| /* |
| * Copyright (C) 2010 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef UNIQUE_PTR_H_included |
| #define UNIQUE_PTR_H_included |
| |
| #include <cstdlib> // For NULL. |
| |
| // Default deleter for pointer types. |
| template <typename T> |
| struct DefaultDelete { |
| enum { type_must_be_complete = sizeof(T) }; |
| DefaultDelete() {} |
| void operator()(T* p) const { |
| delete p; |
| } |
| }; |
| |
| // Default deleter for array types. |
| template <typename T> |
| struct DefaultDelete<T[]> { |
| enum { type_must_be_complete = sizeof(T) }; |
| void operator()(T* p) const { |
| delete[] p; |
| } |
| }; |
| |
| // A smart pointer that deletes the given pointer on destruction. |
| // Equivalent to C++0x's std::unique_ptr (a combination of boost::scoped_ptr |
| // and boost::scoped_array). |
| // Named to be in keeping with Android style but also to avoid |
| // collision with any other implementation, until we can switch over |
| // to unique_ptr. |
| // Use thus: |
| // UniquePtr<C> c(new C); |
| template <typename T, typename D = DefaultDelete<T> > |
| class UniquePtr { |
| public: |
| // Construct a new UniquePtr, taking ownership of the given raw pointer. |
| explicit UniquePtr(T* ptr = NULL) : mPtr(ptr) { |
| } |
| |
| ~UniquePtr() { |
| reset(); |
| } |
| |
| // Accessors. |
| T& operator*() const { return *mPtr; } |
| T* operator->() const { return mPtr; } |
| T* get() const { return mPtr; } |
| |
| // Returns the raw pointer and hands over ownership to the caller. |
| // The pointer will not be deleted by UniquePtr. |
| T* release() __attribute__((warn_unused_result)) { |
| T* result = mPtr; |
| mPtr = NULL; |
| return result; |
| } |
| |
| // Takes ownership of the given raw pointer. |
| // If this smart pointer previously owned a different raw pointer, that |
| // raw pointer will be freed. |
| void reset(T* ptr = NULL) { |
| if (ptr != mPtr) { |
| D()(mPtr); |
| mPtr = ptr; |
| } |
| } |
| |
| private: |
| // The raw pointer. |
| T* mPtr; |
| |
| // Comparing unique pointers is probably a mistake, since they're unique. |
| template <typename T2> bool operator==(const UniquePtr<T2>& p) const; |
| template <typename T2> bool operator!=(const UniquePtr<T2>& p) const; |
| |
| // Disallow copy and assignment. |
| UniquePtr(const UniquePtr&); |
| void operator=(const UniquePtr&); |
| }; |
| |
| // Partial specialization for array types. Like std::unique_ptr, this removes |
| // operator* and operator-> but adds operator[]. |
| template <typename T, typename D> |
| class UniquePtr<T[], D> { |
| public: |
| explicit UniquePtr(T* ptr = NULL) : mPtr(ptr) { |
| } |
| |
| ~UniquePtr() { |
| reset(); |
| } |
| |
| T& operator[](size_t i) const { |
| return mPtr[i]; |
| } |
| T* get() const { return mPtr; } |
| |
| T* release() __attribute__((warn_unused_result)) { |
| T* result = mPtr; |
| mPtr = NULL; |
| return result; |
| } |
| |
| void reset(T* ptr = NULL) { |
| if (ptr != mPtr) { |
| D()(mPtr); |
| mPtr = ptr; |
| } |
| } |
| |
| private: |
| T* mPtr; |
| |
| // Disallow copy and assignment. |
| UniquePtr(const UniquePtr&); |
| void operator=(const UniquePtr&); |
| }; |
| |
| #if UNIQUE_PTR_TESTS |
| |
| // Run these tests with: |
| // g++ -g -DUNIQUE_PTR_TESTS -x c++ UniquePtr.h && ./a.out |
| |
| #include <stdio.h> |
| |
| static void assert(bool b) { |
| if (!b) { |
| fprintf(stderr, "FAIL\n"); |
| abort(); |
| } |
| fprintf(stderr, "OK\n"); |
| } |
| static int cCount = 0; |
| struct C { |
| C() { ++cCount; } |
| ~C() { --cCount; } |
| }; |
| static bool freed = false; |
| struct Freer { |
| void operator()(int* p) { |
| assert(*p == 123); |
| free(p); |
| freed = true; |
| } |
| }; |
| |
| int main(int argc, char* argv[]) { |
| // |
| // UniquePtr<T> tests... |
| // |
| |
| // Can we free a single object? |
| { |
| UniquePtr<C> c(new C); |
| assert(cCount == 1); |
| } |
| assert(cCount == 0); |
| // Does release work? |
| C* rawC; |
| { |
| UniquePtr<C> c(new C); |
| assert(cCount == 1); |
| rawC = c.release(); |
| } |
| assert(cCount == 1); |
| delete rawC; |
| // Does reset work? |
| { |
| UniquePtr<C> c(new C); |
| assert(cCount == 1); |
| c.reset(new C); |
| assert(cCount == 1); |
| } |
| assert(cCount == 0); |
| |
| // |
| // UniquePtr<T[]> tests... |
| // |
| |
| // Can we free an array? |
| { |
| UniquePtr<C[]> cs(new C[4]); |
| assert(cCount == 4); |
| } |
| assert(cCount == 0); |
| // Does release work? |
| { |
| UniquePtr<C[]> c(new C[4]); |
| assert(cCount == 4); |
| rawC = c.release(); |
| } |
| assert(cCount == 4); |
| delete[] rawC; |
| // Does reset work? |
| { |
| UniquePtr<C[]> c(new C[4]); |
| assert(cCount == 4); |
| c.reset(new C[2]); |
| assert(cCount == 2); |
| } |
| assert(cCount == 0); |
| |
| // |
| // Custom deleter tests... |
| // |
| assert(!freed); |
| { |
| UniquePtr<int, Freer> i(reinterpret_cast<int*>(malloc(sizeof(int)))); |
| *i = 123; |
| } |
| assert(freed); |
| return 0; |
| } |
| #endif |
| |
| #endif // UNIQUE_PTR_H_included |