blob: 720c828d1bc56e055871c9a0e192a4e51a6ca3c5 [file] [log] [blame]
/*
* Copyright (c) 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/g1/g1CollectedHeap.hpp"
#include "gc/g1/g1CollectionSet.hpp"
#include "gc/g1/g1CollectorPolicy.hpp"
#include "gc/g1/g1CollectorState.hpp"
#include "gc/g1/heapRegion.inline.hpp"
#include "gc/g1/heapRegionRemSet.hpp"
#include "gc/g1/heapRegionSet.hpp"
#include "utilities/debug.hpp"
G1CollectorState* G1CollectionSet::collector_state() {
return _g1->collector_state();
}
G1GCPhaseTimes* G1CollectionSet::phase_times() {
return _policy->phase_times();
}
CollectionSetChooser* G1CollectionSet::cset_chooser() {
return _cset_chooser;
}
double G1CollectionSet::predict_region_elapsed_time_ms(HeapRegion* hr) {
return _policy->predict_region_elapsed_time_ms(hr, collector_state()->gcs_are_young());
}
G1CollectionSet::G1CollectionSet(G1CollectedHeap* g1h) :
_g1(g1h),
_policy(NULL),
_cset_chooser(new CollectionSetChooser()),
_eden_region_length(0),
_survivor_region_length(0),
_old_region_length(0),
_head(NULL),
_bytes_used_before(0),
_recorded_rs_lengths(0),
// Incremental CSet attributes
_inc_build_state(Inactive),
_inc_head(NULL),
_inc_tail(NULL),
_inc_bytes_used_before(0),
_inc_recorded_rs_lengths(0),
_inc_recorded_rs_lengths_diffs(0),
_inc_predicted_elapsed_time_ms(0.0),
_inc_predicted_elapsed_time_ms_diffs(0.0) {}
G1CollectionSet::~G1CollectionSet() {
delete _cset_chooser;
}
void G1CollectionSet::init_region_lengths(uint eden_cset_region_length,
uint survivor_cset_region_length) {
_eden_region_length = eden_cset_region_length;
_survivor_region_length = survivor_cset_region_length;
_old_region_length = 0;
}
void G1CollectionSet::set_recorded_rs_lengths(size_t rs_lengths) {
_recorded_rs_lengths = rs_lengths;
}
// Add the heap region at the head of the non-incremental collection set
void G1CollectionSet::add_old_region(HeapRegion* hr) {
assert(_inc_build_state == Active, "Precondition");
assert(hr->is_old(), "the region should be old");
assert(!hr->in_collection_set(), "should not already be in the CSet");
_g1->register_old_region_with_cset(hr);
hr->set_next_in_collection_set(_head);
_head = hr;
_bytes_used_before += hr->used();
size_t rs_length = hr->rem_set()->occupied();
_recorded_rs_lengths += rs_length;
_old_region_length += 1;
}
// Initialize the per-collection-set information
void G1CollectionSet::start_incremental_building() {
assert(_inc_build_state == Inactive, "Precondition");
_inc_head = NULL;
_inc_tail = NULL;
_inc_bytes_used_before = 0;
_inc_recorded_rs_lengths = 0;
_inc_recorded_rs_lengths_diffs = 0;
_inc_predicted_elapsed_time_ms = 0.0;
_inc_predicted_elapsed_time_ms_diffs = 0.0;
_inc_build_state = Active;
}
void G1CollectionSet::finalize_incremental_building() {
assert(_inc_build_state == Active, "Precondition");
assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
// The two "main" fields, _inc_recorded_rs_lengths and
// _inc_predicted_elapsed_time_ms, are updated by the thread
// that adds a new region to the CSet. Further updates by the
// concurrent refinement thread that samples the young RSet lengths
// are accumulated in the *_diffs fields. Here we add the diffs to
// the "main" fields.
if (_inc_recorded_rs_lengths_diffs >= 0) {
_inc_recorded_rs_lengths += _inc_recorded_rs_lengths_diffs;
} else {
// This is defensive. The diff should in theory be always positive
// as RSets can only grow between GCs. However, given that we
// sample their size concurrently with other threads updating them
// it's possible that we might get the wrong size back, which
// could make the calculations somewhat inaccurate.
size_t diffs = (size_t) (-_inc_recorded_rs_lengths_diffs);
if (_inc_recorded_rs_lengths >= diffs) {
_inc_recorded_rs_lengths -= diffs;
} else {
_inc_recorded_rs_lengths = 0;
}
}
_inc_predicted_elapsed_time_ms += _inc_predicted_elapsed_time_ms_diffs;
_inc_recorded_rs_lengths_diffs = 0;
_inc_predicted_elapsed_time_ms_diffs = 0.0;
}
void G1CollectionSet::update_young_region_prediction(HeapRegion* hr,
size_t new_rs_length) {
// Update the CSet information that is dependent on the new RS length
assert(hr->is_young(), "Precondition");
assert(!SafepointSynchronize::is_at_safepoint(), "should not be at a safepoint");
// We could have updated _inc_recorded_rs_lengths and
// _inc_predicted_elapsed_time_ms directly but we'd need to do
// that atomically, as this code is executed by a concurrent
// refinement thread, potentially concurrently with a mutator thread
// allocating a new region and also updating the same fields. To
// avoid the atomic operations we accumulate these updates on two
// separate fields (*_diffs) and we'll just add them to the "main"
// fields at the start of a GC.
ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
_inc_recorded_rs_lengths_diffs += rs_lengths_diff;
double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr);
double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
_inc_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
hr->set_recorded_rs_length(new_rs_length);
hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
}
void G1CollectionSet::add_young_region_common(HeapRegion* hr) {
assert(hr->is_young(), "invariant");
assert(hr->young_index_in_cset() > -1, "should have already been set");
assert(_inc_build_state == Active, "Precondition");
// This routine is used when:
// * adding survivor regions to the incremental cset at the end of an
// evacuation pause or
// * adding the current allocation region to the incremental cset
// when it is retired.
// Therefore this routine may be called at a safepoint by the
// VM thread, or in-between safepoints by mutator threads (when
// retiring the current allocation region)
// We need to clear and set the cached recorded/cached collection set
// information in the heap region here (before the region gets added
// to the collection set). An individual heap region's cached values
// are calculated, aggregated with the policy collection set info,
// and cached in the heap region here (initially) and (subsequently)
// by the Young List sampling code.
size_t rs_length = hr->rem_set()->occupied();
double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr);
// Cache the values we have added to the aggregated information
// in the heap region in case we have to remove this region from
// the incremental collection set, or it is updated by the
// rset sampling code
hr->set_recorded_rs_length(rs_length);
hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
size_t used_bytes = hr->used();
_inc_recorded_rs_lengths += rs_length;
_inc_predicted_elapsed_time_ms += region_elapsed_time_ms;
_inc_bytes_used_before += used_bytes;
assert(!hr->in_collection_set(), "invariant");
_g1->register_young_region_with_cset(hr);
assert(hr->next_in_collection_set() == NULL, "invariant");
}
// Add the region at the RHS of the incremental cset
void G1CollectionSet::add_survivor_regions(HeapRegion* hr) {
// We should only ever be appending survivors at the end of a pause
assert(hr->is_survivor(), "Logic");
// Do the 'common' stuff
add_young_region_common(hr);
// Now add the region at the right hand side
if (_inc_tail == NULL) {
assert(_inc_head == NULL, "invariant");
_inc_head = hr;
} else {
_inc_tail->set_next_in_collection_set(hr);
}
_inc_tail = hr;
}
// Add the region to the LHS of the incremental cset
void G1CollectionSet::add_eden_region(HeapRegion* hr) {
// Survivors should be added to the RHS at the end of a pause
assert(hr->is_eden(), "Logic");
// Do the 'common' stuff
add_young_region_common(hr);
// Add the region at the left hand side
hr->set_next_in_collection_set(_inc_head);
if (_inc_head == NULL) {
assert(_inc_tail == NULL, "Invariant");
_inc_tail = hr;
}
_inc_head = hr;
}
#ifndef PRODUCT
void G1CollectionSet::print(HeapRegion* list_head, outputStream* st) {
assert(list_head == inc_head() || list_head == head(), "must be");
st->print_cr("\nCollection_set:");
HeapRegion* csr = list_head;
while (csr != NULL) {
HeapRegion* next = csr->next_in_collection_set();
assert(csr->in_collection_set(), "bad CS");
st->print_cr(" " HR_FORMAT ", P: " PTR_FORMAT "N: " PTR_FORMAT ", age: %4d",
HR_FORMAT_PARAMS(csr),
p2i(csr->prev_top_at_mark_start()), p2i(csr->next_top_at_mark_start()),
csr->age_in_surv_rate_group_cond());
csr = next;
}
}
#endif // !PRODUCT
double G1CollectionSet::finalize_young_part(double target_pause_time_ms) {
double young_start_time_sec = os::elapsedTime();
YoungList* young_list = _g1->young_list();
finalize_incremental_building();
guarantee(target_pause_time_ms > 0.0,
"target_pause_time_ms = %1.6lf should be positive", target_pause_time_ms);
guarantee(_head == NULL, "Precondition");
size_t pending_cards = _policy->pending_cards();
double base_time_ms = _policy->predict_base_elapsed_time_ms(pending_cards);
double time_remaining_ms = MAX2(target_pause_time_ms - base_time_ms, 0.0);
log_trace(gc, ergo, cset)("Start choosing CSet. pending cards: " SIZE_FORMAT " predicted base time: %1.2fms remaining time: %1.2fms target pause time: %1.2fms",
pending_cards, base_time_ms, time_remaining_ms, target_pause_time_ms);
collector_state()->set_last_gc_was_young(collector_state()->gcs_are_young());
// The young list is laid with the survivor regions from the previous
// pause are appended to the RHS of the young list, i.e.
// [Newly Young Regions ++ Survivors from last pause].
uint survivor_region_length = young_list->survivor_length();
uint eden_region_length = young_list->eden_length();
init_region_lengths(eden_region_length, survivor_region_length);
HeapRegion* hr = young_list->first_survivor_region();
while (hr != NULL) {
assert(hr->is_survivor(), "badly formed young list");
// There is a convention that all the young regions in the CSet
// are tagged as "eden", so we do this for the survivors here. We
// use the special set_eden_pre_gc() as it doesn't check that the
// region is free (which is not the case here).
hr->set_eden_pre_gc();
hr = hr->get_next_young_region();
}
// Clear the fields that point to the survivor list - they are all young now.
young_list->clear_survivors();
_head = _inc_head;
_bytes_used_before = _inc_bytes_used_before;
time_remaining_ms = MAX2(time_remaining_ms - _inc_predicted_elapsed_time_ms, 0.0);
log_trace(gc, ergo, cset)("Add young regions to CSet. eden: %u regions, survivors: %u regions, predicted young region time: %1.2fms, target pause time: %1.2fms",
eden_region_length, survivor_region_length, _inc_predicted_elapsed_time_ms, target_pause_time_ms);
// The number of recorded young regions is the incremental
// collection set's current size
set_recorded_rs_lengths(_inc_recorded_rs_lengths);
double young_end_time_sec = os::elapsedTime();
phase_times()->record_young_cset_choice_time_ms((young_end_time_sec - young_start_time_sec) * 1000.0);
return time_remaining_ms;
}
void G1CollectionSet::finalize_old_part(double time_remaining_ms) {
double non_young_start_time_sec = os::elapsedTime();
double predicted_old_time_ms = 0.0;
if (!collector_state()->gcs_are_young()) {
cset_chooser()->verify();
const uint min_old_cset_length = _policy->calc_min_old_cset_length();
const uint max_old_cset_length = _policy->calc_max_old_cset_length();
uint expensive_region_num = 0;
bool check_time_remaining = _policy->adaptive_young_list_length();
HeapRegion* hr = cset_chooser()->peek();
while (hr != NULL) {
if (old_region_length() >= max_old_cset_length) {
// Added maximum number of old regions to the CSet.
log_debug(gc, ergo, cset)("Finish adding old regions to CSet (old CSet region num reached max). old %u regions, max %u regions",
old_region_length(), max_old_cset_length);
break;
}
// Stop adding regions if the remaining reclaimable space is
// not above G1HeapWastePercent.
size_t reclaimable_bytes = cset_chooser()->remaining_reclaimable_bytes();
double reclaimable_perc = _policy->reclaimable_bytes_perc(reclaimable_bytes);
double threshold = (double) G1HeapWastePercent;
if (reclaimable_perc <= threshold) {
// We've added enough old regions that the amount of uncollected
// reclaimable space is at or below the waste threshold. Stop
// adding old regions to the CSet.
log_debug(gc, ergo, cset)("Finish adding old regions to CSet (reclaimable percentage not over threshold). "
"old %u regions, max %u regions, reclaimable: " SIZE_FORMAT "B (%1.2f%%) threshold: " UINTX_FORMAT "%%",
old_region_length(), max_old_cset_length, reclaimable_bytes, reclaimable_perc, G1HeapWastePercent);
break;
}
double predicted_time_ms = predict_region_elapsed_time_ms(hr);
if (check_time_remaining) {
if (predicted_time_ms > time_remaining_ms) {
// Too expensive for the current CSet.
if (old_region_length() >= min_old_cset_length) {
// We have added the minimum number of old regions to the CSet,
// we are done with this CSet.
log_debug(gc, ergo, cset)("Finish adding old regions to CSet (predicted time is too high). "
"predicted time: %1.2fms, remaining time: %1.2fms old %u regions, min %u regions",
predicted_time_ms, time_remaining_ms, old_region_length(), min_old_cset_length);
break;
}
// We'll add it anyway given that we haven't reached the
// minimum number of old regions.
expensive_region_num += 1;
}
} else {
if (old_region_length() >= min_old_cset_length) {
// In the non-auto-tuning case, we'll finish adding regions
// to the CSet if we reach the minimum.
log_debug(gc, ergo, cset)("Finish adding old regions to CSet (old CSet region num reached min). old %u regions, min %u regions",
old_region_length(), min_old_cset_length);
break;
}
}
// We will add this region to the CSet.
time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
predicted_old_time_ms += predicted_time_ms;
cset_chooser()->pop(); // already have region via peek()
_g1->old_set_remove(hr);
add_old_region(hr);
hr = cset_chooser()->peek();
}
if (hr == NULL) {
log_debug(gc, ergo, cset)("Finish adding old regions to CSet (candidate old regions not available)");
}
if (expensive_region_num > 0) {
// We print the information once here at the end, predicated on
// whether we added any apparently expensive regions or not, to
// avoid generating output per region.
log_debug(gc, ergo, cset)("Added expensive regions to CSet (old CSet region num not reached min)."
"old: %u regions, expensive: %u regions, min: %u regions, remaining time: %1.2fms",
old_region_length(), expensive_region_num, min_old_cset_length, time_remaining_ms);
}
cset_chooser()->verify();
}
stop_incremental_building();
log_debug(gc, ergo, cset)("Finish choosing CSet. old: %u regions, predicted old region time: %1.2fms, time remaining: %1.2f",
old_region_length(), predicted_old_time_ms, time_remaining_ms);
double non_young_end_time_sec = os::elapsedTime();
phase_times()->record_non_young_cset_choice_time_ms((non_young_end_time_sec - non_young_start_time_sec) * 1000.0);
}