blob: ce8495675ad9ea395d27fdc8d7b6d29a74bbf259 [file] [log] [blame]
/*
* Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
# include "incls/_precompiled.incl"
# include "incls/_simpleThresholdPolicy.cpp.incl"
// Print an event.
void SimpleThresholdPolicy::print_event(EventType type, methodHandle mh, methodHandle imh,
int bci, CompLevel level) {
bool inlinee_event = mh() != imh();
ttyLocker tty_lock;
tty->print("%lf: [", os::elapsedTime());
int invocation_count = mh->invocation_count();
int backedge_count = mh->backedge_count();
switch(type) {
case CALL:
tty->print("call");
break;
case LOOP:
tty->print("loop");
break;
case COMPILE:
tty->print("compile");
}
tty->print(" level: %d ", level);
ResourceMark rm;
char *method_name = mh->name_and_sig_as_C_string();
tty->print("[%s", method_name);
// We can have an inlinee, although currently we don't generate any notifications for the inlined methods.
if (inlinee_event) {
char *inlinee_name = imh->name_and_sig_as_C_string();
tty->print(" [%s]] ", inlinee_name);
}
else tty->print("] ");
tty->print("@%d queues: %d,%d", bci, CompileBroker::queue_size(CompLevel_full_profile),
CompileBroker::queue_size(CompLevel_full_optimization));
print_specific(type, mh, imh, bci, level);
if (type != COMPILE) {
methodDataHandle mdh = mh->method_data();
int mdo_invocations = 0, mdo_backedges = 0;
if (mdh() != NULL) {
mdo_invocations = mdh->invocation_count();
mdo_backedges = mdh->backedge_count();
}
tty->print(" total: %d,%d mdo: %d,%d",
invocation_count, backedge_count,
mdo_invocations, mdo_backedges);
tty->print(" max levels: %d,%d",
mh->highest_comp_level(), mh->highest_osr_comp_level());
if (inlinee_event) {
tty->print(" inlinee max levels: %d,%d", imh->highest_comp_level(), imh->highest_osr_comp_level());
}
tty->print(" compilable: ");
bool need_comma = false;
if (!mh->is_not_compilable(CompLevel_full_profile)) {
tty->print("c1");
need_comma = true;
}
if (!mh->is_not_compilable(CompLevel_full_optimization)) {
if (need_comma) tty->print(", ");
tty->print("c2");
need_comma = true;
}
if (!mh->is_not_osr_compilable()) {
if (need_comma) tty->print(", ");
tty->print("osr");
}
tty->print(" status:");
if (mh->queued_for_compilation()) {
tty->print(" in queue");
} else tty->print(" idle");
}
tty->print_cr("]");
}
void SimpleThresholdPolicy::initialize() {
if (FLAG_IS_DEFAULT(CICompilerCount)) {
FLAG_SET_DEFAULT(CICompilerCount, 3);
}
int count = CICompilerCount;
if (CICompilerCountPerCPU) {
count = MAX2(log2_intptr(os::active_processor_count()), 1) * 3 / 2;
}
set_c1_count(MAX2(count / 3, 1));
set_c2_count(MAX2(count - count / 3, 1));
}
void SimpleThresholdPolicy::set_carry_if_necessary(InvocationCounter *counter) {
if (!counter->carry() && counter->count() > InvocationCounter::count_limit / 2) {
counter->set_carry_flag();
}
}
// Set carry flags on the counters if necessary
void SimpleThresholdPolicy::handle_counter_overflow(methodOop method) {
set_carry_if_necessary(method->invocation_counter());
set_carry_if_necessary(method->backedge_counter());
methodDataOop mdo = method->method_data();
if (mdo != NULL) {
set_carry_if_necessary(mdo->invocation_counter());
set_carry_if_necessary(mdo->backedge_counter());
}
}
// Called with the queue locked and with at least one element
CompileTask* SimpleThresholdPolicy::select_task(CompileQueue* compile_queue) {
return compile_queue->first();
}
nmethod* SimpleThresholdPolicy::event(methodHandle method, methodHandle inlinee,
int branch_bci, int bci, CompLevel comp_level, TRAPS) {
if (comp_level == CompLevel_none &&
JvmtiExport::can_post_interpreter_events()) {
assert(THREAD->is_Java_thread(), "Should be java thread");
if (((JavaThread*)THREAD)->is_interp_only_mode()) {
return NULL;
}
}
nmethod *osr_nm = NULL;
handle_counter_overflow(method());
if (method() != inlinee()) {
handle_counter_overflow(inlinee());
}
if (PrintTieredEvents) {
print_event(bci == InvocationEntryBci ? CALL : LOOP, method, inlinee, bci, comp_level);
}
if (bci == InvocationEntryBci) {
method_invocation_event(method, inlinee, comp_level, THREAD);
} else {
method_back_branch_event(method, inlinee, bci, comp_level, THREAD);
int highest_level = method->highest_osr_comp_level();
if (highest_level > comp_level) {
osr_nm = method->lookup_osr_nmethod_for(bci, highest_level, false);
}
}
return osr_nm;
}
// Check if the method can be compiled, change level if necessary
void SimpleThresholdPolicy::compile(methodHandle mh, int bci, CompLevel level, TRAPS) {
// Take the given ceiling into the account.
// NOTE: You can set it to 1 to get a pure C1 version.
if ((CompLevel)TieredStopAtLevel < level) {
level = (CompLevel)TieredStopAtLevel;
}
if (level == CompLevel_none) {
return;
}
// Check if the method can be compiled, if not - try different levels.
if (!can_be_compiled(mh, level)) {
if (level < CompLevel_full_optimization && can_be_compiled(mh, CompLevel_full_optimization)) {
compile(mh, bci, CompLevel_full_optimization, THREAD);
}
if (level == CompLevel_full_optimization && can_be_compiled(mh, CompLevel_simple)) {
compile(mh, bci, CompLevel_simple, THREAD);
}
return;
}
if (bci != InvocationEntryBci && mh->is_not_osr_compilable()) {
return;
}
if (PrintTieredEvents) {
print_event(COMPILE, mh, mh, bci, level);
}
if (!CompileBroker::compilation_is_in_queue(mh, bci)) {
submit_compile(mh, bci, level, THREAD);
}
}
// Tell the broker to compile the method
void SimpleThresholdPolicy::submit_compile(methodHandle mh, int bci, CompLevel level, TRAPS) {
int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
CompileBroker::compile_method(mh, bci, level, mh, hot_count, "tiered", THREAD);
}
// Call and loop predicates determine whether a transition to a higher
// compilation level should be performed (pointers to predicate functions
// are passed to common() transition function).
bool SimpleThresholdPolicy::loop_predicate(int i, int b, CompLevel cur_level) {
switch(cur_level) {
case CompLevel_none:
case CompLevel_limited_profile: {
return loop_predicate_helper<CompLevel_none>(i, b, 1.0);
}
case CompLevel_full_profile: {
return loop_predicate_helper<CompLevel_full_profile>(i, b, 1.0);
}
default:
return true;
}
}
bool SimpleThresholdPolicy::call_predicate(int i, int b, CompLevel cur_level) {
switch(cur_level) {
case CompLevel_none:
case CompLevel_limited_profile: {
return call_predicate_helper<CompLevel_none>(i, b, 1.0);
}
case CompLevel_full_profile: {
return call_predicate_helper<CompLevel_full_profile>(i, b, 1.0);
}
default:
return true;
}
}
// Determine is a method is mature.
bool SimpleThresholdPolicy::is_mature(methodOop method) {
if (is_trivial(method)) return true;
methodDataOop mdo = method->method_data();
if (mdo != NULL) {
int i = mdo->invocation_count();
int b = mdo->backedge_count();
double k = ProfileMaturityPercentage / 100.0;
return call_predicate_helper<CompLevel_full_profile>(i, b, k) ||
loop_predicate_helper<CompLevel_full_profile>(i, b, k);
}
return false;
}
// Common transition function. Given a predicate determines if a method should transition to another level.
CompLevel SimpleThresholdPolicy::common(Predicate p, methodOop method, CompLevel cur_level) {
CompLevel next_level = cur_level;
int i = method->invocation_count();
int b = method->backedge_count();
switch(cur_level) {
case CompLevel_none:
{
methodDataOop mdo = method->method_data();
if (mdo != NULL) {
int mdo_i = mdo->invocation_count();
int mdo_b = mdo->backedge_count();
// If we were at full profile level, would we switch to full opt?
if ((this->*p)(mdo_i, mdo_b, CompLevel_full_profile)) {
next_level = CompLevel_full_optimization;
}
}
}
if (next_level == cur_level && (this->*p)(i, b, cur_level)) {
if (is_trivial(method)) {
next_level = CompLevel_simple;
} else {
next_level = CompLevel_full_profile;
}
}
break;
case CompLevel_limited_profile:
case CompLevel_full_profile:
if (is_trivial(method)) {
next_level = CompLevel_simple;
} else {
methodDataOop mdo = method->method_data();
guarantee(mdo != NULL, "MDO should always exist");
if (mdo->would_profile()) {
int mdo_i = mdo->invocation_count();
int mdo_b = mdo->backedge_count();
if ((this->*p)(mdo_i, mdo_b, cur_level)) {
next_level = CompLevel_full_optimization;
}
} else {
next_level = CompLevel_full_optimization;
}
}
break;
}
return next_level;
}
// Determine if a method should be compiled with a normal entry point at a different level.
CompLevel SimpleThresholdPolicy::call_event(methodOop method, CompLevel cur_level) {
CompLevel highest_level = (CompLevel)method->highest_comp_level();
if (cur_level == CompLevel_none && highest_level > cur_level) {
// TODO: We may want to try to do more extensive reprofiling in this case.
return highest_level;
}
CompLevel osr_level = (CompLevel) method->highest_osr_comp_level();
CompLevel next_level = common(&SimpleThresholdPolicy::call_predicate, method, cur_level);
// If OSR method level is greater than the regular method level, the levels should be
// equalized by raising the regular method level in order to avoid OSRs during each
// invocation of the method.
if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) {
methodDataOop mdo = method->method_data();
guarantee(mdo != NULL, "MDO should not be NULL");
if (mdo->invocation_count() >= 1) {
next_level = CompLevel_full_optimization;
}
} else {
next_level = MAX2(osr_level, next_level);
}
return next_level;
}
// Determine if we should do an OSR compilation of a given method.
CompLevel SimpleThresholdPolicy::loop_event(methodOop method, CompLevel cur_level) {
if (cur_level == CompLevel_none) {
// If there is a live OSR method that means that we deopted to the interpreter
// for the transition.
CompLevel osr_level = (CompLevel)method->highest_osr_comp_level();
if (osr_level > CompLevel_none) {
return osr_level;
}
}
return common(&SimpleThresholdPolicy::loop_predicate, method, cur_level);
}
// Handle the invocation event.
void SimpleThresholdPolicy::method_invocation_event(methodHandle mh, methodHandle imh,
CompLevel level, TRAPS) {
if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh, InvocationEntryBci)) {
CompLevel next_level = call_event(mh(), level);
if (next_level != level) {
compile(mh, InvocationEntryBci, next_level, THREAD);
}
}
}
// Handle the back branch event. Notice that we can compile the method
// with a regular entry from here.
void SimpleThresholdPolicy::method_back_branch_event(methodHandle mh, methodHandle imh,
int bci, CompLevel level, TRAPS) {
// If the method is already compiling, quickly bail out.
if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh, bci)) {
// Use loop event as an opportinity to also check there's been
// enough calls.
CompLevel cur_level = comp_level(mh());
CompLevel next_level = call_event(mh(), cur_level);
CompLevel next_osr_level = loop_event(mh(), level);
next_level = MAX2(next_level,
next_osr_level < CompLevel_full_optimization ? next_osr_level : cur_level);
bool is_compiling = false;
if (next_level != cur_level) {
compile(mh, InvocationEntryBci, next_level, THREAD);
is_compiling = true;
}
// Do the OSR version
if (!is_compiling && next_osr_level != level) {
compile(mh, bci, next_osr_level, THREAD);
}
}
}