blob: dfe6a8f13a7dff32fc4289fec29b17897ebceb5c [file] [log] [blame]
/*
* Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package java.nio;
import jdk.internal.misc.JavaLangRefAccess;
import jdk.internal.misc.JavaNioAccess;
import jdk.internal.misc.SharedSecrets;
import jdk.internal.misc.Unsafe;
import jdk.internal.misc.VM;
import java.util.concurrent.atomic.AtomicLong;
/**
* Access to bits, native and otherwise.
*/
class Bits { // package-private
private Bits() { }
// -- Swapping --
static short swap(short x) {
return Short.reverseBytes(x);
}
static char swap(char x) {
return Character.reverseBytes(x);
}
static int swap(int x) {
return Integer.reverseBytes(x);
}
static long swap(long x) {
return Long.reverseBytes(x);
}
// -- Unsafe access --
private static final Unsafe unsafe = Unsafe.getUnsafe();
static Unsafe unsafe() {
return unsafe;
}
// -- Processor and memory-system properties --
private static final ByteOrder byteOrder
= unsafe.isBigEndian() ? ByteOrder.BIG_ENDIAN : ByteOrder.LITTLE_ENDIAN;
static ByteOrder byteOrder() {
return byteOrder;
}
private static int pageSize = -1;
static int pageSize() {
if (pageSize == -1)
pageSize = unsafe().pageSize();
return pageSize;
}
static int pageCount(long size) {
return (int)(size + (long)pageSize() - 1L) / pageSize();
}
private static boolean unaligned = unsafe.unalignedAccess();
static boolean unaligned() {
return unaligned;
}
// -- Direct memory management --
// A user-settable upper limit on the maximum amount of allocatable
// direct buffer memory. This value may be changed during VM
// initialization if it is launched with "-XX:MaxDirectMemorySize=<size>".
private static volatile long maxMemory = VM.maxDirectMemory();
private static final AtomicLong reservedMemory = new AtomicLong();
private static final AtomicLong totalCapacity = new AtomicLong();
private static final AtomicLong count = new AtomicLong();
private static volatile boolean memoryLimitSet;
// max. number of sleeps during try-reserving with exponentially
// increasing delay before throwing OutOfMemoryError:
// 1, 2, 4, 8, 16, 32, 64, 128, 256 (total 511 ms ~ 0.5 s)
// which means that OOME will be thrown after 0.5 s of trying
private static final int MAX_SLEEPS = 9;
// These methods should be called whenever direct memory is allocated or
// freed. They allow the user to control the amount of direct memory
// which a process may access. All sizes are specified in bytes.
static void reserveMemory(long size, int cap) {
if (!memoryLimitSet && VM.initLevel() >= 1) {
maxMemory = VM.maxDirectMemory();
memoryLimitSet = true;
}
// optimist!
if (tryReserveMemory(size, cap)) {
return;
}
final JavaLangRefAccess jlra = SharedSecrets.getJavaLangRefAccess();
boolean interrupted = false;
try {
// Retry allocation until success or there are no more
// references (including Cleaners that might free direct
// buffer memory) to process and allocation still fails.
boolean refprocActive;
do {
try {
refprocActive = jlra.waitForReferenceProcessing();
} catch (InterruptedException e) {
// Defer interrupts and keep trying.
interrupted = true;
refprocActive = true;
}
if (tryReserveMemory(size, cap)) {
return;
}
} while (refprocActive);
// trigger VM's Reference processing
System.gc();
// A retry loop with exponential back-off delays.
// Sometimes it would suffice to give up once reference
// processing is complete. But if there are many threads
// competing for memory, this gives more opportunities for
// any given thread to make progress. In particular, this
// seems to be enough for a stress test like
// DirectBufferAllocTest to (usually) succeed, while
// without it that test likely fails. Since failure here
// ends in OOME, there's no need to hurry.
long sleepTime = 1;
int sleeps = 0;
while (true) {
if (tryReserveMemory(size, cap)) {
return;
}
if (sleeps >= MAX_SLEEPS) {
break;
}
try {
if (!jlra.waitForReferenceProcessing()) {
Thread.sleep(sleepTime);
sleepTime <<= 1;
sleeps++;
}
} catch (InterruptedException e) {
interrupted = true;
}
}
// no luck
throw new OutOfMemoryError("Direct buffer memory");
} finally {
if (interrupted) {
// don't swallow interrupts
Thread.currentThread().interrupt();
}
}
}
private static boolean tryReserveMemory(long size, int cap) {
// -XX:MaxDirectMemorySize limits the total capacity rather than the
// actual memory usage, which will differ when buffers are page
// aligned.
long totalCap;
while (cap <= maxMemory - (totalCap = totalCapacity.get())) {
if (totalCapacity.compareAndSet(totalCap, totalCap + cap)) {
reservedMemory.addAndGet(size);
count.incrementAndGet();
return true;
}
}
return false;
}
static void unreserveMemory(long size, int cap) {
long cnt = count.decrementAndGet();
long reservedMem = reservedMemory.addAndGet(-size);
long totalCap = totalCapacity.addAndGet(-cap);
assert cnt >= 0 && reservedMem >= 0 && totalCap >= 0;
}
// -- Monitoring of direct buffer usage --
static {
// setup access to this package in SharedSecrets
SharedSecrets.setJavaNioAccess(
new JavaNioAccess() {
@Override
public JavaNioAccess.BufferPool getDirectBufferPool() {
return new JavaNioAccess.BufferPool() {
@Override
public String getName() {
return "direct";
}
@Override
public long getCount() {
return Bits.count.get();
}
@Override
public long getTotalCapacity() {
return Bits.totalCapacity.get();
}
@Override
public long getMemoryUsed() {
return Bits.reservedMemory.get();
}
};
}
@Override
public ByteBuffer newDirectByteBuffer(long addr, int cap, Object ob) {
return new DirectByteBuffer(addr, cap, ob);
}
@Override
public void truncate(Buffer buf) {
buf.truncate();
}
});
}
// These numbers represent the point at which we have empirically
// determined that the average cost of a JNI call exceeds the expense
// of an element by element copy. These numbers may change over time.
static final int JNI_COPY_TO_ARRAY_THRESHOLD = 6;
static final int JNI_COPY_FROM_ARRAY_THRESHOLD = 6;
}