseFd);
releaseFd = -1;
}
if(UNLIKELY(swapzero)){
list->retireFenceFd = -1;
close(releaseFd);
} else {
list->retireFenceFd = releaseFd;
}
return ret;
}
void setMdpFlags(hwc_layer_1_t *layer,
ovutils::eMdpFlags &mdpFlags,
int rotDownscale, int transform) {
private_handle_t *hnd = (private_handle_t *)layer->handle;
MetaData_t *metadata = hnd ? (MetaData_t *)hnd->base_metadata : NULL;
if(layer->blending == HWC_BLENDING_PREMULT) {
ovutils::setMdpFlags(mdpFlags,
ovutils::OV_MDP_BLEND_FG_PREMULT);
}
if(isYuvBuffer(hnd)) {
if(isSecureBuffer(hnd)) {
ovutils::setMdpFlags(mdpFlags,
ovutils::OV_MDP_SECURE_OVERLAY_SESSION);
}
if(metadata && (metadata->operation & PP_PARAM_INTERLACED) &&
metadata->interlaced) {
ovutils::setMdpFlags(mdpFlags,
ovutils::OV_MDP_DEINTERLACE);
}
//Pre-rotation will be used using rotator.
if(transform & HWC_TRANSFORM_ROT_90) {
ovutils::setMdpFlags(mdpFlags,
ovutils::OV_MDP_SOURCE_ROTATED_90);
}
}
if(isSecureDisplayBuffer(hnd)) {
// Secure display needs both SECURE_OVERLAY and SECURE_DISPLAY_OV
ovutils::setMdpFlags(mdpFlags,
ovutils::OV_MDP_SECURE_OVERLAY_SESSION);
ovutils::setMdpFlags(mdpFlags,
ovutils::OV_MDP_SECURE_DISPLAY_OVERLAY_SESSION);
}
//No 90 component and no rot-downscale then flips done by MDP
//If we use rot then it might as well do flips
if(!(transform & HWC_TRANSFORM_ROT_90) && !rotDownscale) {
if(transform & HWC_TRANSFORM_FLIP_H) {
ovutils::setMdpFlags(mdpFlags, ovutils::OV_MDP_FLIP_H);
}
if(transform & HWC_TRANSFORM_FLIP_V) {
ovutils::setMdpFlags(mdpFlags, ovutils::OV_MDP_FLIP_V);
}
}
if(metadata &&
((metadata->operation & PP_PARAM_HSIC)
|| (metadata->operation & PP_PARAM_IGC)
|| (metadata->operation & PP_PARAM_SHARP2))) {
ovutils::setMdpFlags(mdpFlags, ovutils::OV_MDP_PP_EN);
}
}
int configRotator(Rotator *rot, Whf& whf,
hwc_rect_t& crop, const eMdpFlags& mdpFlags,
const eTransform& orient, const int& downscale) {
// Fix alignments for TILED format
if(whf.format == MDP_Y_CRCB_H2V2_TILE ||
whf.format == MDP_Y_CBCR_H2V2_TILE) {
whf.w = utils::alignup(whf.w, 64);
whf.h = utils::alignup(whf.h, 32);
}
rot->setSource(whf);
if (qdutils::MDPVersion::getInstance().getMDPVersion() >=
qdutils::MDSS_V5) {
uint32_t crop_w = (crop.right - crop.left);
uint32_t crop_h = (crop.bottom - crop.top);
if (ovutils::isYuv(whf.format)) {
ovutils::normalizeCrop((uint32_t&)crop.left, crop_w);
ovutils::normalizeCrop((uint32_t&)crop.top, crop_h);
// For interlaced, crop.h should be 4-aligned
if ((mdpFlags & ovutils::OV_MDP_DEINTERLACE) && (crop_h % 4))
crop_h = ovutils::aligndown(crop_h, 4);
crop.right = crop.left + crop_w;
crop.bottom = crop.top + crop_h;
}
Dim rotCrop(crop.left, crop.top, crop_w, crop_h);
rot->setCrop(rotCrop);
}
rot->setFlags(mdpFlags);
rot->setTransform(orient);
rot->setDownscale(downscale);
if(!rot->commit()) return -1;
return 0;
}
int configMdp(Overlay *ov, const PipeArgs& parg,
const eTransform& orient, const hwc_rect_t& crop,
const hwc_rect_t& pos, const MetaData_t *metadata,
const eDest& dest) {
ov->setSource(parg, dest);
ov->setTransform(orient, dest);
int crop_w = crop.right - crop.left;
int crop_h = crop.bottom - crop.top;
Dim dcrop(crop.left, crop.top, crop_w, crop_h);
ov->setCrop(dcrop, dest);
int posW = pos.right - pos.left;
int posH = pos.bottom - pos.top;
Dim position(pos.left, pos.top, posW, posH);
ov->setPosition(position, dest);
if (metadata)
ov->setVisualParams(*metadata, dest);
if (!ov->commit(dest)) {
return -1;
}
return 0;
}
int configColorLayer(hwc_context_t *ctx, hwc_layer_1_t *layer,
const int& dpy, eMdpFlags& mdpFlags, eZorder& z,
eIsFg& isFg, const eDest& dest) {
hwc_rect_t dst = layer->displayFrame;
trimLayer(ctx, dpy, 0, dst, dst);
int w = ctx->dpyAttr[dpy].xres;
int h = ctx->dpyAttr[dpy].yres;
int dst_w = dst.right - dst.left;
int dst_h = dst.bottom - dst.top;
uint32_t color = layer->transform;
Whf whf(w, h, getMdpFormat(HAL_PIXEL_FORMAT_RGBA_8888), 0);
if (layer->blending == HWC_BLENDING_PREMULT)
ovutils::setMdpFlags(mdpFlags, ovutils::OV_MDP_BLEND_FG_PREMULT);
PipeArgs parg(mdpFlags, whf, z, isFg, static_cast<eRotFlags>(0),
layer->planeAlpha,
(ovutils::eBlending) getBlending(layer->blending));
// Configure MDP pipe for Color layer
Dim pos(dst.left, dst.top, dst_w, dst_h);
ctx->mOverlay->setSource(parg, dest);
ctx->mOverlay->setColor(color, dest);
ctx->mOverlay->setTransform(0, dest);
ctx->mOverlay->setCrop(pos, dest);
ctx->mOverlay->setPosition(pos, dest);
if (!ctx->mOverlay->commit(dest)) {
ALOGE("%s: Configure color layer failed!", __FUNCTION__);
return -1;
}
return 0;
}
void updateSource(eTransform& orient, Whf& whf,
hwc_rect_t& crop) {
Dim srcCrop(crop.left, crop.top,
crop.right - crop.left,
crop.bottom - crop.top);
orient = static_cast<eTransform>(ovutils::getMdpOrient(orient));
preRotateSource(orient, whf, srcCrop);
if (qdutils::MDPVersion::getInstance().getMDPVersion() >=
qdutils::MDSS_V5) {
// Source for overlay will be the cropped (and rotated)
crop.left = 0;
crop.top = 0;
crop.right = srcCrop.w;
crop.bottom = srcCrop.h;
// Set width & height equal to sourceCrop w & h
whf.w = srcCrop.w;
whf.h = srcCrop.h;
} else {
crop.left = srcCrop.x;
crop.top = srcCrop.y;
crop.right = srcCrop.x + srcCrop.w;
crop.bottom = srcCrop.y + srcCrop.h;
}
}
int configureNonSplit(hwc_context_t *ctx, hwc_layer_1_t *layer,
const int& dpy, eMdpFlags& mdpFlags, eZorder& z,
eIsFg& isFg, const eDest& dest, Rotator **rot) {
private_handle_t *hnd = (private_handle_t *)layer->handle;
if(!hnd) {
if (layer->flags & HWC_COLOR_FILL) {
// Configure Color layer
return configColorLayer(ctx, layer, dpy, mdpFlags, z, isFg, dest);
}
ALOGE("%s: layer handle is NULL", __FUNCTION__);
return -1;
}
MetaData_t *metadata = (MetaData_t *)hnd->base_metadata;
hwc_rect_t crop = integerizeSourceCrop(layer->sourceCropf);
hwc_rect_t dst = layer->displayFrame;
int transform = layer->transform;
eTransform orient = static_cast<eTransform>(transform);
int downscale = 0;
int rotFlags = ovutils::ROT_FLAGS_NONE;
Whf whf(getWidth(hnd), getHeight(hnd),
getMdpFormat(hnd->format), hnd->size);
// Handle R/B swap
if (layer->flags & HWC_FORMAT_RB_SWAP) {
if (hnd->format == HAL_PIXEL_FORMAT_RGBA_8888)
whf.format = getMdpFormat(HAL_PIXEL_FORMAT_BGRA_8888);
else if (hnd->format == HAL_PIXEL_FORMAT_RGBX_8888)
whf.format = getMdpFormat(HAL_PIXEL_FORMAT_BGRX_8888);
}
if(dpy && isYuvBuffer(hnd)) {
if(!ctx->listStats[dpy].isDisplayAnimating) {
ctx->mPrevCropVideo = crop;
ctx->mPrevDestVideo = dst;
ctx->mPrevTransformVideo = transform;
} else {
// Restore the previous crop, dest rect and transform values, during
// animation to avoid displaying videos at random coordinates.
crop = ctx->mPrevCropVideo;
dst = ctx->mPrevDestVideo;
transform = ctx->mPrevTransformVideo;
orient = static_cast<eTransform>(transform);
//In you tube use case when a device rotated from landscape to
// portrait, set the isFg flag and zOrder to avoid displaying UI on
// hdmi during animation
if(ctx->deviceOrientation) {
isFg = ovutils::IS_FG_SET;
z = ZORDER_1;
}
}
calcExtDisplayPosition(ctx, hnd, dpy, crop, dst,
transform, orient);
}
if(isYuvBuffer(hnd) && ctx->mMDP.version >= qdutils::MDP_V4_2 &&
ctx->mMDP.version < qdutils::MDSS_V5) {
downscale = getDownscaleFactor(
crop.right - crop.left,
crop.bottom - crop.top,
dst.right - dst.left,
dst.bottom - dst.top);
if(downscale) {
rotFlags = ROT_DOWNSCALE_ENABLED;
}
}
setMdpFlags(layer, mdpFlags, downscale, transform);
if(isYuvBuffer(hnd) && //if 90 component or downscale, use rot
((transform & HWC_TRANSFORM_ROT_90) || downscale)) {
*rot = ctx->mRotMgr->getNext();
if(*rot == NULL) return -1;
if(!dpy)
BwcPM::setBwc(ctx, crop, dst, transform, mdpFlags);
//Configure rotator for pre-rotation
if(configRotator(*rot, whf, crop, mdpFlags, orient, downscale) < 0) {
ALOGE("%s: configRotator failed!", __FUNCTION__);
ctx->mOverlay->clear(dpy);
ctx->mLayerRotMap[dpy]->clear();
return -1;
}
ctx->mLayerRotMap[dpy]->add(layer, *rot);
whf.format = (*rot)->getDstFormat();
updateSource(orient, whf, crop);
rotFlags |= ovutils::ROT_PREROTATED;
}
//For the mdp, since either we are pre-rotating or MDP does flips
orient = OVERLAY_TRANSFORM_0;
transform = 0;
PipeArgs parg(mdpFlags, whf, z, isFg,
static_cast<eRotFlags>(rotFlags), layer->planeAlpha,
(ovutils::eBlending) getBlending(layer->blending));
if(configMdp(ctx->mOverlay, parg, orient, crop, dst, metadata, dest) < 0) {
ALOGE("%s: commit failed for low res panel", __FUNCTION__);
ctx->mLayerRotMap[dpy]->clear();
return -1;
}
return 0;
}
//Helper to 1) Ensure crops dont have gaps 2) Ensure L and W are even
void sanitizeSourceCrop(hwc_rect_t& cropL, hwc_rect_t& cropR,
private_handle_t *hnd) {
if(cropL.right - cropL.left) {
if(isYuvBuffer(hnd)) {
//Always safe to even down left
ovutils::even_floor(cropL.left);
//If right is even, automatically width is even, since left is
//already even
ovutils::even_floor(cropL.right);
}
//Make sure there are no gaps between left and right splits if the layer
//is spread across BOTH halves
if(cropR.right - cropR.left) {
cropR.left = cropL.right;
}
}
if(cropR.right - cropR.left) {
if(isYuvBuffer(hnd)) {
//Always safe to even down left
ovutils::even_floor(cropR.left);
//If right is even, automatically width is even, since left is
//already even
ovutils::even_floor(cropR.right);
}
}
}
int configureSplit(hwc_context_t *ctx, hwc_layer_1_t *layer,
const int& dpy, eMdpFlags& mdpFlagsL, eZorder& z,
eIsFg& isFg, const eDest& lDest, const eDest& rDest,
Rotator **rot) {
private_handle_t *hnd = (private_handle_t *)layer->handle;
if(!hnd) {
ALOGE("%s: layer handle is NULL", __FUNCTION__);
return -1;
}
MetaData_t *metadata = (MetaData_t *)hnd->base_metadata;
int hw_w = ctx->dpyAttr[dpy].xres;
int hw_h = ctx->dpyAttr[dpy].yres;
hwc_rect_t crop = integerizeSourceCrop(layer->sourceCropf);
hwc_rect_t dst = layer->displayFrame;
int transform = layer->transform;
eTransform orient = static_cast<eTransform>(transform);
const int downscale = 0;
int rotFlags = ROT_FLAGS_NONE;
Whf whf(getWidth(hnd), getHeight(hnd),
getMdpFormat(hnd->format), hnd->size);
// Handle R/B swap
if (layer->flags & HWC_FORMAT_RB_SWAP) {
if (hnd->format == HAL_PIXEL_FORMAT_RGBA_8888)
whf.format = getMdpFormat(HAL_PIXEL_FORMAT_BGRA_8888);
else if (hnd->format == HAL_PIXEL_FORMAT_RGBX_8888)
whf.format = getMdpFormat(HAL_PIXEL_FORMAT_BGRX_8888);
}
if(dpy && isYuvBuffer(hnd)) {
if(!ctx->listStats[dpy].isDisplayAnimating) {
ctx->mPrevCropVideo = crop;
ctx->mPrevDestVideo = dst;
ctx->mPrevTransformVideo = transform;
} else {
// Restore the previous crop, dest rect and transform values, during
// animation to avoid displaying videos at random coordinates.
crop = ctx->mPrevCropVideo;
dst = ctx->mPrevDestVideo;
transform = ctx->mPrevTransformVideo;
orient = static_cast<eTransform>(transform);
//In you tube use case when a device rotated from landscape to
// portrait, set the isFg flag and zOrder to avoid displaying UI on
// hdmi during animation
if(ctx->deviceOrientation) {
isFg = ovutils::IS_FG_SET;
z = ZORDER_1;
}
}
}
setMdpFlags(layer, mdpFlagsL, 0, transform);
if(lDest != OV_INVALID && rDest != OV_INVALID) {
//Enable overfetch
setMdpFlags(mdpFlagsL, OV_MDSS_MDP_DUAL_PIPE);
}
//Will do something only if feature enabled and conditions suitable
//hollow call otherwise
if(ctx->mAD->prepare(ctx, crop, whf, hnd)) {
overlay::Writeback *wb = overlay::Writeback::getInstance();
whf.format = wb->getOutputFormat();
}
if(isYuvBuffer(hnd) && (transform & HWC_TRANSFORM_ROT_90)) {
(*rot) = ctx->mRotMgr->getNext();
if((*rot) == NULL) return -1;
//Configure rotator for pre-rotation
if(configRotator(*rot, whf, crop, mdpFlagsL, orient, downscale) < 0) {
ALOGE("%s: configRotator failed!", __FUNCTION__);
ctx->mOverlay->clear(dpy);
ctx->mLayerRotMap[dpy]->clear();
return -1;
}
ctx->mLayerRotMap[dpy]->add(layer, *rot);
whf.format = (*rot)->getDstFormat();
updateSource(orient, whf, crop);
rotFlags |= ROT_PREROTATED;
}
eMdpFlags mdpFlagsR = mdpFlagsL;
setMdpFlags(mdpFlagsR, OV_MDSS_MDP_RIGHT_MIXER);
hwc_rect_t tmp_cropL = {0}, tmp_dstL = {0};
hwc_rect_t tmp_cropR = {0}, tmp_dstR = {0};
const int lSplit = getLeftSplit(ctx, dpy);
if(lDest != OV_INVALID) {
tmp_cropL = crop;
tmp_dstL = dst;
hwc_rect_t scissor = {0, 0, lSplit, hw_h };
qhwc::calculate_crop_rects(tmp_cropL, tmp_dstL, scissor, 0);
}
if(rDest != OV_INVALID) {
tmp_cropR = crop;
tmp_dstR = dst;
hwc_rect_t scissor = {lSplit, 0, hw_w, hw_h };
qhwc::calculate_crop_rects(tmp_cropR, tmp_dstR, scissor, 0);
}
sanitizeSourceCrop(tmp_cropL, tmp_cropR, hnd);
//When buffer is H-flipped, contents of mixer config also needs to swapped
//Not needed if the layer is confined to one half of the screen.
//If rotator has been used then it has also done the flips, so ignore them.
if((orient & OVERLAY_TRANSFORM_FLIP_H) && lDest != OV_INVALID
&& rDest != OV_INVALID && (*rot) == NULL) {
hwc_rect_t new_cropR;
new_cropR.left = tmp_cropL.left;
new_cropR.right = new_cropR.left + (tmp_cropR.right - tmp_cropR.left);
hwc_rect_t new_cropL;
new_cropL.left = new_cropR.right;
new_cropL.right = tmp_cropR.right;
tmp_cropL.left = new_cropL.left;
tmp_cropL.right = new_cropL.right;
tmp_cropR.left = new_cropR.left;
tmp_cropR.right = new_cropR.right;
}
//For the mdp, since either we are pre-rotating or MDP does flips
orient = OVERLAY_TRANSFORM_0;
transform = 0;
//configure left mixer
if(lDest != OV_INVALID) {
PipeArgs pargL(mdpFlagsL, whf, z, isFg,
static_cast<eRotFlags>(rotFlags), layer->planeAlpha,
(ovutils::eBlending) getBlending(layer->blending));
if(configMdp(ctx->mOverlay, pargL, orient,
tmp_cropL, tmp_dstL, metadata, lDest) < 0) {
ALOGE("%s: commit failed for left mixer config", __FUNCTION__);
ctx->mLayerRotMap[dpy]->clear();
return -1;
}
}
//configure right mixer
if(rDest != OV_INVALID) {
PipeArgs pargR(mdpFlagsR, whf, z, isFg,
static_cast<eRotFlags>(rotFlags),
layer->planeAlpha,
(ovutils::eBlending) getBlending(layer->blending));
tmp_dstR.right = tmp_dstR.right - lSplit;
tmp_dstR.left = tmp_dstR.left - lSplit;
if(configMdp(ctx->mOverlay, pargR, orient,
tmp_cropR, tmp_dstR, metadata, rDest) < 0) {
ALOGE("%s: commit failed for right mixer config", __FUNCTION__);
ctx->mLayerRotMap[dpy]->clear();
return -1;
}
}
return 0;
}
int configureSourceSplit(hwc_context_t *ctx, hwc_layer_1_t *layer,
const int& dpy, eMdpFlags& mdpFlagsL, eZorder& z,
eIsFg& isFg, const eDest& lDest, const eDest& rDest,
Rotator **rot) {
private_handle_t *hnd = (private_handle_t *)layer->handle;
if(!hnd) {
ALOGE("%s: layer handle is NULL", __FUNCTION__);
return -1;
}
MetaData_t *metadata = (MetaData_t *)hnd->base_metadata;
int hw_w = ctx->dpyAttr[dpy].xres;
int hw_h = ctx->dpyAttr[dpy].yres;
hwc_rect_t crop = integerizeSourceCrop(layer->sourceCropf);;
hwc_rect_t dst = layer->displayFrame;
int transform = layer->transform;
eTransform orient = static_cast<eTransform>(transform);
const int downscale = 0;
int rotFlags = ROT_FLAGS_NONE;
//Splitting only YUV layer on primary panel needs different zorders
//for both layers as both the layers are configured to single mixer
eZorder lz = z;
eZorder rz = (eZorder)(z + 1);
Whf whf(getWidth(hnd), getHeight(hnd),
getMdpFormat(hnd->format), hnd->size);
setMdpFlags(layer, mdpFlagsL, 0, transform);
trimLayer(ctx, dpy, transform, crop, dst);
if(isYuvBuffer(hnd) && (transform & HWC_TRANSFORM_ROT_90)) {
(*rot) = ctx->mRotMgr->getNext();
if((*rot) == NULL) return -1;
if(!dpy)
BwcPM::setBwc(ctx, crop, dst, transform, mdpFlagsL);
//Configure rotator for pre-rotation
if(configRotator(*rot, whf, crop, mdpFlagsL, orient, downscale) < 0) {
ALOGE("%s: configRotator failed!", __FUNCTION__);
ctx->mOverlay->clear(dpy);
return -1;
}
ctx->mLayerRotMap[dpy]->add(layer, *rot);
whf.format = (*rot)->getDstFormat();
updateSource(orient, whf, crop);
rotFlags |= ROT_PREROTATED;
}
eMdpFlags mdpFlagsR = mdpFlagsL;
int lSplit = dst.left + (dst.right - dst.left)/2;
hwc_rect_t tmp_cropL = {0}, tmp_dstL = {0};
hwc_rect_t tmp_cropR = {0}, tmp_dstR = {0};
if(lDest != OV_INVALID) {
tmp_cropL = crop;
tmp_dstL = dst;
hwc_rect_t scissor = {dst.left, dst.top, lSplit, dst.bottom };
qhwc::calculate_crop_rects(tmp_cropL, tmp_dstL, scissor, 0);
}
if(rDest != OV_INVALID) {
tmp_cropR = crop;
tmp_dstR = dst;
hwc_rect_t scissor = {lSplit, dst.top, dst.right, dst.bottom };
qhwc::calculate_crop_rects(tmp_cropR, tmp_dstR, scissor, 0);
}
sanitizeSourceCrop(tmp_cropL, tmp_cropR, hnd);
//When buffer is H-flipped, contents of mixer config also needs to swapped
//Not needed if the layer is confined to one half of the screen.
//If rotator has been used then it has also done the flips, so ignore them.
if((orient & OVERLAY_TRANSFORM_FLIP_H) && lDest != OV_INVALID
&& rDest != OV_INVALID && (*rot) == NULL) {
hwc_rect_t new_cropR;
new_cropR.left = tmp_cropL.left;
new_cropR.right = new_cropR.left + (tmp_cropR.right - tmp_cropR.left);
hwc_rect_t new_cropL;
new_cropL.left = new_cropR.right;
new_cropL.right = tmp_cropR.right;
tmp_cropL.left = new_cropL.left;
tmp_cropL.right = new_cropL.right;
tmp_cropR.left = new_cropR.left;
tmp_cropR.right = new_cropR.right;
}
//For the mdp, since either we are pre-rotating or MDP does flips
orient = OVERLAY_TRANSFORM_0;
transform = 0;
//configure left half
if(lDest != OV_INVALID) {
PipeArgs pargL(mdpFlagsL, whf, lz, isFg,
static_cast<eRotFlags>(rotFlags), layer->planeAlpha,
(ovutils::eBlending) getBlending(layer->blending));
if(configMdp(ctx->mOverlay, pargL, orient,
tmp_cropL, tmp_dstL, metadata, lDest) < 0) {
ALOGE("%s: commit failed for left half config", __FUNCTION__);
return -1;
}
}
//configure right half
if(rDest != OV_INVALID) {
PipeArgs pargR(mdpFlagsR, whf, rz, isFg,
static_cast<eRotFlags>(rotFlags),
layer->planeAlpha,
(ovutils::eBlending) getBlending(layer->blending));
if(configMdp(ctx->mOverlay, pargR, orient,
tmp_cropR, tmp_dstR, metadata, rDest) < 0) {
ALOGE("%s: commit failed for right half config", __FUNCTION__);
return -1;
}
}
return 0;
}
bool canUseRotator(hwc_context_t *ctx, int dpy) {
if(qdutils::MDPVersion::getInstance().is8x26() &&
ctx->mVirtualDisplay->isConnected() &&
!ctx->dpyAttr[HWC_DISPLAY_VIRTUAL].isPause) {
/* 8x26 mdss driver supports multiplexing of DMA pipe
* in LINE and BLOCK modes for writeback panels.
*/
if(dpy == HWC_DISPLAY_PRIMARY)
return false;
}
if(ctx->mMDP.version == qdutils::MDP_V3_0_4)
return false;
return true;
}
int getLeftSplit(hwc_context_t *ctx, const int& dpy) {
//Default even split for all displays with high res
int lSplit = ctx->dpyAttr[dpy].xres / 2;
if(dpy == HWC_DISPLAY_PRIMARY &&
qdutils::MDPVersion::getInstance().getLeftSplit()) {
//Override if split published by driver for primary
lSplit = qdutils::MDPVersion::getInstance().getLeftSplit();
}
return lSplit;
}
bool isDisplaySplit(hwc_context_t* ctx, int dpy) {
if(ctx->dpyAttr[dpy].xres > qdutils::MAX_DISPLAY_DIM) {
return true;
}
//For testing we could split primary via device tree values
if(dpy == HWC_DISPLAY_PRIMARY &&
qdutils::MDPVersion::getInstance().getRightSplit()) {
return true;
}
return false;
}
void BwcPM::setBwc(hwc_context_t *ctx, const hwc_rect_t& crop,
const hwc_rect_t& dst, const int& transform,
ovutils::eMdpFlags& mdpFlags) {
//Target doesnt support Bwc
if(!qdutils::MDPVersion::getInstance().supportsBWC()) {
return;
}
//src width > MAX mixer supported dim
if((crop.right - crop.left) > qdutils::MAX_DISPLAY_DIM) {
return;
}
//Decimation necessary, cannot use BWC. H/W requirement.
if(qdutils::MDPVersion::getInstance().supportsDecimation()) {
int src_w = crop.right - crop.left;
int src_h = crop.bottom - crop.top;
int dst_w = dst.right - dst.left;
int dst_h = dst.bottom - dst.top;
if(transform & HAL_TRANSFORM_ROT_90) {
swap(src_w, src_h);
}
float horDscale = 0.0f;
float verDscale = 0.0f;
int horzDeci = 0;
int vertDeci = 0;
ovutils::getDecimationFactor(src_w, src_h, dst_w, dst_h, horDscale,
verDscale);
//TODO Use log2f once math.h has it
if((int)horDscale)
horzDeci = (int)(log(horDscale) / log(2));
if((int)verDscale)
vertDeci = (int)(log(verDscale) / log(2));
if(horzDeci || vertDeci) return;
}
//Property
char value[PROPERTY_VALUE_MAX];
property_get("debug.disable.bwc", value, "0");
if(atoi(value)) return;
ovutils::setMdpFlags(mdpFlags, ovutils::OV_MDSS_MDP_BWC_EN);
}
void LayerRotMap::add(hwc_layer_1_t* layer, Rotator *rot) {
if(mCount >= MAX_SESS) return;
mLayer[mCount] = layer;
mRot[mCount] = rot;
mCount++;
}
void LayerRotMap::reset() {
for (int i = 0; i < MAX_SESS; i++) {
mLayer[i] = 0;
mRot[i] = 0;
}
mCount = 0;
}
void LayerRotMap::clear() {
for (uint32_t i = 0; i < mCount; i++) {
//mCount represents rotator objects for just this display.
//We could have popped mCount topmost objects from mRotMgr, but if each
//round has the same failure, typical of stability runs, it would lead
//to unnecessary memory allocation, deallocation each time. So we let
//the rotator objects be around, but just knock off the fences they
//hold. Ultimately the rotator objects will be GCed when not required.
//Also resetting fences is required if at least one rotation round has
//succeeded before. It'll be a NOP otherwise.
mRot[i]->resetReleaseFd();
}
reset();
}
void LayerRotMap::setReleaseFd(const int& fence) {
for(uint32_t i = 0; i < mCount; i++) {
mRot[i]->setReleaseFd(dup(fence));
}
}
};//namespace qhwc