blob: 056c0b1a4243c5e0579636ced055ff55dc0ee500 [file] [log] [blame]
/*
* Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/g1/concurrentG1Refine.hpp"
#include "gc/g1/concurrentG1RefineThread.hpp"
#include "gc/g1/g1YoungRemSetSamplingThread.hpp"
#include "logging/log.hpp"
#include "runtime/java.hpp"
#include "runtime/thread.hpp"
#include "utilities/debug.hpp"
#include "utilities/globalDefinitions.hpp"
#include "utilities/pair.hpp"
#include <math.h>
// Arbitrary but large limits, to simplify some of the zone calculations.
// The general idea is to allow expressions like
// MIN2(x OP y, max_XXX_zone)
// without needing to check for overflow in "x OP y", because the
// ranges for x and y have been restricted.
STATIC_ASSERT(sizeof(LP64_ONLY(jint) NOT_LP64(jshort)) <= (sizeof(size_t)/2));
const size_t max_yellow_zone = LP64_ONLY(max_jint) NOT_LP64(max_jshort);
const size_t max_green_zone = max_yellow_zone / 2;
const size_t max_red_zone = INT_MAX; // For dcqs.set_max_completed_queue.
STATIC_ASSERT(max_yellow_zone <= max_red_zone);
// Range check assertions for green zone values.
#define assert_zone_constraints_g(green) \
do { \
size_t azc_g_green = (green); \
assert(azc_g_green <= max_green_zone, \
"green exceeds max: " SIZE_FORMAT, azc_g_green); \
} while (0)
// Range check assertions for green and yellow zone values.
#define assert_zone_constraints_gy(green, yellow) \
do { \
size_t azc_gy_green = (green); \
size_t azc_gy_yellow = (yellow); \
assert_zone_constraints_g(azc_gy_green); \
assert(azc_gy_yellow <= max_yellow_zone, \
"yellow exceeds max: " SIZE_FORMAT, azc_gy_yellow); \
assert(azc_gy_green <= azc_gy_yellow, \
"green (" SIZE_FORMAT ") exceeds yellow (" SIZE_FORMAT ")", \
azc_gy_green, azc_gy_yellow); \
} while (0)
// Range check assertions for green, yellow, and red zone values.
#define assert_zone_constraints_gyr(green, yellow, red) \
do { \
size_t azc_gyr_green = (green); \
size_t azc_gyr_yellow = (yellow); \
size_t azc_gyr_red = (red); \
assert_zone_constraints_gy(azc_gyr_green, azc_gyr_yellow); \
assert(azc_gyr_red <= max_red_zone, \
"red exceeds max: " SIZE_FORMAT, azc_gyr_red); \
assert(azc_gyr_yellow <= azc_gyr_red, \
"yellow (" SIZE_FORMAT ") exceeds red (" SIZE_FORMAT ")", \
azc_gyr_yellow, azc_gyr_red); \
} while (0)
// Logging tag sequence for refinement control updates.
#define CTRL_TAGS gc, ergo, refine
// For logging zone values, ensuring consistency of level and tags.
#define LOG_ZONES(...) log_debug( CTRL_TAGS )(__VA_ARGS__)
// Package for pair of refinement thread activation and deactivation
// thresholds. The activation and deactivation levels are resp. the first
// and second values of the pair.
typedef Pair<size_t, size_t> Thresholds;
inline size_t activation_level(const Thresholds& t) { return t.first; }
inline size_t deactivation_level(const Thresholds& t) { return t.second; }
static Thresholds calc_thresholds(size_t green_zone,
size_t yellow_zone,
uint worker_i) {
double yellow_size = yellow_zone - green_zone;
double step = yellow_size / ConcurrentG1Refine::thread_num();
if (worker_i == 0) {
// Potentially activate worker 0 more aggressively, to keep
// available buffers near green_zone value. When yellow_size is
// large we don't want to allow a full step to accumulate before
// doing any processing, as that might lead to significantly more
// than green_zone buffers to be processed by update_rs.
step = MIN2(step, ParallelGCThreads / 2.0);
}
size_t activate_offset = static_cast<size_t>(ceil(step * (worker_i + 1)));
size_t deactivate_offset = static_cast<size_t>(floor(step * worker_i));
return Thresholds(green_zone + activate_offset,
green_zone + deactivate_offset);
}
ConcurrentG1Refine::ConcurrentG1Refine(size_t green_zone,
size_t yellow_zone,
size_t red_zone,
size_t min_yellow_zone_size) :
_threads(NULL),
_sample_thread(NULL),
_n_worker_threads(thread_num()),
_green_zone(green_zone),
_yellow_zone(yellow_zone),
_red_zone(red_zone),
_min_yellow_zone_size(min_yellow_zone_size)
{
assert_zone_constraints_gyr(green_zone, yellow_zone, red_zone);
}
static size_t calc_min_yellow_zone_size() {
size_t step = G1ConcRefinementThresholdStep;
uint n_workers = ConcurrentG1Refine::thread_num();
if ((max_yellow_zone / step) < n_workers) {
return max_yellow_zone;
} else {
return step * n_workers;
}
}
static size_t calc_init_green_zone() {
size_t green = G1ConcRefinementGreenZone;
if (FLAG_IS_DEFAULT(G1ConcRefinementGreenZone)) {
green = ParallelGCThreads;
}
return MIN2(green, max_green_zone);
}
static size_t calc_init_yellow_zone(size_t green, size_t min_size) {
size_t config = G1ConcRefinementYellowZone;
size_t size = 0;
if (FLAG_IS_DEFAULT(G1ConcRefinementYellowZone)) {
size = green * 2;
} else if (green < config) {
size = config - green;
}
size = MAX2(size, min_size);
size = MIN2(size, max_yellow_zone);
return MIN2(green + size, max_yellow_zone);
}
static size_t calc_init_red_zone(size_t green, size_t yellow) {
size_t size = yellow - green;
if (!FLAG_IS_DEFAULT(G1ConcRefinementRedZone)) {
size_t config = G1ConcRefinementRedZone;
if (yellow < config) {
size = MAX2(size, config - yellow);
}
}
return MIN2(yellow + size, max_red_zone);
}
ConcurrentG1Refine* ConcurrentG1Refine::create(jint* ecode) {
size_t min_yellow_zone_size = calc_min_yellow_zone_size();
size_t green_zone = calc_init_green_zone();
size_t yellow_zone = calc_init_yellow_zone(green_zone, min_yellow_zone_size);
size_t red_zone = calc_init_red_zone(green_zone, yellow_zone);
LOG_ZONES("Initial Refinement Zones: "
"green: " SIZE_FORMAT ", "
"yellow: " SIZE_FORMAT ", "
"red: " SIZE_FORMAT ", "
"min yellow size: " SIZE_FORMAT,
green_zone, yellow_zone, red_zone, min_yellow_zone_size);
ConcurrentG1Refine* cg1r = new ConcurrentG1Refine(green_zone,
yellow_zone,
red_zone,
min_yellow_zone_size);
if (cg1r == NULL) {
*ecode = JNI_ENOMEM;
vm_shutdown_during_initialization("Could not create ConcurrentG1Refine");
return NULL;
}
cg1r->_threads = NEW_C_HEAP_ARRAY_RETURN_NULL(ConcurrentG1RefineThread*, cg1r->_n_worker_threads, mtGC);
if (cg1r->_threads == NULL) {
*ecode = JNI_ENOMEM;
vm_shutdown_during_initialization("Could not allocate an array for ConcurrentG1RefineThread");
return NULL;
}
uint worker_id_offset = DirtyCardQueueSet::num_par_ids();
ConcurrentG1RefineThread *next = NULL;
for (uint i = cg1r->_n_worker_threads - 1; i != UINT_MAX; i--) {
Thresholds thresholds = calc_thresholds(green_zone, yellow_zone, i);
ConcurrentG1RefineThread* t =
new ConcurrentG1RefineThread(cg1r,
next,
worker_id_offset,
i,
activation_level(thresholds),
deactivation_level(thresholds));
assert(t != NULL, "Conc refine should have been created");
if (t->osthread() == NULL) {
*ecode = JNI_ENOMEM;
vm_shutdown_during_initialization("Could not create ConcurrentG1RefineThread");
return NULL;
}
assert(t->cg1r() == cg1r, "Conc refine thread should refer to this");
cg1r->_threads[i] = t;
next = t;
}
cg1r->_sample_thread = new G1YoungRemSetSamplingThread();
if (cg1r->_sample_thread->osthread() == NULL) {
*ecode = JNI_ENOMEM;
vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
return NULL;
}
*ecode = JNI_OK;
return cg1r;
}
void ConcurrentG1Refine::stop() {
for (uint i = 0; i < _n_worker_threads; i++) {
_threads[i]->stop();
}
_sample_thread->stop();
}
void ConcurrentG1Refine::update_thread_thresholds() {
for (uint i = 0; i < _n_worker_threads; i++) {
Thresholds thresholds = calc_thresholds(_green_zone, _yellow_zone, i);
_threads[i]->update_thresholds(activation_level(thresholds),
deactivation_level(thresholds));
}
}
ConcurrentG1Refine::~ConcurrentG1Refine() {
for (uint i = 0; i < _n_worker_threads; i++) {
delete _threads[i];
}
FREE_C_HEAP_ARRAY(ConcurrentG1RefineThread*, _threads);
delete _sample_thread;
}
void ConcurrentG1Refine::threads_do(ThreadClosure *tc) {
worker_threads_do(tc);
tc->do_thread(_sample_thread);
}
void ConcurrentG1Refine::worker_threads_do(ThreadClosure * tc) {
for (uint i = 0; i < _n_worker_threads; i++) {
tc->do_thread(_threads[i]);
}
}
uint ConcurrentG1Refine::thread_num() {
return G1ConcRefinementThreads;
}
void ConcurrentG1Refine::print_worker_threads_on(outputStream* st) const {
for (uint i = 0; i < _n_worker_threads; ++i) {
_threads[i]->print_on(st);
st->cr();
}
_sample_thread->print_on(st);
st->cr();
}
static size_t calc_new_green_zone(size_t green,
double update_rs_time,
size_t update_rs_processed_buffers,
double goal_ms) {
// Adjust green zone based on whether we're meeting the time goal.
// Limit to max_green_zone.
const double inc_k = 1.1, dec_k = 0.9;
if (update_rs_time > goal_ms) {
if (green > 0) {
green = static_cast<size_t>(green * dec_k);
}
} else if (update_rs_time < goal_ms &&
update_rs_processed_buffers > green) {
green = static_cast<size_t>(MAX2(green * inc_k, green + 1.0));
green = MIN2(green, max_green_zone);
}
return green;
}
static size_t calc_new_yellow_zone(size_t green, size_t min_yellow_size) {
size_t size = green * 2;
size = MAX2(size, min_yellow_size);
return MIN2(green + size, max_yellow_zone);
}
static size_t calc_new_red_zone(size_t green, size_t yellow) {
return MIN2(yellow + (yellow - green), max_red_zone);
}
void ConcurrentG1Refine::update_zones(double update_rs_time,
size_t update_rs_processed_buffers,
double goal_ms) {
log_trace( CTRL_TAGS )("Updating Refinement Zones: "
"update_rs time: %.3fms, "
"update_rs buffers: " SIZE_FORMAT ", "
"update_rs goal time: %.3fms",
update_rs_time,
update_rs_processed_buffers,
goal_ms);
_green_zone = calc_new_green_zone(_green_zone,
update_rs_time,
update_rs_processed_buffers,
goal_ms);
_yellow_zone = calc_new_yellow_zone(_green_zone, _min_yellow_zone_size);
_red_zone = calc_new_red_zone(_green_zone, _yellow_zone);
assert_zone_constraints_gyr(_green_zone, _yellow_zone, _red_zone);
LOG_ZONES("Updated Refinement Zones: "
"green: " SIZE_FORMAT ", "
"yellow: " SIZE_FORMAT ", "
"red: " SIZE_FORMAT,
_green_zone, _yellow_zone, _red_zone);
}
void ConcurrentG1Refine::adjust(double update_rs_time,
size_t update_rs_processed_buffers,
double goal_ms) {
DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
if (G1UseAdaptiveConcRefinement) {
update_zones(update_rs_time, update_rs_processed_buffers, goal_ms);
update_thread_thresholds();
// Change the barrier params
if (_n_worker_threads == 0) {
// Disable dcqs notification when there are no threads to notify.
dcqs.set_process_completed_threshold(INT_MAX);
} else {
// Worker 0 is the primary; wakeup is via dcqs notification.
STATIC_ASSERT(max_yellow_zone <= INT_MAX);
size_t activate = _threads[0]->activation_threshold();
dcqs.set_process_completed_threshold((int)activate);
}
dcqs.set_max_completed_queue((int)red_zone());
}
size_t curr_queue_size = dcqs.completed_buffers_num();
if (curr_queue_size >= yellow_zone()) {
dcqs.set_completed_queue_padding(curr_queue_size);
} else {
dcqs.set_completed_queue_padding(0);
}
dcqs.notify_if_necessary();
}