blob: c3482d7c0d1b54e99754e48802332b259e3301d0 [file] [log] [blame]
/*
* Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_METAPROGRAMMING_PRIMITIVECONVERSIONS_HPP
#define SHARE_VM_METAPROGRAMMING_PRIMITIVECONVERSIONS_HPP
#include "memory/allocation.hpp"
#include "metaprogramming/enableIf.hpp"
#include "metaprogramming/integralConstant.hpp"
#include "metaprogramming/isFloatingPoint.hpp"
#include "metaprogramming/isIntegral.hpp"
#include "metaprogramming/isRegisteredEnum.hpp"
#include "utilities/debug.hpp"
class PrimitiveConversions : public AllStatic {
public:
// Return a value of type T with the same representation as x.
//
// T and U must be of the same size.
//
// At least one of T or U must be an integral type. The other must
// be an integral, floating point, or pointer type.
template<typename T, typename U> static T cast(U x);
// Support thin wrappers over primitive types.
// If derived from TrueType, provides representational conversion
// from T to some other type. When true, must provide
// - Value: typedef for T.
// - Decayed: typedef for decayed type.
// - static Decayed decay(T x): return value of type Decayed with
// the same representation as x.
// - static T recover(Decayed x): return a value of type T with the
// same representation as x.
template<typename T> struct Translate : public FalseType {};
private:
template<typename T,
typename U,
bool same_size = sizeof(T) == sizeof(U),
typename Enable = void>
struct Cast;
template<typename T, typename U> static T cast_using_union(U x);
};
// Return an object of type T with the same value representation as x.
//
// T and U must be of the same size. It is expected that one of T and
// U is an integral type, and the other is an integral type, a
// (registered) enum type, or a floating point type
//
// This implementation uses the "union trick", which seems to be the
// best of a bad set of options. Though technically undefined
// behavior, it is widely and well supported, producing good code. In
// some cases, such as gcc, that support is explicitly documented.
//
// Using memcpy is the correct method, but some compilers produce
// wretched code for that method, even at maximal optimization levels.
//
// Using static_cast is only possible for integral and enum types, not
// for floating point types. And for integral and enum conversions,
// static_cast has unspecified or implementation-defined behavior for
// some cases. C++11 <type_traits> can be used to avoid most or all
// of those unspecified or implementation-defined issues, though that
// may require multi-step conversions.
//
// Using reinterpret_cast of references has undefined behavior for
// many cases, and there is much less empirical basis for its use, as
// compared to the union trick.
template<typename T, typename U>
inline T PrimitiveConversions::cast_using_union(U x) {
STATIC_ASSERT(sizeof(T) == sizeof(U));
union { T t; U u; };
u = x;
return t;
}
//////////////////////////////////////////////////////////////////////////////
// cast<T>(x)
//
// Cast<T, U, same_size, Enable>
// Give an informative error if the sizes differ.
template<typename T, typename U>
struct PrimitiveConversions::Cast<T, U, false> VALUE_OBJ_CLASS_SPEC {
STATIC_ASSERT(sizeof(T) == sizeof(U));
};
// Conversion between integral types.
template<typename T, typename U>
struct PrimitiveConversions::Cast<
T, U, true,
typename EnableIf<IsIntegral<T>::value && IsIntegral<U>::value>::type>
VALUE_OBJ_CLASS_SPEC
{
T operator()(U x) const { return cast_using_union<T>(x); }
};
// Convert an enum or floating point value to an integer value.
template<typename T, typename U>
struct PrimitiveConversions::Cast<
T, U, true,
typename EnableIf<IsIntegral<T>::value &&
(IsRegisteredEnum<U>::value ||
IsFloatingPoint<U>::value)>::type>
VALUE_OBJ_CLASS_SPEC
{
T operator()(U x) const { return cast_using_union<T>(x); }
};
// Convert an integer to an enum or floating point value.
template<typename T, typename U>
struct PrimitiveConversions::Cast<
T, U, true,
typename EnableIf<IsIntegral<U>::value &&
(IsRegisteredEnum<T>::value ||
IsFloatingPoint<T>::value)>::type>
VALUE_OBJ_CLASS_SPEC
{
T operator()(U x) const { return cast_using_union<T>(x); }
};
// Convert a pointer to an integral value.
template<typename T, typename U>
struct PrimitiveConversions::Cast<
T, U*, true,
typename EnableIf<IsIntegral<T>::value>::type>
VALUE_OBJ_CLASS_SPEC
{
T operator()(U* x) const { return reinterpret_cast<T>(x); }
};
// Convert an integral value to a pointer.
template<typename T, typename U>
struct PrimitiveConversions::Cast<
T*, U, true,
typename EnableIf<IsIntegral<U>::value>::type>
VALUE_OBJ_CLASS_SPEC
{
T* operator()(U x) const { return reinterpret_cast<T*>(x); }
};
template<typename T, typename U>
inline T PrimitiveConversions::cast(U x) {
return Cast<T, U>()(x);
}
#endif // SHARE_VM_METAPROGRAMMING_PRIMITIVECONVERSIONS_HPP