blob: 5e859cdcd919146b7db5a8b937beb7d6957f4acb [file] [log] [blame]
J. Duke319a3b92007-12-01 00:00:00 +00001/*
2 * Copyright 1996-2005 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Sun designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Sun in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
22 * CA 95054 USA or visit www.sun.com if you need additional information or
23 * have any questions.
24 */
25
26package java.awt;
27
28import java.awt.RenderingHints.Key;
29import java.awt.geom.AffineTransform;
30import java.awt.image.ImageObserver;
31import java.awt.image.BufferedImageOp;
32import java.awt.image.BufferedImage;
33import java.awt.image.RenderedImage;
34import java.awt.image.renderable.RenderableImage;
35import java.awt.font.GlyphVector;
36import java.awt.font.FontRenderContext;
37import java.awt.font.TextAttribute;
38import java.text.AttributedCharacterIterator;
39import java.util.Map;
40
41/**
42 * This <code>Graphics2D</code> class extends the
43 * {@link Graphics} class to provide more sophisticated
44 * control over geometry, coordinate transformations, color management,
45 * and text layout. This is the fundamental class for rendering
46 * 2-dimensional shapes, text and images on the Java(tm) platform.
47 * <p>
48 * <h2>Coordinate Spaces</h2>
49 * All coordinates passed to a <code>Graphics2D</code> object are specified
50 * in a device-independent coordinate system called User Space, which is
51 * used by applications. The <code>Graphics2D</code> object contains
52 * an {@link AffineTransform} object as part of its rendering state
53 * that defines how to convert coordinates from user space to
54 * device-dependent coordinates in Device Space.
55 * <p>
56 * Coordinates in device space usually refer to individual device pixels
57 * and are aligned on the infinitely thin gaps between these pixels.
58 * Some <code>Graphics2D</code> objects can be used to capture rendering
59 * operations for storage into a graphics metafile for playback on a
60 * concrete device of unknown physical resolution at a later time. Since
61 * the resolution might not be known when the rendering operations are
62 * captured, the <code>Graphics2D</code> <code>Transform</code> is set up
63 * to transform user coordinates to a virtual device space that
64 * approximates the expected resolution of the target device. Further
65 * transformations might need to be applied at playback time if the
66 * estimate is incorrect.
67 * <p>
68 * Some of the operations performed by the rendering attribute objects
69 * occur in the device space, but all <code>Graphics2D</code> methods take
70 * user space coordinates.
71 * <p>
72 * Every <code>Graphics2D</code> object is associated with a target that
73 * defines where rendering takes place. A
74 * {@link GraphicsConfiguration} object defines the characteristics
75 * of the rendering target, such as pixel format and resolution.
76 * The same rendering target is used throughout the life of a
77 * <code>Graphics2D</code> object.
78 * <p>
79 * When creating a <code>Graphics2D</code> object, the
80 * <code>GraphicsConfiguration</code>
81 * specifies the <a name="#deftransform">default transform</a> for
82 * the target of the <code>Graphics2D</code> (a
83 * {@link Component} or {@link Image}). This default transform maps the
84 * user space coordinate system to screen and printer device coordinates
85 * such that the origin maps to the upper left hand corner of the
86 * target region of the device with increasing X coordinates extending
87 * to the right and increasing Y coordinates extending downward.
88 * The scaling of the default transform is set to identity for those devices
89 * that are close to 72 dpi, such as screen devices.
90 * The scaling of the default transform is set to approximately 72 user
91 * space coordinates per square inch for high resolution devices, such as
92 * printers. For image buffers, the default transform is the
93 * <code>Identity</code> transform.
94 *
95 * <h2>Rendering Process</h2>
96 * The Rendering Process can be broken down into four phases that are
97 * controlled by the <code>Graphics2D</code> rendering attributes.
98 * The renderer can optimize many of these steps, either by caching the
99 * results for future calls, by collapsing multiple virtual steps into
100 * a single operation, or by recognizing various attributes as common
101 * simple cases that can be eliminated by modifying other parts of the
102 * operation.
103 * <p>
104 * The steps in the rendering process are:
105 * <ol>
106 * <li>
107 * Determine what to render.
108 * <li>
109 * Constrain the rendering operation to the current <code>Clip</code>.
110 * The <code>Clip</code> is specified by a {@link Shape} in user
111 * space and is controlled by the program using the various clip
112 * manipulation methods of <code>Graphics</code> and
113 * <code>Graphics2D</code>. This <i>user clip</i>
114 * is transformed into device space by the current
115 * <code>Transform</code> and combined with the
116 * <i>device clip</i>, which is defined by the visibility of windows and
117 * device extents. The combination of the user clip and device clip
118 * defines the <i>composite clip</i>, which determines the final clipping
119 * region. The user clip is not modified by the rendering
120 * system to reflect the resulting composite clip.
121 * <li>
122 * Determine what colors to render.
123 * <li>
124 * Apply the colors to the destination drawing surface using the current
125 * {@link Composite} attribute in the <code>Graphics2D</code> context.
126 * </ol>
127 * <br>
128 * The three types of rendering operations, along with details of each
129 * of their particular rendering processes are:
130 * <ol>
131 * <li>
132 * <b><a name="rendershape"><code>Shape</code> operations</a></b>
133 * <ol>
134 * <li>
135 * If the operation is a <code>draw(Shape)</code> operation, then
136 * the {@link Stroke#createStrokedShape(Shape) createStrokedShape}
137 * method on the current {@link Stroke} attribute in the
138 * <code>Graphics2D</code> context is used to construct a new
139 * <code>Shape</code> object that contains the outline of the specified
140 * <code>Shape</code>.
141 * <li>
142 * The <code>Shape</code> is transformed from user space to device space
143 * using the current <code>Transform</code>
144 * in the <code>Graphics2D</code> context.
145 * <li>
146 * The outline of the <code>Shape</code> is extracted using the
147 * {@link Shape#getPathIterator(AffineTransform) getPathIterator} method of
148 * <code>Shape</code>, which returns a
149 * {@link java.awt.geom.PathIterator PathIterator}
150 * object that iterates along the boundary of the <code>Shape</code>.
151 * <li>
152 * If the <code>Graphics2D</code> object cannot handle the curved segments
153 * that the <code>PathIterator</code> object returns then it can call the
154 * alternate
155 * {@link Shape#getPathIterator(AffineTransform, double) getPathIterator}
156 * method of <code>Shape</code>, which flattens the <code>Shape</code>.
157 * <li>
158 * The current {@link Paint} in the <code>Graphics2D</code> context
159 * is queried for a {@link PaintContext}, which specifies the
160 * colors to render in device space.
161 * </ol>
162 * <li>
163 * <b><a name=rendertext>Text operations</a></b>
164 * <ol>
165 * <li>
166 * The following steps are used to determine the set of glyphs required
167 * to render the indicated <code>String</code>:
168 * <ol>
169 * <li>
170 * If the argument is a <code>String</code>, then the current
171 * <code>Font</code> in the <code>Graphics2D</code> context is asked to
172 * convert the Unicode characters in the <code>String</code> into a set of
173 * glyphs for presentation with whatever basic layout and shaping
174 * algorithms the font implements.
175 * <li>
176 * If the argument is an
177 * {@link AttributedCharacterIterator},
178 * the iterator is asked to convert itself to a
179 * {@link java.awt.font.TextLayout TextLayout}
180 * using its embedded font attributes. The <code>TextLayout</code>
181 * implements more sophisticated glyph layout algorithms that
182 * perform Unicode bi-directional layout adjustments automatically
183 * for multiple fonts of differing writing directions.
184 * <li>
185 * If the argument is a
186 * {@link GlyphVector}, then the
187 * <code>GlyphVector</code> object already contains the appropriate
188 * font-specific glyph codes with explicit coordinates for the position of
189 * each glyph.
190 * </ol>
191 * <li>
192 * The current <code>Font</code> is queried to obtain outlines for the
193 * indicated glyphs. These outlines are treated as shapes in user space
194 * relative to the position of each glyph that was determined in step 1.
195 * <li>
196 * The character outlines are filled as indicated above
197 * under <a href="#rendershape"><code>Shape</code> operations</a>.
198 * <li>
199 * The current <code>Paint</code> is queried for a
200 * <code>PaintContext</code>, which specifies
201 * the colors to render in device space.
202 * </ol>
203 * <li>
204 * <b><a name= renderingimage><code>Image</code> Operations</a></b>
205 * <ol>
206 * <li>
207 * The region of interest is defined by the bounding box of the source
208 * <code>Image</code>.
209 * This bounding box is specified in Image Space, which is the
210 * <code>Image</code> object's local coordinate system.
211 * <li>
212 * If an <code>AffineTransform</code> is passed to
213 * {@link #drawImage(java.awt.Image, java.awt.geom.AffineTransform, java.awt.image.ImageObserver) drawImage(Image, AffineTransform, ImageObserver)},
214 * the <code>AffineTransform</code> is used to transform the bounding
215 * box from image space to user space. If no <code>AffineTransform</code>
216 * is supplied, the bounding box is treated as if it is already in user space.
217 * <li>
218 * The bounding box of the source <code>Image</code> is transformed from user
219 * space into device space using the current <code>Transform</code>.
220 * Note that the result of transforming the bounding box does not
221 * necessarily result in a rectangular region in device space.
222 * <li>
223 * The <code>Image</code> object determines what colors to render,
224 * sampled according to the source to destination
225 * coordinate mapping specified by the current <code>Transform</code> and the
226 * optional image transform.
227 * </ol>
228 * </ol>
229 *
230 * <h2>Default Rendering Attributes</h2>
231 * The default values for the <code>Graphics2D</code> rendering attributes are:
232 * <dl compact>
233 * <dt><i><code>Paint</code></i>
234 * <dd>The color of the <code>Component</code>.
235 * <dt><i><code>Font</code></i>
236 * <dd>The <code>Font</code> of the <code>Component</code>.
237 * <dt><i><code>Stroke</code></i>
238 * <dd>A square pen with a linewidth of 1, no dashing, miter segment joins
239 * and square end caps.
240 * <dt><i><code>Transform</code></i>
241 * <dd>The
242 * {@link GraphicsConfiguration#getDefaultTransform() getDefaultTransform}
243 * for the <code>GraphicsConfiguration</code> of the <code>Component</code>.
244 * <dt><i><code>Composite</code></i>
245 * <dd>The {@link AlphaComposite#SRC_OVER} rule.
246 * <dt><i><code>Clip</code></i>
247 * <dd>No rendering <code>Clip</code>, the output is clipped to the
248 * <code>Component</code>.
249 * </dl>
250 *
251 * <h2>Rendering Compatibility Issues</h2>
252 * The JDK(tm) 1.1 rendering model is based on a pixelization model
253 * that specifies that coordinates
254 * are infinitely thin, lying between the pixels. Drawing operations are
255 * performed using a one-pixel wide pen that fills the
256 * pixel below and to the right of the anchor point on the path.
257 * The JDK 1.1 rendering model is consistent with the
258 * capabilities of most of the existing class of platform
259 * renderers that need to resolve integer coordinates to a
260 * discrete pen that must fall completely on a specified number of pixels.
261 * <p>
262 * The Java 2D(tm) (Java(tm) 2 platform) API supports antialiasing renderers.
263 * A pen with a width of one pixel does not need to fall
264 * completely on pixel N as opposed to pixel N+1. The pen can fall
265 * partially on both pixels. It is not necessary to choose a bias
266 * direction for a wide pen since the blending that occurs along the
267 * pen traversal edges makes the sub-pixel position of the pen
268 * visible to the user. On the other hand, when antialiasing is
269 * turned off by setting the
270 * {@link RenderingHints#KEY_ANTIALIASING KEY_ANTIALIASING} hint key
271 * to the
272 * {@link RenderingHints#VALUE_ANTIALIAS_OFF VALUE_ANTIALIAS_OFF}
273 * hint value, the renderer might need
274 * to apply a bias to determine which pixel to modify when the pen
275 * is straddling a pixel boundary, such as when it is drawn
276 * along an integer coordinate in device space. While the capabilities
277 * of an antialiasing renderer make it no longer necessary for the
278 * rendering model to specify a bias for the pen, it is desirable for the
279 * antialiasing and non-antialiasing renderers to perform similarly for
280 * the common cases of drawing one-pixel wide horizontal and vertical
281 * lines on the screen. To ensure that turning on antialiasing by
282 * setting the
283 * {@link RenderingHints#KEY_ANTIALIASING KEY_ANTIALIASING} hint
284 * key to
285 * {@link RenderingHints#VALUE_ANTIALIAS_ON VALUE_ANTIALIAS_ON}
286 * does not cause such lines to suddenly become twice as wide and half
287 * as opaque, it is desirable to have the model specify a path for such
288 * lines so that they completely cover a particular set of pixels to help
289 * increase their crispness.
290 * <p>
291 * Java 2D API maintains compatibility with JDK 1.1 rendering
292 * behavior, such that legacy operations and existing renderer
293 * behavior is unchanged under Java 2D API. Legacy
294 * methods that map onto general <code>draw</code> and
295 * <code>fill</code> methods are defined, which clearly indicates
296 * how <code>Graphics2D</code> extends <code>Graphics</code> based
297 * on settings of <code>Stroke</code> and <code>Transform</code>
298 * attributes and rendering hints. The definition
299 * performs identically under default attribute settings.
300 * For example, the default <code>Stroke</code> is a
301 * <code>BasicStroke</code> with a width of 1 and no dashing and the
302 * default Transform for screen drawing is an Identity transform.
303 * <p>
304 * The following two rules provide predictable rendering behavior whether
305 * aliasing or antialiasing is being used.
306 * <ul>
307 * <li> Device coordinates are defined to be between device pixels which
308 * avoids any inconsistent results between aliased and antaliased
309 * rendering. If coordinates were defined to be at a pixel's center, some
310 * of the pixels covered by a shape, such as a rectangle, would only be
311 * half covered.
312 * With aliased rendering, the half covered pixels would either be
313 * rendered inside the shape or outside the shape. With anti-aliased
314 * rendering, the pixels on the entire edge of the shape would be half
315 * covered. On the other hand, since coordinates are defined to be
316 * between pixels, a shape like a rectangle would have no half covered
317 * pixels, whether or not it is rendered using antialiasing.
318 * <li> Lines and paths stroked using the <code>BasicStroke</code>
319 * object may be "normalized" to provide consistent rendering of the
320 * outlines when positioned at various points on the drawable and
321 * whether drawn with aliased or antialiased rendering. This
322 * normalization process is controlled by the
323 * {@link RenderingHints#KEY_STROKE_CONTROL KEY_STROKE_CONTROL} hint.
324 * The exact normalization algorithm is not specified, but the goals
325 * of this normalization are to ensure that lines are rendered with
326 * consistent visual appearance regardless of how they fall on the
327 * pixel grid and to promote more solid horizontal and vertical
328 * lines in antialiased mode so that they resemble their non-antialiased
329 * counterparts more closely. A typical normalization step might
330 * promote antialiased line endpoints to pixel centers to reduce the
331 * amount of blending or adjust the subpixel positioning of
332 * non-antialiased lines so that the floating point line widths
333 * round to even or odd pixel counts with equal likelihood. This
334 * process can move endpoints by up to half a pixel (usually towards
335 * positive infinity along both axes) to promote these consistent
336 * results.
337 * </ul>
338 * <p>
339 * The following definitions of general legacy methods
340 * perform identically to previously specified behavior under default
341 * attribute settings:
342 * <ul>
343 * <li>
344 * For <code>fill</code> operations, including <code>fillRect</code>,
345 * <code>fillRoundRect</code>, <code>fillOval</code>,
346 * <code>fillArc</code>, <code>fillPolygon</code>, and
347 * <code>clearRect</code>, {@link #fill(Shape) fill} can now be called
348 * with the desired <code>Shape</code>. For example, when filling a
349 * rectangle:
350 * <pre>
351 * fill(new Rectangle(x, y, w, h));
352 * </pre>
353 * is called.
354 * <p>
355 * <li>
356 * Similarly, for draw operations, including <code>drawLine</code>,
357 * <code>drawRect</code>, <code>drawRoundRect</code>,
358 * <code>drawOval</code>, <code>drawArc</code>, <code>drawPolyline</code>,
359 * and <code>drawPolygon</code>, {@link #draw(Shape) draw} can now be
360 * called with the desired <code>Shape</code>. For example, when drawing a
361 * rectangle:
362 * <pre>
363 * draw(new Rectangle(x, y, w, h));
364 * </pre>
365 * is called.
366 * <p>
367 * <li>
368 * The <code>draw3DRect</code> and <code>fill3DRect</code> methods were
369 * implemented in terms of the <code>drawLine</code> and
370 * <code>fillRect</code> methods in the <code>Graphics</code> class which
371 * would predicate their behavior upon the current <code>Stroke</code>
372 * and <code>Paint</code> objects in a <code>Graphics2D</code> context.
373 * This class overrides those implementations with versions that use
374 * the current <code>Color</code> exclusively, overriding the current
375 * <code>Paint</code> and which uses <code>fillRect</code> to describe
376 * the exact same behavior as the preexisting methods regardless of the
377 * setting of the current <code>Stroke</code>.
378 * </ul>
379 * The <code>Graphics</code> class defines only the <code>setColor</code>
380 * method to control the color to be painted. Since the Java 2D API extends
381 * the <code>Color</code> object to implement the new <code>Paint</code>
382 * interface, the existing
383 * <code>setColor</code> method is now a convenience method for setting the
384 * current <code>Paint</code> attribute to a <code>Color</code> object.
385 * <code>setColor(c)</code> is equivalent to <code>setPaint(c)</code>.
386 * <p>
387 * The <code>Graphics</code> class defines two methods for controlling
388 * how colors are applied to the destination.
389 * <ol>
390 * <li>
391 * The <code>setPaintMode</code> method is implemented as a convenience
392 * method to set the default <code>Composite</code>, equivalent to
393 * <code>setComposite(new AlphaComposite.SrcOver)</code>.
394 * <li>
395 * The <code>setXORMode(Color xorcolor)</code> method is implemented
396 * as a convenience method to set a special <code>Composite</code> object that
397 * ignores the <code>Alpha</code> components of source colors and sets the
398 * destination color to the value:
399 * <pre>
400 * dstpixel = (PixelOf(srccolor) ^ PixelOf(xorcolor) ^ dstpixel);
401 * </pre>
402 * </ol>
403 *
404 * @author Jim Graham
405 * @see java.awt.RenderingHints
406 */
407public abstract class Graphics2D extends Graphics {
408
409 /**
410 * Constructs a new <code>Graphics2D</code> object. Since
411 * <code>Graphics2D</code> is an abstract class, and since it must be
412 * customized by subclasses for different output devices,
413 * <code>Graphics2D</code> objects cannot be created directly.
414 * Instead, <code>Graphics2D</code> objects must be obtained from another
415 * <code>Graphics2D</code> object, created by a
416 * <code>Component</code>, or obtained from images such as
417 * {@link BufferedImage} objects.
418 * @see java.awt.Component#getGraphics
419 * @see java.awt.Graphics#create
420 */
421 protected Graphics2D() {
422 }
423
424 /**
425 * Draws a 3-D highlighted outline of the specified rectangle.
426 * The edges of the rectangle are highlighted so that they
427 * appear to be beveled and lit from the upper left corner.
428 * <p>
429 * The colors used for the highlighting effect are determined
430 * based on the current color.
431 * The resulting rectangle covers an area that is
432 * <code>width&nbsp;+&nbsp;1</code> pixels wide
433 * by <code>height&nbsp;+&nbsp;1</code> pixels tall. This method
434 * uses the current <code>Color</code> exclusively and ignores
435 * the current <code>Paint</code>.
436 * @param x the x coordinate of the rectangle to be drawn.
437 * @param y the y coordinate of the rectangle to be drawn.
438 * @param width the width of the rectangle to be drawn.
439 * @param height the height of the rectangle to be drawn.
440 * @param raised a boolean that determines whether the rectangle
441 * appears to be raised above the surface
442 * or sunk into the surface.
443 * @see java.awt.Graphics#fill3DRect
444 */
445 public void draw3DRect(int x, int y, int width, int height,
446 boolean raised) {
447 Paint p = getPaint();
448 Color c = getColor();
449 Color brighter = c.brighter();
450 Color darker = c.darker();
451
452 setColor(raised ? brighter : darker);
453 //drawLine(x, y, x, y + height);
454 fillRect(x, y, 1, height + 1);
455 //drawLine(x + 1, y, x + width - 1, y);
456 fillRect(x + 1, y, width - 1, 1);
457 setColor(raised ? darker : brighter);
458 //drawLine(x + 1, y + height, x + width, y + height);
459 fillRect(x + 1, y + height, width, 1);
460 //drawLine(x + width, y, x + width, y + height - 1);
461 fillRect(x + width, y, 1, height);
462 setPaint(p);
463 }
464
465 /**
466 * Paints a 3-D highlighted rectangle filled with the current color.
467 * The edges of the rectangle are highlighted so that it appears
468 * as if the edges were beveled and lit from the upper left corner.
469 * The colors used for the highlighting effect and for filling are
470 * determined from the current <code>Color</code>. This method uses
471 * the current <code>Color</code> exclusively and ignores the current
472 * <code>Paint</code>.
473 * @param x the x coordinate of the rectangle to be filled.
474 * @param y the y coordinate of the rectangle to be filled.
475 * @param width the width of the rectangle to be filled.
476 * @param height the height of the rectangle to be filled.
477 * @param raised a boolean value that determines whether the
478 * rectangle appears to be raised above the surface
479 * or etched into the surface.
480 * @see java.awt.Graphics#draw3DRect
481 */
482 public void fill3DRect(int x, int y, int width, int height,
483 boolean raised) {
484 Paint p = getPaint();
485 Color c = getColor();
486 Color brighter = c.brighter();
487 Color darker = c.darker();
488
489 if (!raised) {
490 setColor(darker);
491 } else if (p != c) {
492 setColor(c);
493 }
494 fillRect(x+1, y+1, width-2, height-2);
495 setColor(raised ? brighter : darker);
496 //drawLine(x, y, x, y + height - 1);
497 fillRect(x, y, 1, height);
498 //drawLine(x + 1, y, x + width - 2, y);
499 fillRect(x + 1, y, width - 2, 1);
500 setColor(raised ? darker : brighter);
501 //drawLine(x + 1, y + height - 1, x + width - 1, y + height - 1);
502 fillRect(x + 1, y + height - 1, width - 1, 1);
503 //drawLine(x + width - 1, y, x + width - 1, y + height - 2);
504 fillRect(x + width - 1, y, 1, height - 1);
505 setPaint(p);
506 }
507
508 /**
509 * Strokes the outline of a <code>Shape</code> using the settings of the
510 * current <code>Graphics2D</code> context. The rendering attributes
511 * applied include the <code>Clip</code>, <code>Transform</code>,
512 * <code>Paint</code>, <code>Composite</code> and
513 * <code>Stroke</code> attributes.
514 * @param s the <code>Shape</code> to be rendered
515 * @see #setStroke
516 * @see #setPaint
517 * @see java.awt.Graphics#setColor
518 * @see #transform
519 * @see #setTransform
520 * @see #clip
521 * @see #setClip
522 * @see #setComposite
523 */
524 public abstract void draw(Shape s);
525
526 /**
527 * Renders an image, applying a transform from image space into user space
528 * before drawing.
529 * The transformation from user space into device space is done with
530 * the current <code>Transform</code> in the <code>Graphics2D</code>.
531 * The specified transformation is applied to the image before the
532 * transform attribute in the <code>Graphics2D</code> context is applied.
533 * The rendering attributes applied include the <code>Clip</code>,
534 * <code>Transform</code>, and <code>Composite</code> attributes.
535 * Note that no rendering is done if the specified transform is
536 * noninvertible.
537 * @param img the specified image to be rendered.
538 * This method does nothing if <code>img</code> is null.
539 * @param xform the transformation from image space into user space
540 * @param obs the {@link ImageObserver}
541 * to be notified as more of the <code>Image</code>
542 * is converted
543 * @return <code>true</code> if the <code>Image</code> is
544 * fully loaded and completely rendered, or if it's null;
545 * <code>false</code> if the <code>Image</code> is still being loaded.
546 * @see #transform
547 * @see #setTransform
548 * @see #setComposite
549 * @see #clip
550 * @see #setClip
551 */
552 public abstract boolean drawImage(Image img,
553 AffineTransform xform,
554 ImageObserver obs);
555
556 /**
557 * Renders a <code>BufferedImage</code> that is
558 * filtered with a
559 * {@link BufferedImageOp}.
560 * The rendering attributes applied include the <code>Clip</code>,
561 * <code>Transform</code>
562 * and <code>Composite</code> attributes. This is equivalent to:
563 * <pre>
564 * img1 = op.filter(img, null);
565 * drawImage(img1, new AffineTransform(1f,0f,0f,1f,x,y), null);
566 * </pre>
567 * @param op the filter to be applied to the image before rendering
568 * @param img the specified <code>BufferedImage</code> to be rendered.
569 * This method does nothing if <code>img</code> is null.
570 * @param x the x coordinate of the location in user space where
571 * the upper left corner of the image is rendered
572 * @param y the y coordinate of the location in user space where
573 * the upper left corner of the image is rendered
574 *
575 * @see #transform
576 * @see #setTransform
577 * @see #setComposite
578 * @see #clip
579 * @see #setClip
580 */
581 public abstract void drawImage(BufferedImage img,
582 BufferedImageOp op,
583 int x,
584 int y);
585
586 /**
587 * Renders a {@link RenderedImage},
588 * applying a transform from image
589 * space into user space before drawing.
590 * The transformation from user space into device space is done with
591 * the current <code>Transform</code> in the <code>Graphics2D</code>.
592 * The specified transformation is applied to the image before the
593 * transform attribute in the <code>Graphics2D</code> context is applied.
594 * The rendering attributes applied include the <code>Clip</code>,
595 * <code>Transform</code>, and <code>Composite</code> attributes. Note
596 * that no rendering is done if the specified transform is
597 * noninvertible.
598 * @param img the image to be rendered. This method does
599 * nothing if <code>img</code> is null.
600 * @param xform the transformation from image space into user space
601 * @see #transform
602 * @see #setTransform
603 * @see #setComposite
604 * @see #clip
605 * @see #setClip
606 */
607 public abstract void drawRenderedImage(RenderedImage img,
608 AffineTransform xform);
609
610 /**
611 * Renders a
612 * {@link RenderableImage},
613 * applying a transform from image space into user space before drawing.
614 * The transformation from user space into device space is done with
615 * the current <code>Transform</code> in the <code>Graphics2D</code>.
616 * The specified transformation is applied to the image before the
617 * transform attribute in the <code>Graphics2D</code> context is applied.
618 * The rendering attributes applied include the <code>Clip</code>,
619 * <code>Transform</code>, and <code>Composite</code> attributes. Note
620 * that no rendering is done if the specified transform is
621 * noninvertible.
622 *<p>
623 * Rendering hints set on the <code>Graphics2D</code> object might
624 * be used in rendering the <code>RenderableImage</code>.
625 * If explicit control is required over specific hints recognized by a
626 * specific <code>RenderableImage</code>, or if knowledge of which hints
627 * are used is required, then a <code>RenderedImage</code> should be
628 * obtained directly from the <code>RenderableImage</code>
629 * and rendered using
630 *{@link #drawRenderedImage(RenderedImage, AffineTransform) drawRenderedImage}.
631 * @param img the image to be rendered. This method does
632 * nothing if <code>img</code> is null.
633 * @param xform the transformation from image space into user space
634 * @see #transform
635 * @see #setTransform
636 * @see #setComposite
637 * @see #clip
638 * @see #setClip
639 * @see #drawRenderedImage
640 */
641 public abstract void drawRenderableImage(RenderableImage img,
642 AffineTransform xform);
643
644 /**
645 * Renders the text of the specified <code>String</code>, using the
646 * current text attribute state in the <code>Graphics2D</code> context.
647 * The baseline of the
648 * first character is at position (<i>x</i>,&nbsp;<i>y</i>) in
649 * the User Space.
650 * The rendering attributes applied include the <code>Clip</code>,
651 * <code>Transform</code>, <code>Paint</code>, <code>Font</code> and
652 * <code>Composite</code> attributes. For characters in script
653 * systems such as Hebrew and Arabic, the glyphs can be rendered from
654 * right to left, in which case the coordinate supplied is the
655 * location of the leftmost character on the baseline.
656 * @param str the string to be rendered
657 * @param x the x coordinate of the location where the
658 * <code>String</code> should be rendered
659 * @param y the y coordinate of the location where the
660 * <code>String</code> should be rendered
661 * @throws NullPointerException if <code>str</code> is
662 * <code>null</code>
663 * @see java.awt.Graphics#drawBytes
664 * @see java.awt.Graphics#drawChars
665 * @since JDK1.0
666 */
667 public abstract void drawString(String str, int x, int y);
668
669 /**
670 * Renders the text specified by the specified <code>String</code>,
671 * using the current text attribute state in the <code>Graphics2D</code> context.
672 * The baseline of the first character is at position
673 * (<i>x</i>,&nbsp;<i>y</i>) in the User Space.
674 * The rendering attributes applied include the <code>Clip</code>,
675 * <code>Transform</code>, <code>Paint</code>, <code>Font</code> and
676 * <code>Composite</code> attributes. For characters in script systems
677 * such as Hebrew and Arabic, the glyphs can be rendered from right to
678 * left, in which case the coordinate supplied is the location of the
679 * leftmost character on the baseline.
680 * @param str the <code>String</code> to be rendered
681 * @param x the x coordinate of the location where the
682 * <code>String</code> should be rendered
683 * @param y the y coordinate of the location where the
684 * <code>String</code> should be rendered
685 * @throws NullPointerException if <code>str</code> is
686 * <code>null</code>
687 * @see #setPaint
688 * @see java.awt.Graphics#setColor
689 * @see java.awt.Graphics#setFont
690 * @see #setTransform
691 * @see #setComposite
692 * @see #setClip
693 */
694 public abstract void drawString(String str, float x, float y);
695
696 /**
697 * Renders the text of the specified iterator applying its attributes
698 * in accordance with the specification of the {@link TextAttribute} class.
699 * <p>
700 * The baseline of the first character is at position
701 * (<i>x</i>,&nbsp;<i>y</i>) in User Space.
702 * For characters in script systems such as Hebrew and Arabic,
703 * the glyphs can be rendered from right to left, in which case the
704 * coordinate supplied is the location of the leftmost character
705 * on the baseline.
706 * @param iterator the iterator whose text is to be rendered
707 * @param x the x coordinate where the iterator's text is to be
708 * rendered
709 * @param y the y coordinate where the iterator's text is to be
710 * rendered
711 * @throws NullPointerException if <code>iterator</code> is
712 * <code>null</code>
713 * @see #setPaint
714 * @see java.awt.Graphics#setColor
715 * @see #setTransform
716 * @see #setComposite
717 * @see #setClip
718 */
719 public abstract void drawString(AttributedCharacterIterator iterator,
720 int x, int y);
721
722 /**
723 * Renders the text of the specified iterator applying its attributes
724 * in accordance with the specification of the {@link TextAttribute} class.
725 * <p>
726 * The baseline of the first character is at position
727 * (<i>x</i>,&nbsp;<i>y</i>) in User Space.
728 * For characters in script systems such as Hebrew and Arabic,
729 * the glyphs can be rendered from right to left, in which case the
730 * coordinate supplied is the location of the leftmost character
731 * on the baseline.
732 * @param iterator the iterator whose text is to be rendered
733 * @param x the x coordinate where the iterator's text is to be
734 * rendered
735 * @param y the y coordinate where the iterator's text is to be
736 * rendered
737 * @throws NullPointerException if <code>iterator</code> is
738 * <code>null</code>
739 * @see #setPaint
740 * @see java.awt.Graphics#setColor
741 * @see #setTransform
742 * @see #setComposite
743 * @see #setClip
744 */
745 public abstract void drawString(AttributedCharacterIterator iterator,
746 float x, float y);
747
748 /**
749 * Renders the text of the specified
750 * {@link GlyphVector} using
751 * the <code>Graphics2D</code> context's rendering attributes.
752 * The rendering attributes applied include the <code>Clip</code>,
753 * <code>Transform</code>, <code>Paint</code>, and
754 * <code>Composite</code> attributes. The <code>GlyphVector</code>
755 * specifies individual glyphs from a {@link Font}.
756 * The <code>GlyphVector</code> can also contain the glyph positions.
757 * This is the fastest way to render a set of characters to the
758 * screen.
759 * @param g the <code>GlyphVector</code> to be rendered
760 * @param x the x position in User Space where the glyphs should
761 * be rendered
762 * @param y the y position in User Space where the glyphs should
763 * be rendered
764 * @throws NullPointerException if <code>g</code> is <code>null</code>.
765 *
766 * @see java.awt.Font#createGlyphVector
767 * @see java.awt.font.GlyphVector
768 * @see #setPaint
769 * @see java.awt.Graphics#setColor
770 * @see #setTransform
771 * @see #setComposite
772 * @see #setClip
773 */
774 public abstract void drawGlyphVector(GlyphVector g, float x, float y);
775
776 /**
777 * Fills the interior of a <code>Shape</code> using the settings of the
778 * <code>Graphics2D</code> context. The rendering attributes applied
779 * include the <code>Clip</code>, <code>Transform</code>,
780 * <code>Paint</code>, and <code>Composite</code>.
781 * @param s the <code>Shape</code> to be filled
782 * @see #setPaint
783 * @see java.awt.Graphics#setColor
784 * @see #transform
785 * @see #setTransform
786 * @see #setComposite
787 * @see #clip
788 * @see #setClip
789 */
790 public abstract void fill(Shape s);
791
792 /**
793 * Checks whether or not the specified <code>Shape</code> intersects
794 * the specified {@link Rectangle}, which is in device
795 * space. If <code>onStroke</code> is false, this method checks
796 * whether or not the interior of the specified <code>Shape</code>
797 * intersects the specified <code>Rectangle</code>. If
798 * <code>onStroke</code> is <code>true</code>, this method checks
799 * whether or not the <code>Stroke</code> of the specified
800 * <code>Shape</code> outline intersects the specified
801 * <code>Rectangle</code>.
802 * The rendering attributes taken into account include the
803 * <code>Clip</code>, <code>Transform</code>, and <code>Stroke</code>
804 * attributes.
805 * @param rect the area in device space to check for a hit
806 * @param s the <code>Shape</code> to check for a hit
807 * @param onStroke flag used to choose between testing the
808 * stroked or the filled shape. If the flag is <code>true</code>, the
809 * <code>Stroke</code> oultine is tested. If the flag is
810 * <code>false</code>, the filled <code>Shape</code> is tested.
811 * @return <code>true</code> if there is a hit; <code>false</code>
812 * otherwise.
813 * @see #setStroke
814 * @see #fill
815 * @see #draw
816 * @see #transform
817 * @see #setTransform
818 * @see #clip
819 * @see #setClip
820 */
821 public abstract boolean hit(Rectangle rect,
822 Shape s,
823 boolean onStroke);
824
825 /**
826 * Returns the device configuration associated with this
827 * <code>Graphics2D</code>.
828 * @return the device configuration of this <code>Graphics2D</code>.
829 */
830 public abstract GraphicsConfiguration getDeviceConfiguration();
831
832 /**
833 * Sets the <code>Composite</code> for the <code>Graphics2D</code> context.
834 * The <code>Composite</code> is used in all drawing methods such as
835 * <code>drawImage</code>, <code>drawString</code>, <code>draw</code>,
836 * and <code>fill</code>. It specifies how new pixels are to be combined
837 * with the existing pixels on the graphics device during the rendering
838 * process.
839 * <p>If this <code>Graphics2D</code> context is drawing to a
840 * <code>Component</code> on the display screen and the
841 * <code>Composite</code> is a custom object rather than an
842 * instance of the <code>AlphaComposite</code> class, and if
843 * there is a security manager, its <code>checkPermission</code>
844 * method is called with an <code>AWTPermission("readDisplayPixels")</code>
845 * permission.
846 * @throws SecurityException
847 * if a custom <code>Composite</code> object is being
848 * used to render to the screen and a security manager
849 * is set and its <code>checkPermission</code> method
850 * does not allow the operation.
851 * @param comp the <code>Composite</code> object to be used for rendering
852 * @see java.awt.Graphics#setXORMode
853 * @see java.awt.Graphics#setPaintMode
854 * @see #getComposite
855 * @see AlphaComposite
856 * @see SecurityManager#checkPermission
857 * @see java.awt.AWTPermission
858 */
859 public abstract void setComposite(Composite comp);
860
861 /**
862 * Sets the <code>Paint</code> attribute for the
863 * <code>Graphics2D</code> context. Calling this method
864 * with a <code>null</code> <code>Paint</code> object does
865 * not have any effect on the current <code>Paint</code> attribute
866 * of this <code>Graphics2D</code>.
867 * @param paint the <code>Paint</code> object to be used to generate
868 * color during the rendering process, or <code>null</code>
869 * @see java.awt.Graphics#setColor
870 * @see #getPaint
871 * @see GradientPaint
872 * @see TexturePaint
873 */
874 public abstract void setPaint( Paint paint );
875
876 /**
877 * Sets the <code>Stroke</code> for the <code>Graphics2D</code> context.
878 * @param s the <code>Stroke</code> object to be used to stroke a
879 * <code>Shape</code> during the rendering process
880 * @see BasicStroke
881 * @see #getStroke
882 */
883 public abstract void setStroke(Stroke s);
884
885 /**
886 * Sets the value of a single preference for the rendering algorithms.
887 * Hint categories include controls for rendering quality and overall
888 * time/quality trade-off in the rendering process. Refer to the
889 * <code>RenderingHints</code> class for definitions of some common
890 * keys and values.
891 * @param hintKey the key of the hint to be set.
892 * @param hintValue the value indicating preferences for the specified
893 * hint category.
894 * @see #getRenderingHint(RenderingHints.Key)
895 * @see RenderingHints
896 */
897 public abstract void setRenderingHint(Key hintKey, Object hintValue);
898
899 /**
900 * Returns the value of a single preference for the rendering algorithms.
901 * Hint categories include controls for rendering quality and overall
902 * time/quality trade-off in the rendering process. Refer to the
903 * <code>RenderingHints</code> class for definitions of some common
904 * keys and values.
905 * @param hintKey the key corresponding to the hint to get.
906 * @return an object representing the value for the specified hint key.
907 * Some of the keys and their associated values are defined in the
908 * <code>RenderingHints</code> class.
909 * @see RenderingHints
910 * @see #setRenderingHint(RenderingHints.Key, Object)
911 */
912 public abstract Object getRenderingHint(Key hintKey);
913
914 /**
915 * Replaces the values of all preferences for the rendering
916 * algorithms with the specified <code>hints</code>.
917 * The existing values for all rendering hints are discarded and
918 * the new set of known hints and values are initialized from the
919 * specified {@link Map} object.
920 * Hint categories include controls for rendering quality and
921 * overall time/quality trade-off in the rendering process.
922 * Refer to the <code>RenderingHints</code> class for definitions of
923 * some common keys and values.
924 * @param hints the rendering hints to be set
925 * @see #getRenderingHints
926 * @see RenderingHints
927 */
928 public abstract void setRenderingHints(Map<?,?> hints);
929
930 /**
931 * Sets the values of an arbitrary number of preferences for the
932 * rendering algorithms.
933 * Only values for the rendering hints that are present in the
934 * specified <code>Map</code> object are modified.
935 * All other preferences not present in the specified
936 * object are left unmodified.
937 * Hint categories include controls for rendering quality and
938 * overall time/quality trade-off in the rendering process.
939 * Refer to the <code>RenderingHints</code> class for definitions of
940 * some common keys and values.
941 * @param hints the rendering hints to be set
942 * @see RenderingHints
943 */
944 public abstract void addRenderingHints(Map<?,?> hints);
945
946 /**
947 * Gets the preferences for the rendering algorithms. Hint categories
948 * include controls for rendering quality and overall time/quality
949 * trade-off in the rendering process.
950 * Returns all of the hint key/value pairs that were ever specified in
951 * one operation. Refer to the
952 * <code>RenderingHints</code> class for definitions of some common
953 * keys and values.
954 * @return a reference to an instance of <code>RenderingHints</code>
955 * that contains the current preferences.
956 * @see RenderingHints
957 * @see #setRenderingHints(Map)
958 */
959 public abstract RenderingHints getRenderingHints();
960
961 /**
962 * Translates the origin of the <code>Graphics2D</code> context to the
963 * point (<i>x</i>,&nbsp;<i>y</i>) in the current coordinate system.
964 * Modifies the <code>Graphics2D</code> context so that its new origin
965 * corresponds to the point (<i>x</i>,&nbsp;<i>y</i>) in the
966 * <code>Graphics2D</code> context's former coordinate system. All
967 * coordinates used in subsequent rendering operations on this graphics
968 * context are relative to this new origin.
969 * @param x the specified x coordinate
970 * @param y the specified y coordinate
971 * @since JDK1.0
972 */
973 public abstract void translate(int x, int y);
974
975 /**
976 * Concatenates the current
977 * <code>Graphics2D</code> <code>Transform</code>
978 * with a translation transform.
979 * Subsequent rendering is translated by the specified
980 * distance relative to the previous position.
981 * This is equivalent to calling transform(T), where T is an
982 * <code>AffineTransform</code> represented by the following matrix:
983 * <pre>
984 * [ 1 0 tx ]
985 * [ 0 1 ty ]
986 * [ 0 0 1 ]
987 * </pre>
988 * @param tx the distance to translate along the x-axis
989 * @param ty the distance to translate along the y-axis
990 */
991 public abstract void translate(double tx, double ty);
992
993 /**
994 * Concatenates the current <code>Graphics2D</code>
995 * <code>Transform</code> with a rotation transform.
996 * Subsequent rendering is rotated by the specified radians relative
997 * to the previous origin.
998 * This is equivalent to calling <code>transform(R)</code>, where R is an
999 * <code>AffineTransform</code> represented by the following matrix:
1000 * <pre>
1001 * [ cos(theta) -sin(theta) 0 ]
1002 * [ sin(theta) cos(theta) 0 ]
1003 * [ 0 0 1 ]
1004 * </pre>
1005 * Rotating with a positive angle theta rotates points on the positive
1006 * x axis toward the positive y axis.
1007 * @param theta the angle of rotation in radians
1008 */
1009 public abstract void rotate(double theta);
1010
1011 /**
1012 * Concatenates the current <code>Graphics2D</code>
1013 * <code>Transform</code> with a translated rotation
1014 * transform. Subsequent rendering is transformed by a transform
1015 * which is constructed by translating to the specified location,
1016 * rotating by the specified radians, and translating back by the same
1017 * amount as the original translation. This is equivalent to the
1018 * following sequence of calls:
1019 * <pre>
1020 * translate(x, y);
1021 * rotate(theta);
1022 * translate(-x, -y);
1023 * </pre>
1024 * Rotating with a positive angle theta rotates points on the positive
1025 * x axis toward the positive y axis.
1026 * @param theta the angle of rotation in radians
1027 * @param x the x coordinate of the origin of the rotation
1028 * @param y the y coordinate of the origin of the rotation
1029 */
1030 public abstract void rotate(double theta, double x, double y);
1031
1032 /**
1033 * Concatenates the current <code>Graphics2D</code>
1034 * <code>Transform</code> with a scaling transformation
1035 * Subsequent rendering is resized according to the specified scaling
1036 * factors relative to the previous scaling.
1037 * This is equivalent to calling <code>transform(S)</code>, where S is an
1038 * <code>AffineTransform</code> represented by the following matrix:
1039 * <pre>
1040 * [ sx 0 0 ]
1041 * [ 0 sy 0 ]
1042 * [ 0 0 1 ]
1043 * </pre>
1044 * @param sx the amount by which X coordinates in subsequent
1045 * rendering operations are multiplied relative to previous
1046 * rendering operations.
1047 * @param sy the amount by which Y coordinates in subsequent
1048 * rendering operations are multiplied relative to previous
1049 * rendering operations.
1050 */
1051 public abstract void scale(double sx, double sy);
1052
1053 /**
1054 * Concatenates the current <code>Graphics2D</code>
1055 * <code>Transform</code> with a shearing transform.
1056 * Subsequent renderings are sheared by the specified
1057 * multiplier relative to the previous position.
1058 * This is equivalent to calling <code>transform(SH)</code>, where SH
1059 * is an <code>AffineTransform</code> represented by the following
1060 * matrix:
1061 * <pre>
1062 * [ 1 shx 0 ]
1063 * [ shy 1 0 ]
1064 * [ 0 0 1 ]
1065 * </pre>
1066 * @param shx the multiplier by which coordinates are shifted in
1067 * the positive X axis direction as a function of their Y coordinate
1068 * @param shy the multiplier by which coordinates are shifted in
1069 * the positive Y axis direction as a function of their X coordinate
1070 */
1071 public abstract void shear(double shx, double shy);
1072
1073 /**
1074 * Composes an <code>AffineTransform</code> object with the
1075 * <code>Transform</code> in this <code>Graphics2D</code> according
1076 * to the rule last-specified-first-applied. If the current
1077 * <code>Transform</code> is Cx, the result of composition
1078 * with Tx is a new <code>Transform</code> Cx'. Cx' becomes the
1079 * current <code>Transform</code> for this <code>Graphics2D</code>.
1080 * Transforming a point p by the updated <code>Transform</code> Cx' is
1081 * equivalent to first transforming p by Tx and then transforming
1082 * the result by the original <code>Transform</code> Cx. In other
1083 * words, Cx'(p) = Cx(Tx(p)). A copy of the Tx is made, if necessary,
1084 * so further modifications to Tx do not affect rendering.
1085 * @param Tx the <code>AffineTransform</code> object to be composed with
1086 * the current <code>Transform</code>
1087 * @see #setTransform
1088 * @see AffineTransform
1089 */
1090 public abstract void transform(AffineTransform Tx);
1091
1092 /**
1093 * Overwrites the Transform in the <code>Graphics2D</code> context.
1094 * WARNING: This method should <b>never</b> be used to apply a new
1095 * coordinate transform on top of an existing transform because the
1096 * <code>Graphics2D</code> might already have a transform that is
1097 * needed for other purposes, such as rendering Swing
1098 * components or applying a scaling transformation to adjust for the
1099 * resolution of a printer.
1100 * <p>To add a coordinate transform, use the
1101 * <code>transform</code>, <code>rotate</code>, <code>scale</code>,
1102 * or <code>shear</code> methods. The <code>setTransform</code>
1103 * method is intended only for restoring the original
1104 * <code>Graphics2D</code> transform after rendering, as shown in this
1105 * example:
1106 * <pre><blockquote>
1107 * // Get the current transform
1108 * AffineTransform saveAT = g2.getTransform();
1109 * // Perform transformation
1110 * g2d.transform(...);
1111 * // Render
1112 * g2d.draw(...);
1113 * // Restore original transform
1114 * g2d.setTransform(saveAT);
1115 * </blockquote></pre>
1116 *
1117 * @param Tx the <code>AffineTransform</code> that was retrieved
1118 * from the <code>getTransform</code> method
1119 * @see #transform
1120 * @see #getTransform
1121 * @see AffineTransform
1122 */
1123 public abstract void setTransform(AffineTransform Tx);
1124
1125 /**
1126 * Returns a copy of the current <code>Transform</code> in the
1127 * <code>Graphics2D</code> context.
1128 * @return the current <code>AffineTransform</code> in the
1129 * <code>Graphics2D</code> context.
1130 * @see #transform
1131 * @see #setTransform
1132 */
1133 public abstract AffineTransform getTransform();
1134
1135 /**
1136 * Returns the current <code>Paint</code> of the
1137 * <code>Graphics2D</code> context.
1138 * @return the current <code>Graphics2D</code> <code>Paint</code>,
1139 * which defines a color or pattern.
1140 * @see #setPaint
1141 * @see java.awt.Graphics#setColor
1142 */
1143 public abstract Paint getPaint();
1144
1145 /**
1146 * Returns the current <code>Composite</code> in the
1147 * <code>Graphics2D</code> context.
1148 * @return the current <code>Graphics2D</code> <code>Composite</code>,
1149 * which defines a compositing style.
1150 * @see #setComposite
1151 */
1152 public abstract Composite getComposite();
1153
1154 /**
1155 * Sets the background color for the <code>Graphics2D</code> context.
1156 * The background color is used for clearing a region.
1157 * When a <code>Graphics2D</code> is constructed for a
1158 * <code>Component</code>, the background color is
1159 * inherited from the <code>Component</code>. Setting the background color
1160 * in the <code>Graphics2D</code> context only affects the subsequent
1161 * <code>clearRect</code> calls and not the background color of the
1162 * <code>Component</code>. To change the background
1163 * of the <code>Component</code>, use appropriate methods of
1164 * the <code>Component</code>.
1165 * @param color the background color that isused in
1166 * subsequent calls to <code>clearRect</code>
1167 * @see #getBackground
1168 * @see java.awt.Graphics#clearRect
1169 */
1170 public abstract void setBackground(Color color);
1171
1172 /**
1173 * Returns the background color used for clearing a region.
1174 * @return the current <code>Graphics2D</code> <code>Color</code>,
1175 * which defines the background color.
1176 * @see #setBackground
1177 */
1178 public abstract Color getBackground();
1179
1180 /**
1181 * Returns the current <code>Stroke</code> in the
1182 * <code>Graphics2D</code> context.
1183 * @return the current <code>Graphics2D</code> <code>Stroke</code>,
1184 * which defines the line style.
1185 * @see #setStroke
1186 */
1187 public abstract Stroke getStroke();
1188
1189 /**
1190 * Intersects the current <code>Clip</code> with the interior of the
1191 * specified <code>Shape</code> and sets the <code>Clip</code> to the
1192 * resulting intersection. The specified <code>Shape</code> is
1193 * transformed with the current <code>Graphics2D</code>
1194 * <code>Transform</code> before being intersected with the current
1195 * <code>Clip</code>. This method is used to make the current
1196 * <code>Clip</code> smaller.
1197 * To make the <code>Clip</code> larger, use <code>setClip</code>.
1198 * The <i>user clip</i> modified by this method is independent of the
1199 * clipping associated with device bounds and visibility. If no clip has
1200 * previously been set, or if the clip has been cleared using
1201 * {@link Graphics#setClip(Shape) setClip} with a <code>null</code>
1202 * argument, the specified <code>Shape</code> becomes the new
1203 * user clip.
1204 * @param s the <code>Shape</code> to be intersected with the current
1205 * <code>Clip</code>. If <code>s</code> is <code>null</code>,
1206 * this method clears the current <code>Clip</code>.
1207 */
1208 public abstract void clip(Shape s);
1209
1210 /**
1211 * Get the rendering context of the <code>Font</code> within this
1212 * <code>Graphics2D</code> context.
1213 * The {@link FontRenderContext}
1214 * encapsulates application hints such as anti-aliasing and
1215 * fractional metrics, as well as target device specific information
1216 * such as dots-per-inch. This information should be provided by the
1217 * application when using objects that perform typographical
1218 * formatting, such as <code>Font</code> and
1219 * <code>TextLayout</code>. This information should also be provided
1220 * by applications that perform their own layout and need accurate
1221 * measurements of various characteristics of glyphs such as advance
1222 * and line height when various rendering hints have been applied to
1223 * the text rendering.
1224 *
1225 * @return a reference to an instance of FontRenderContext.
1226 * @see java.awt.font.FontRenderContext
1227 * @see java.awt.Font#createGlyphVector
1228 * @see java.awt.font.TextLayout
1229 * @since 1.2
1230 */
1231
1232 public abstract FontRenderContext getFontRenderContext();
1233
1234}