blob: fd1fd0c65cbd6017e9033bce697b801ceee83af2 [file] [log] [blame]
J. Duke319a3b92007-12-01 00:00:00 +00001/*
2 * Copyright 2006 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Sun designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Sun in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
22 * CA 95054 USA or visit www.sun.com if you need additional information or
23 * have any questions.
24 */
25package javax.swing;
26
27import java.awt.Component;
28import java.awt.Container;
29import java.awt.Dimension;
30import java.awt.Insets;
31import java.awt.LayoutManager2;
32import java.util.*;
33import static java.awt.Component.BaselineResizeBehavior;
34import static javax.swing.LayoutStyle.ComponentPlacement;
35import static javax.swing.SwingConstants.HORIZONTAL;
36import static javax.swing.SwingConstants.VERTICAL;
37
38/**
39 * {@code GroupLayout} is a {@code LayoutManager} that hierarchically
40 * groups components in order to position them in a {@code Container}.
41 * {@code GroupLayout} is intended for use by builders, but may be
42 * hand-coded as well.
43 * Grouping is done by instances of the {@link Group Group} class. {@code
44 * GroupLayout} supports two types of groups. A sequential group
45 * positions its child elements sequentially, one after another. A
46 * parallel group aligns its child elements in one of four ways.
47 * <p>
48 * Each group may contain any number of elements, where an element is
49 * a {@code Group}, {@code Component}, or gap. A gap can be thought
50 * of as an invisible component with a minimum, preferred and maximum
51 * size. In addition {@code GroupLayout} supports a preferred gap,
52 * whose value comes from {@code LayoutStyle}.
53 * <p>
54 * Elements are similar to a spring. Each element has a range as
55 * specified by a minimum, preferred and maximum. Gaps have either a
56 * developer-specified range, or a range determined by {@code
57 * LayoutStyle}. The range for {@code Component}s is determined from
58 * the {@code Component}'s {@code getMinimumSize}, {@code
59 * getPreferredSize} and {@code getMaximumSize} methods. In addition,
60 * when adding {@code Component}s you may specify a particular range
61 * to use instead of that from the component. The range for a {@code
62 * Group} is determined by the type of group. A {@code ParallelGroup}'s
63 * range is the maximum of the ranges of its elements. A {@code
64 * SequentialGroup}'s range is the sum of the ranges of its elements.
65 * <p>
66 * {@code GroupLayout} treats each axis independently. That is, there
67 * is a group representing the horizontal axis, and a group
68 * representing the vertical axis. The horizontal group is
69 * responsible for determining the minimum, preferred and maximum size
70 * along the horizontal axis as well as setting the x and width of the
71 * components contained in it. The vertical group is responsible for
72 * determining the minimum, preferred and maximum size along the
73 * vertical axis as well as setting the y and height of the
74 * components contained in it. Each {@code Component} must exist in both
75 * a horizontal and vertical group, otherwise an {@code IllegalStateException}
76 * is thrown during layout, or when the minimum, preferred or
77 * maximum size is requested.
78 * <p>
79 * The following diagram shows a sequential group along the horizontal
80 * axis. The sequential group contains three components. A parallel group
81 * was used along the vertical axis.
82 * <p align="center">
83 * <img src="doc-files/groupLayout.1.gif">
84 * <p>
85 * To reinforce that each axis is treated independently the diagram shows
86 * the range of each group and element along each axis. The
87 * range of each component has been projected onto the axes,
88 * and the groups are rendered in blue (horizontal) and red (vertical).
89 * For readability there is a gap between each of the elements in the
90 * sequential group.
91 * <p>
92 * The sequential group along the horizontal axis is rendered as a solid
93 * blue line. Notice the sequential group is the sum of the children elements
94 * it contains.
95 * <p>
96 * Along the vertical axis the parallel group is the maximum of the height
97 * of each of the components. As all three components have the same height,
98 * the parallel group has the same height.
99 * <p>
100 * The following diagram shows the same three components, but with the
101 * parallel group along the horizontal axis and the sequential group along
102 * the vertical axis.
103 * <p>
104 * <p align="center">
105 * <img src="doc-files/groupLayout.2.gif">
106 * <p>
107 * As {@code c1} is the largest of the three components, the parallel
108 * group is sized to {@code c1}. As {@code c2} and {@code c3} are smaller
109 * than {@code c1} they are aligned based on the alignment specified
110 * for the component (if specified) or the default alignment of the
111 * parallel group. In the diagram {@code c2} and {@code c3} were created
112 * with an alignment of {@code LEADING}. If the component orientation were
113 * right-to-left then {@code c2} and {@code c3} would be positioned on
114 * the opposite side.
115 * <p>
116 * The following diagram shows a sequential group along both the horizontal
117 * and vertical axis.
118 * <p align="center">
119 * <img src="doc-files/groupLayout.3.gif">
120 * <p>
121 * {@code GroupLayout} provides the ability to insert gaps between
122 * {@code Component}s. The size of the gap is determined by an
123 * instance of {@code LayoutStyle}. This may be turned on using the
124 * {@code setAutoCreateGaps} method. Similarly, you may use
125 * the {@code setAutoCreateContainerGaps} method to insert gaps
126 * between components that touch the edge of the parent container and the
127 * container.
128 * <p>
129 * The following builds a panel consisting of two labels in
130 * one column, followed by two textfields in the next column:
131 * <pre>
132 * JComponent panel = ...;
133 * GroupLayout layout = new GroupLayout(panel);
134 * panel.setLayout(layout);
135 *
136 * // Turn on automatically adding gaps between components
137 * layout.setAutoCreateGaps(true);
138 *
139 * // Turn on automatically creating gaps between components that touch
140 * // the edge of the container and the container.
141 * layout.setAutoCreateContainerGaps(true);
142 *
143 * // Create a sequential group for the horizontal axis.
144 *
145 * GroupLayout.SequentialGroup hGroup = layout.createSequentialGroup();
146 *
147 * // The sequential group in turn contains two parallel groups.
148 * // One parallel group contains the labels, the other the text fields.
149 * // Putting the labels in a parallel group along the horizontal axis
150 * // positions them at the same x location.
151 * //
152 * // Variable indentation is used to reinforce the level of grouping.
153 * hGroup.addGroup(layout.createParallelGroup().
154 * addComponent(label1).addComponent(label2));
155 * hGroup.addGroup(layout.createParallelGroup().
156 * addComponent(tf1).addComponent(tf2));
157 * layout.setHorizontalGroup(hGroup);
158 *
159 * // Create a sequential group for the vertical axis.
160 * GroupLayout.SequentialGroup vGroup = layout.createSequentialGroup();
161 *
162 * // The sequential group contains two parallel groups that align
163 * // the contents along the baseline. The first parallel group contains
164 * // the first label and text field, and the second parallel group contains
165 * // the second label and text field. By using a sequential group
166 * // the labels and text fields are positioned vertically after one another.
167 * vGroup.addGroup(layout.createParallelGroup(Alignment.BASELINE).
168 * addComponent(label1).addComponent(tf1));
169 * vGroup.addGroup(layout.createParallelGroup(Alignment.BASELINE).
170 * addComponent(label2).addComponent(tf2));
171 * layout.setVerticalGroup(vGroup);
172 * </pre>
173 * <p>
174 * When run the following is produced.
175 * <p align="center">
176 * <img src="doc-files/groupLayout.example.png">
177 * <p>
178 * This layout consists of the following.
179 * <ul><li>The horizontal axis consists of a sequential group containing two
180 * parallel groups. The first parallel group contains the labels,
181 * and the second parallel group contains the text fields.
182 * <li>The vertical axis consists of a sequential group
183 * containing two parallel groups. The parallel groups are configured
184 * to align their components along the baseline. The first parallel
185 * group contains the first label and first text field, and
186 * the second group consists of the second label and second
187 * text field.
188 * </ul>
189 * There are a couple of things to notice in this code:
190 * <ul>
191 * <li>You need not explicitly add the components to the container; this
192 * is indirectly done by using one of the {@code add} methods of
193 * {@code Group}.
194 * <li>The various {@code add} methods return
195 * the caller. This allows for easy chaining of invocations. For
196 * example, {@code group.addComponent(label1).addComponent(label2);} is
197 * equivalent to
198 * {@code group.addComponent(label1); group.addComponent(label2);}.
199 * <li>There are no public constructors for {@code Group}s; instead
200 * use the create methods of {@code GroupLayout}.
201 * </ul>
202 *
203 * @author Tomas Pavek
204 * @author Jan Stola
205 * @author Scott Violet
206 * @since 1.6
207 */
208public class GroupLayout implements LayoutManager2 {
209 // Used in size calculations
210 private static final int MIN_SIZE = 0;
211
212 private static final int PREF_SIZE = 1;
213
214 private static final int MAX_SIZE = 2;
215
216 // Used by prepare, indicates min, pref or max isn't going to be used.
217 private static final int SPECIFIC_SIZE = 3;
218
219 private static final int UNSET = Integer.MIN_VALUE;
220
221 /**
222 * Indicates the size from the component or gap should be used for a
223 * particular range value.
224 *
225 * @see Group
226 */
227 public static final int DEFAULT_SIZE = -1;
228
229 /**
230 * Indicates the preferred size from the component or gap should
231 * be used for a particular range value.
232 *
233 * @see Group
234 */
235 public static final int PREFERRED_SIZE = -2;
236
237 // Whether or not we automatically try and create the preferred
238 // padding between components.
239 private boolean autocreatePadding;
240
241 // Whether or not we automatically try and create the preferred
242 // padding between components the touch the edge of the container and
243 // the container.
244 private boolean autocreateContainerPadding;
245
246 /**
247 * Group responsible for layout along the horizontal axis. This is NOT
248 * the user specified group, use getHorizontalGroup to dig that out.
249 */
250 private Group horizontalGroup;
251
252 /**
253 * Group responsible for layout along the vertical axis. This is NOT
254 * the user specified group, use getVerticalGroup to dig that out.
255 */
256 private Group verticalGroup;
257
258 // Maps from Component to ComponentInfo. This is used for tracking
259 // information specific to a Component.
260 private Map<Component,ComponentInfo> componentInfos;
261
262 // Container we're doing layout for.
263 private Container host;
264
265 // Used by areParallelSiblings, cached to avoid excessive garbage.
266 private Set<Spring> tmpParallelSet;
267
268 // Indicates Springs have changed in some way since last change.
269 private boolean springsChanged;
270
271 // Indicates invalidateLayout has been invoked.
272 private boolean isValid;
273
274 // Whether or not any preferred padding (or container padding) springs
275 // exist
276 private boolean hasPreferredPaddingSprings;
277
278 /**
279 * The LayoutStyle instance to use, if null the sharedInstance is used.
280 */
281 private LayoutStyle layoutStyle;
282
283 /**
284 * If true, components that are not visible are treated as though they
285 * aren't there.
286 */
287 private boolean honorsVisibility;
288
289
290 /**
291 * Enumeration of the possible ways {@code ParallelGroup} can align
292 * its children.
293 *
294 * @see #createParallelGroup(Alignment)
295 * @since 1.6
296 */
297 public enum Alignment {
298 /**
299 * Indicates the elements should be
300 * aligned to the origin. For the horizontal axis with a left to
301 * right orientation this means aligned to the left edge. For the
302 * vertical axis leading means aligned to the top edge.
303 *
304 * @see #createParallelGroup(Alignment)
305 */
306 LEADING,
307
308 /**
309 * Indicates the elements should be aligned to the end of the
310 * region. For the horizontal axis with a left to right
311 * orientation this means aligned to the right edge. For the
312 * vertical axis trailing means aligned to the bottom edge.
313 *
314 * @see #createParallelGroup(Alignment)
315 */
316 TRAILING,
317
318 /**
319 * Indicates the elements should be centered in
320 * the region.
321 *
322 * @see #createParallelGroup(Alignment)
323 */
324 CENTER,
325
326 /**
327 * Indicates the elements should be aligned along
328 * their baseline.
329 *
330 * @see #createParallelGroup(Alignment)
331 * @see #createBaselineGroup(boolean,boolean)
332 */
333 BASELINE
334 }
335
336
337 private static void checkSize(int min, int pref, int max,
338 boolean isComponentSpring) {
339 checkResizeType(min, isComponentSpring);
340 if (!isComponentSpring && pref < 0) {
341 throw new IllegalArgumentException("Pref must be >= 0");
342 } else if (isComponentSpring) {
343 checkResizeType(pref, true);
344 }
345 checkResizeType(max, isComponentSpring);
346 checkLessThan(min, pref);
347 checkLessThan(pref, max);
348 }
349
350 private static void checkResizeType(int type, boolean isComponentSpring) {
351 if (type < 0 && ((isComponentSpring && type != DEFAULT_SIZE &&
352 type != PREFERRED_SIZE) ||
353 (!isComponentSpring && type != PREFERRED_SIZE))) {
354 throw new IllegalArgumentException("Invalid size");
355 }
356 }
357
358 private static void checkLessThan(int min, int max) {
359 if (min >= 0 && max >= 0 && min > max) {
360 throw new IllegalArgumentException(
361 "Following is not met: min<=pref<=max");
362 }
363 }
364
365 /**
366 * Creates a {@code GroupLayout} for the specified {@code Container}.
367 *
368 * @param host the {@code Container} the {@code GroupLayout} is
369 * the {@code LayoutManager} for
370 * @throws IllegalArgumentException if host is {@code null}
371 */
372 public GroupLayout(Container host) {
373 if (host == null) {
374 throw new IllegalArgumentException("Container must be non-null");
375 }
376 honorsVisibility = true;
377 this.host = host;
378 setHorizontalGroup(createParallelGroup(Alignment.LEADING, true));
379 setVerticalGroup(createParallelGroup(Alignment.LEADING, true));
380 componentInfos = new HashMap<Component,ComponentInfo>();
381 tmpParallelSet = new HashSet<Spring>();
382 }
383
384 /**
385 * Sets whether component visiblity is considered when sizing and
386 * positioning components. A value of {@code true} indicates that
387 * non-visible components should not be treated as part of the
388 * layout. A value of {@code false} indicates that components should be
389 * positioned and sized regardless of visibility.
390 * <p>
391 * A value of {@code false} is useful when the visibility of components
392 * is dynamically adjusted and you don't want surrounding components and
393 * the sizing to change.
394 * <p>
395 * The specified value is used for components that do not have an
396 * explicit visibility specified.
397 * <p>
398 * The default is {@code true}.
399 *
400 * @param honorsVisibility whether component visiblity is considered when
401 * sizing and positioning components
402 * @see #setHonorsVisibility(Component,Boolean)
403 */
404 public void setHonorsVisibility(boolean honorsVisibility) {
405 if (this.honorsVisibility != honorsVisibility) {
406 this.honorsVisibility = honorsVisibility;
407 springsChanged = true;
408 isValid = false;
409 invalidateHost();
410 }
411 }
412
413 /**
414 * Returns whether component visiblity is considered when sizing and
415 * positioning components.
416 *
417 * @return whether component visiblity is considered when sizing and
418 * positioning components
419 */
420 public boolean getHonorsVisibility() {
421 return honorsVisibility;
422 }
423
424 /**
425 * Sets whether the component's visiblity is considered for
426 * sizing and positioning. A value of {@code Boolean.TRUE}
427 * indicates that if {@code component} is not visible it should
428 * not be treated as part of the layout. A value of {@code false}
429 * indicates that {@code component} is positioned and sized
430 * regardless of it's visibility. A value of {@code null}
431 * indicates the value specified by the single argument method {@code
432 * setHonorsVisibility} should be used.
433 * <p>
434 * If {@code component} is not a child of the {@code Container} this
435 * {@code GroupLayout} is managine, it will be added to the
436 * {@code Container}.
437 *
438 * @param component the component
439 * @param honorsVisibility whether {@code component}'s visiblity should be
440 * considered for sizing and positioning
441 * @throws IllegalArgumentException if {@code component} is {@code null}
442 * @see #setHonorsVisibility(Component,Boolean)
443 */
444 public void setHonorsVisibility(Component component,
445 Boolean honorsVisibility) {
446 if (component == null) {
447 throw new IllegalArgumentException("Component must be non-null");
448 }
449 getComponentInfo(component).setHonorsVisibility(honorsVisibility);
450 springsChanged = true;
451 isValid = false;
452 invalidateHost();
453 }
454
455 /**
456 * Sets whether a gap between components should automatically be
457 * created. For example, if this is {@code true} and you add two
458 * components to a {@code SequentialGroup} a gap between the
459 * two components is automatically be created. The default is
460 * {@code false}.
461 *
462 * @param autoCreatePadding whether a gap between components is
463 * automatically created
464 */
465 public void setAutoCreateGaps(boolean autoCreatePadding) {
466 if (this.autocreatePadding != autoCreatePadding) {
467 this.autocreatePadding = autoCreatePadding;
468 invalidateHost();
469 }
470 }
471
472 /**
473 * Returns {@code true} if gaps between components are automatically
474 * created.
475 *
476 * @return {@code true} if gaps between components are automatically
477 * created
478 */
479 public boolean getAutoCreateGaps() {
480 return autocreatePadding;
481 }
482
483 /**
484 * Sets whether a gap between the container and components that
485 * touch the border of the container should automatically be
486 * created. The default is {@code false}.
487 *
488 * @param autoCreateContainerPadding whether a gap between the container and
489 * components that touch the border of the container should
490 * automatically be created
491 */
492 public void setAutoCreateContainerGaps(boolean autoCreateContainerPadding){
493 if (this.autocreateContainerPadding != autoCreateContainerPadding) {
494 this.autocreateContainerPadding = autoCreateContainerPadding;
495 horizontalGroup = createTopLevelGroup(getHorizontalGroup());
496 verticalGroup = createTopLevelGroup(getVerticalGroup());
497 invalidateHost();
498 }
499 }
500
501 /**
502 * Returns {@code true} if gaps between the container and components that
503 * border the container are automatically created.
504 *
505 * @return {@code true} if gaps between the container and components that
506 * border the container are automatically created
507 */
508 public boolean getAutoCreateContainerGaps() {
509 return autocreateContainerPadding;
510 }
511
512 /**
513 * Sets the {@code Group} that positions and sizes
514 * components along the horizontal axis.
515 *
516 * @param group the {@code Group} that positions and sizes
517 * components along the horizontal axis
518 * @throws IllegalArgumentException if group is {@code null}
519 */
520 public void setHorizontalGroup(Group group) {
521 if (group == null) {
522 throw new IllegalArgumentException("Group must be non-null");
523 }
524 horizontalGroup = createTopLevelGroup(group);
525 invalidateHost();
526 }
527
528 /**
529 * Returns the {@code Group} that positions and sizes components
530 * along the horizontal axis.
531 *
532 * @return the {@code Group} responsible for positioning and
533 * sizing component along the horizontal axis
534 */
535 private Group getHorizontalGroup() {
536 int index = 0;
537 if (horizontalGroup.springs.size() > 1) {
538 index = 1;
539 }
540 return (Group)horizontalGroup.springs.get(index);
541 }
542
543 /**
544 * Sets the {@code Group} that positions and sizes
545 * components along the vertical axis.
546 *
547 * @param group the {@code Group} that positions and sizes
548 * components along the vertical axis
549 * @throws IllegalArgumentException if group is {@code null}
550 */
551 public void setVerticalGroup(Group group) {
552 if (group == null) {
553 throw new IllegalArgumentException("Group must be non-null");
554 }
555 verticalGroup = createTopLevelGroup(group);
556 invalidateHost();
557 }
558
559 /**
560 * Returns the {@code Group} that positions and sizes components
561 * along the vertical axis.
562 *
563 * @return the {@code Group} responsible for positioning and
564 * sizing component along the vertical axis
565 */
566 private Group getVerticalGroup() {
567 int index = 0;
568 if (verticalGroup.springs.size() > 1) {
569 index = 1;
570 }
571 return (Group)verticalGroup.springs.get(index);
572 }
573
574 /**
575 * Wraps the user specified group in a sequential group. If
576 * container gaps should be generated the necessary springs are
577 * added.
578 */
579 private Group createTopLevelGroup(Group specifiedGroup) {
580 SequentialGroup group = createSequentialGroup();
581 if (getAutoCreateContainerGaps()) {
582 group.addSpring(new ContainerAutoPreferredGapSpring());
583 group.addGroup(specifiedGroup);
584 group.addSpring(new ContainerAutoPreferredGapSpring());
585 } else {
586 group.addGroup(specifiedGroup);
587 }
588 return group;
589 }
590
591 /**
592 * Creates and returns a {@code SequentialGroup}.
593 *
594 * @return a new {@code SequentialGroup}
595 */
596 public SequentialGroup createSequentialGroup() {
597 return new SequentialGroup();
598 }
599
600 /**
601 * Creates and returns a {@code ParallelGroup} with an alignment of
602 * {@code Alignment.LEADING}. This is a cover method for the more
603 * general {@code createParallelGroup(Alignment)} method.
604 *
605 * @return a new {@code ParallelGroup}
606 * @see #createParallelGroup(Alignment)
607 */
608 public ParallelGroup createParallelGroup() {
609 return createParallelGroup(Alignment.LEADING);
610 }
611
612 /**
613 * Creates and returns a {@code ParallelGroup} with the specified
614 * alignment. This is a cover method for the more general {@code
615 * createParallelGroup(Alignment,boolean)} method with {@code true}
616 * supplied for the second argument.
617 *
618 * @param alignment the alignment for the elements of the group
619 * @throws IllegalArgumentException if {@code alignment} is {@code null}
620 * @return a new {@code ParallelGroup}
621 * @see #createBaselineGroup
622 * @see ParallelGroup
623 */
624 public ParallelGroup createParallelGroup(Alignment alignment) {
625 return createParallelGroup(alignment, true);
626 }
627
628 /**
629 * Creates and returns a {@code ParallelGroup} with the specified
630 * alignment and resize behavior. The {@code
631 * alignment} argument specifies how children elements are
632 * positioned that do not fill the group. For example, if a {@code
633 * ParallelGroup} with an alignment of {@code TRAILING} is given
634 * 100 and a child only needs 50, the child is
635 * positioned at the position 50 (with a component orientation of
636 * left-to-right).
637 * <p>
638 * Baseline alignment is only useful when used along the vertical
639 * axis. A {@code ParallelGroup} created with a baseline alignment
640 * along the horizontal axis is treated as {@code LEADING}.
641 * <p>
642 * Refer to {@link GroupLayout.ParallelGroup ParallelGroup} for details on
643 * the behavior of baseline groups.
644 *
645 * @param alignment the alignment for the elements of the group
646 * @param resizable {@code true} if the group is resizable; if the group
647 * is not resizable the preferred size is used for the
648 * minimum and maximum size of the group
649 * @throws IllegalArgumentException if {@code alignment} is {@code null}
650 * @return a new {@code ParallelGroup}
651 * @see #createBaselineGroup
652 * @see GroupLayout.ParallelGroup
653 */
654 public ParallelGroup createParallelGroup(Alignment alignment,
655 boolean resizable){
656 if (alignment == Alignment.BASELINE) {
657 return new BaselineGroup(resizable);
658 }
659 return new ParallelGroup(alignment, resizable);
660 }
661
662 /**
663 * Creates and returns a {@code ParallelGroup} that aligns it's
664 * elements along the baseline.
665 *
666 * @param resizable whether the group is resizable
667 * @param anchorBaselineToTop whether the baseline is anchored to
668 * the top or bottom of the group
669 * @see #createBaselineGroup
670 * @see ParallelGroup
671 */
672 public ParallelGroup createBaselineGroup(boolean resizable,
673 boolean anchorBaselineToTop) {
674 return new BaselineGroup(resizable, anchorBaselineToTop);
675 }
676
677 /**
678 * Forces the specified components to have the same size
679 * regardless of their preferred, minimum or maximum sizes. Components that
680 * are linked are given the maximum of the preferred size of each of
681 * the linked components. For example, if you link two components with
682 * a preferred width of 10 and 20, both components are given a width of 20.
683 * <p>
684 * This can be used multiple times to force any number of
685 * components to share the same size.
686 * <p>
687 * Linked Components are not be resizable.
688 *
689 * @param components the {@code Component}s that are to have the same size
690 * @throws IllegalArgumentException if {@code components} is
691 * {@code null}, or contains {@code null}
692 * @see #linkSize(int,Component[])
693 */
694 public void linkSize(Component... components) {
695 linkSize(SwingConstants.HORIZONTAL, components);
696 linkSize(SwingConstants.VERTICAL, components);
697 }
698
699 /**
700 * Forces the specified components to have the same size along the
701 * specified axis regardless of their preferred, minimum or
702 * maximum sizes. Components that are linked are given the maximum
703 * of the preferred size of each of the linked components. For
704 * example, if you link two components along the horizontal axis
705 * and the preferred width is 10 and 20, both components are given
706 * a width of 20.
707 * <p>
708 * This can be used multiple times to force any number of
709 * components to share the same size.
710 * <p>
711 * Linked {@code Component}s are not be resizable.
712 *
713 * @param components the {@code Component}s that are to have the same size
714 * @param axis the axis to link the size along; one of
715 * {@code SwingConstants.HORIZONTAL} or
716 * {@code SwingConstans.VERTICAL}
717 * @throws IllegalArgumentException if {@code components} is
718 * {@code null}, or contains {@code null}; or {@code axis}
719 * is not {@code SwingConstants.HORIZONTAL} or
720 * {@code SwingConstants.VERTICAL}
721 */
722 public void linkSize(int axis, Component... components) {
723 if (components == null) {
724 throw new IllegalArgumentException("Components must be non-null");
725 }
726 for (int counter = components.length - 1; counter >= 0; counter--) {
727 Component c = components[counter];
728 if (components[counter] == null) {
729 throw new IllegalArgumentException(
730 "Components must be non-null");
731 }
732 // Force the component to be added
733 getComponentInfo(c);
734 }
735 int glAxis;
736 if (axis == SwingConstants.HORIZONTAL) {
737 glAxis = HORIZONTAL;
738 } else if (axis == SwingConstants.VERTICAL) {
739 glAxis = VERTICAL;
740 } else {
741 throw new IllegalArgumentException("Axis must be one of " +
742 "SwingConstants.HORIZONTAL or SwingConstants.VERTICAL");
743 }
744 LinkInfo master = getComponentInfo(
745 components[components.length - 1]).getLinkInfo(glAxis);
746 for (int counter = components.length - 2; counter >= 0; counter--) {
747 master.add(getComponentInfo(components[counter]));
748 }
749 invalidateHost();
750 }
751
752 /**
753 * Replaces an existing component with a new one.
754 *
755 * @param existingComponent the component that should be removed
756 * and replaced with {@code newComponent}
757 * @param newComponent the component to put in
758 * {@code existingComponent}'s place
759 * @throws IllegalArgumentException if either of the components are
760 * {@code null} or {@code existingComponent} is not being managed
761 * by this layout manager
762 */
763 public void replace(Component existingComponent, Component newComponent) {
764 if (existingComponent == null || newComponent == null) {
765 throw new IllegalArgumentException("Components must be non-null");
766 }
767 // Make sure all the components have been registered, otherwise we may
768 // not update the correct Springs.
769 if (springsChanged) {
770 registerComponents(horizontalGroup, HORIZONTAL);
771 registerComponents(verticalGroup, VERTICAL);
772 }
773 ComponentInfo info = componentInfos.remove(existingComponent);
774 if (info == null) {
775 throw new IllegalArgumentException("Component must already exist");
776 }
777 host.remove(existingComponent);
778 if (newComponent.getParent() != host) {
779 host.add(newComponent);
780 }
781 info.setComponent(newComponent);
782 componentInfos.put(newComponent, info);
783 invalidateHost();
784 }
785
786 /**
787 * Sets the {@code LayoutStyle} used to calculate the preferred
788 * gaps between components. A value of {@code null} indicates the
789 * shared instance of {@code LayoutStyle} should be used.
790 *
791 * @param layoutStyle the {@code LayoutStyle} to use
792 * @see LayoutStyle
793 */
794 public void setLayoutStyle(LayoutStyle layoutStyle) {
795 this.layoutStyle = layoutStyle;
796 invalidateHost();
797 }
798
799 /**
800 * Returns the {@code LayoutStyle} used for calculating the preferred
801 * gap between components. This returns the value specified to
802 * {@code setLayoutStyle}, which may be {@code null}.
803 *
804 * @return the {@code LayoutStyle} used for calculating the preferred
805 * gap between components
806 */
807 public LayoutStyle getLayoutStyle() {
808 return layoutStyle;
809 }
810
811 private LayoutStyle getLayoutStyle0() {
812 LayoutStyle layoutStyle = getLayoutStyle();
813 if (layoutStyle == null) {
814 layoutStyle = LayoutStyle.getInstance();
815 }
816 return layoutStyle;
817 }
818
819 private void invalidateHost() {
820 if (host instanceof JComponent) {
821 ((JComponent)host).revalidate();
822 } else {
823 host.invalidate();
824 }
825 host.repaint();
826 }
827
828 //
829 // LayoutManager
830 //
831 /**
832 * Notification that a {@code Component} has been added to
833 * the parent container. You should not invoke this method
834 * directly, instead you should use one of the {@code Group}
835 * methods to add a {@code Component}.
836 *
837 * @param name the string to be associated with the component
838 * @param component the {@code Component} to be added
839 */
840 public void addLayoutComponent(String name, Component component) {
841 }
842
843 /**
844 * Notification that a {@code Component} has been removed from
845 * the parent container. You should not invoke this method
846 * directly, instead invoke {@code remove} on the parent
847 * {@code Container}.
848 *
849 * @param component the component to be removed
850 * @see java.awt.Component#remove
851 */
852 public void removeLayoutComponent(Component component) {
853 ComponentInfo info = componentInfos.remove(component);
854 if (info != null) {
855 info.dispose();
856 springsChanged = true;
857 isValid = false;
858 }
859 }
860
861 /**
862 * Returns the preferred size for the specified container.
863 *
864 * @param parent the container to return the preferred size for
865 * @return the preferred size for {@code parent}
866 * @throws IllegalArgumentException if {@code parent} is not
867 * the same {@code Container} this was created with
868 * @throws IllegalStateException if any of the components added to
869 * this layout are not in both a horizontal and vertical group
870 * @see java.awt.Container#getPreferredSize
871 */
872 public Dimension preferredLayoutSize(Container parent) {
873 checkParent(parent);
874 prepare(PREF_SIZE);
875 return adjustSize(horizontalGroup.getPreferredSize(HORIZONTAL),
876 verticalGroup.getPreferredSize(VERTICAL));
877 }
878
879 /**
880 * Returns the minimum size for the specified container.
881 *
882 * @param parent the container to return the size for
883 * @return the minimum size for {@code parent}
884 * @throws IllegalArgumentException if {@code parent} is not
885 * the same {@code Container} that this was created with
886 * @throws IllegalStateException if any of the components added to
887 * this layout are not in both a horizontal and vertical group
888 * @see java.awt.Container#getMinimumSize
889 */
890 public Dimension minimumLayoutSize(Container parent) {
891 checkParent(parent);
892 prepare(MIN_SIZE);
893 return adjustSize(horizontalGroup.getMinimumSize(HORIZONTAL),
894 verticalGroup.getMinimumSize(VERTICAL));
895 }
896
897 /**
898 * Lays out the specified container.
899 *
900 * @param parent the container to be laid out
901 * @throws IllegalStateException if any of the components added to
902 * this layout are not in both a horizontal and vertical group
903 */
904 public void layoutContainer(Container parent) {
905 // Step 1: Prepare for layout.
906 prepare(SPECIFIC_SIZE);
907 Insets insets = parent.getInsets();
908 int width = parent.getWidth() - insets.left - insets.right;
909 int height = parent.getHeight() - insets.top - insets.bottom;
910 boolean ltr = isLeftToRight();
911 if (getAutoCreateGaps() || getAutoCreateContainerGaps() ||
912 hasPreferredPaddingSprings) {
913 // Step 2: Calculate autopadding springs
914 calculateAutopadding(horizontalGroup, HORIZONTAL, SPECIFIC_SIZE, 0,
915 width);
916 calculateAutopadding(verticalGroup, VERTICAL, SPECIFIC_SIZE, 0,
917 height);
918 }
919 // Step 3: set the size of the groups.
920 horizontalGroup.setSize(HORIZONTAL, 0, width);
921 verticalGroup.setSize(VERTICAL, 0, height);
922 // Step 4: apply the size to the components.
923 for (ComponentInfo info : componentInfos.values()) {
924 info.setBounds(insets, width, ltr);
925 }
926 }
927
928 //
929 // LayoutManager2
930 //
931 /**
932 * Notification that a {@code Component} has been added to
933 * the parent container. You should not invoke this method
934 * directly, instead you should use one of the {@code Group}
935 * methods to add a {@code Component}.
936 *
937 * @param component the component added
938 * @param constraints description of where to place the component
939 */
940 public void addLayoutComponent(Component component, Object constraints) {
941 }
942
943 /**
944 * Returns the maximum size for the specified container.
945 *
946 * @param parent the container to return the size for
947 * @return the maximum size for {@code parent}
948 * @throws IllegalArgumentException if {@code parent} is not
949 * the same {@code Container} that this was created with
950 * @throws IllegalStateException if any of the components added to
951 * this layout are not in both a horizontal and vertical group
952 * @see java.awt.Container#getMaximumSize
953 */
954 public Dimension maximumLayoutSize(Container parent) {
955 checkParent(parent);
956 prepare(MAX_SIZE);
957 return adjustSize(horizontalGroup.getMaximumSize(HORIZONTAL),
958 verticalGroup.getMaximumSize(VERTICAL));
959 }
960
961 /**
962 * Returns the alignment along the x axis. This specifies how
963 * the component would like to be aligned relative to other
964 * components. The value should be a number between 0 and 1
965 * where 0 represents alignment along the origin, 1 is aligned
966 * the furthest away from the origin, 0.5 is centered, etc.
967 *
968 * @param parent the {@code Container} hosting this {@code LayoutManager}
969 * @throws IllegalArgumentException if {@code parent} is not
970 * the same {@code Container} that this was created with
971 * @return the alignment; this implementation returns {@code .5}
972 */
973 public float getLayoutAlignmentX(Container parent) {
974 checkParent(parent);
975 return .5f;
976 }
977
978 /**
979 * Returns the alignment along the y axis. This specifies how
980 * the component would like to be aligned relative to other
981 * components. The value should be a number between 0 and 1
982 * where 0 represents alignment along the origin, 1 is aligned
983 * the furthest away from the origin, 0.5 is centered, etc.
984 *
985 * @param parent the {@code Container} hosting this {@code LayoutManager}
986 * @throws IllegalArgumentException if {@code parent} is not
987 * the same {@code Container} that this was created with
988 * @return alignment; this implementation returns {@code .5}
989 */
990 public float getLayoutAlignmentY(Container parent) {
991 checkParent(parent);
992 return .5f;
993 }
994
995 /**
996 * Invalidates the layout, indicating that if the layout manager
997 * has cached information it should be discarded.
998 *
999 * @param parent the {@code Container} hosting this LayoutManager
1000 * @throws IllegalArgumentException if {@code parent} is not
1001 * the same {@code Container} that this was created with
1002 */
1003 public void invalidateLayout(Container parent) {
1004 checkParent(parent);
1005 // invalidateLayout is called from Container.invalidate, which
1006 // does NOT grab the treelock. All other methods do. To make sure
1007 // there aren't any possible threading problems we grab the tree lock
1008 // here.
1009 synchronized(parent.getTreeLock()) {
1010 isValid = false;
1011 }
1012 }
1013
1014 private void prepare(int sizeType) {
1015 boolean visChanged = false;
1016 // Step 1: If not-valid, clear springs and update visibility.
1017 if (!isValid) {
1018 isValid = true;
1019 horizontalGroup.setSize(HORIZONTAL, UNSET, UNSET);
1020 verticalGroup.setSize(VERTICAL, UNSET, UNSET);
1021 for (ComponentInfo ci : componentInfos.values()) {
1022 if (ci.updateVisibility()) {
1023 visChanged = true;
1024 }
1025 ci.clearCachedSize();
1026 }
1027 }
1028 // Step 2: Make sure components are bound to ComponentInfos
1029 if (springsChanged) {
1030 registerComponents(horizontalGroup, HORIZONTAL);
1031 registerComponents(verticalGroup, VERTICAL);
1032 }
1033 // Step 3: Adjust the autopadding. This removes existing
1034 // autopadding, then recalculates where it should go.
1035 if (springsChanged || visChanged) {
1036 checkComponents();
1037 horizontalGroup.removeAutopadding();
1038 verticalGroup.removeAutopadding();
1039 if (getAutoCreateGaps()) {
1040 insertAutopadding(true);
1041 } else if (hasPreferredPaddingSprings ||
1042 getAutoCreateContainerGaps()) {
1043 insertAutopadding(false);
1044 }
1045 springsChanged = false;
1046 }
1047 // Step 4: (for min/pref/max size calculations only) calculate the
1048 // autopadding. This invokes for unsetting the calculated values, then
1049 // recalculating them.
1050 // If sizeType == SPECIFIC_SIZE, it indicates we're doing layout, this
1051 // step will be done later on.
1052 if (sizeType != SPECIFIC_SIZE && (getAutoCreateGaps() ||
1053 getAutoCreateContainerGaps() || hasPreferredPaddingSprings)) {
1054 calculateAutopadding(horizontalGroup, HORIZONTAL, sizeType, 0, 0);
1055 calculateAutopadding(verticalGroup, VERTICAL, sizeType, 0, 0);
1056 }
1057 }
1058
1059 private void calculateAutopadding(Group group, int axis, int sizeType,
1060 int origin, int size) {
1061 group.unsetAutopadding();
1062 switch(sizeType) {
1063 case MIN_SIZE:
1064 size = group.getMinimumSize(axis);
1065 break;
1066 case PREF_SIZE:
1067 size = group.getPreferredSize(axis);
1068 break;
1069 case MAX_SIZE:
1070 size = group.getMaximumSize(axis);
1071 break;
1072 default:
1073 break;
1074 }
1075 group.setSize(axis, origin, size);
1076 group.calculateAutopadding(axis);
1077 }
1078
1079 private void checkComponents() {
1080 for (ComponentInfo info : componentInfos.values()) {
1081 if (info.horizontalSpring == null) {
1082 throw new IllegalStateException(info.component +
1083 " is not attached to a horizontal group");
1084 }
1085 if (info.verticalSpring == null) {
1086 throw new IllegalStateException(info.component +
1087 " is not attached to a vertical group");
1088 }
1089 }
1090 }
1091
1092 private void registerComponents(Group group, int axis) {
1093 List<Spring> springs = group.springs;
1094 for (int counter = springs.size() - 1; counter >= 0; counter--) {
1095 Spring spring = springs.get(counter);
1096 if (spring instanceof ComponentSpring) {
1097 ((ComponentSpring)spring).installIfNecessary(axis);
1098 } else if (spring instanceof Group) {
1099 registerComponents((Group)spring, axis);
1100 }
1101 }
1102 }
1103
1104 private Dimension adjustSize(int width, int height) {
1105 Insets insets = host.getInsets();
1106 return new Dimension(width + insets.left + insets.right,
1107 height + insets.top + insets.bottom);
1108 }
1109
1110 private void checkParent(Container parent) {
1111 if (parent != host) {
1112 throw new IllegalArgumentException(
1113 "GroupLayout can only be used with one Container at a time");
1114 }
1115 }
1116
1117 /**
1118 * Returns the {@code ComponentInfo} for the specified Component,
1119 * creating one if necessary.
1120 */
1121 private ComponentInfo getComponentInfo(Component component) {
1122 ComponentInfo info = (ComponentInfo)componentInfos.get(component);
1123 if (info == null) {
1124 info = new ComponentInfo(component);
1125 componentInfos.put(component, info);
1126 if (component.getParent() != host) {
1127 host.add(component);
1128 }
1129 }
1130 return info;
1131 }
1132
1133 /**
1134 * Adjusts the autopadding springs for the horizontal and vertical
1135 * groups. If {@code insert} is {@code true} this will insert auto padding
1136 * springs, otherwise this will only adjust the springs that
1137 * comprise auto preferred padding springs.
1138 */
1139 private void insertAutopadding(boolean insert) {
1140 horizontalGroup.insertAutopadding(HORIZONTAL,
1141 new ArrayList<AutoPreferredGapSpring>(1),
1142 new ArrayList<AutoPreferredGapSpring>(1),
1143 new ArrayList<ComponentSpring>(1),
1144 new ArrayList<ComponentSpring>(1), insert);
1145 verticalGroup.insertAutopadding(VERTICAL,
1146 new ArrayList<AutoPreferredGapSpring>(1),
1147 new ArrayList<AutoPreferredGapSpring>(1),
1148 new ArrayList<ComponentSpring>(1),
1149 new ArrayList<ComponentSpring>(1), insert);
1150 }
1151
1152 /**
1153 * Returns {@code true} if the two Components have a common ParallelGroup
1154 * ancestor along the particular axis.
1155 */
1156 private boolean areParallelSiblings(Component source, Component target,
1157 int axis) {
1158 ComponentInfo sourceInfo = getComponentInfo(source);
1159 ComponentInfo targetInfo = getComponentInfo(target);
1160 Spring sourceSpring;
1161 Spring targetSpring;
1162 if (axis == HORIZONTAL) {
1163 sourceSpring = sourceInfo.horizontalSpring;
1164 targetSpring = targetInfo.horizontalSpring;
1165 } else {
1166 sourceSpring = sourceInfo.verticalSpring;
1167 targetSpring = targetInfo.verticalSpring;
1168 }
1169 Set<Spring> sourcePath = tmpParallelSet;
1170 sourcePath.clear();
1171 Spring spring = sourceSpring.getParent();
1172 while (spring != null) {
1173 sourcePath.add(spring);
1174 spring = spring.getParent();
1175 }
1176 spring = targetSpring.getParent();
1177 while (spring != null) {
1178 if (sourcePath.contains(spring)) {
1179 sourcePath.clear();
1180 while (spring != null) {
1181 if (spring instanceof ParallelGroup) {
1182 return true;
1183 }
1184 spring = spring.getParent();
1185 }
1186 return false;
1187 }
1188 spring = spring.getParent();
1189 }
1190 sourcePath.clear();
1191 return false;
1192 }
1193
1194 private boolean isLeftToRight() {
1195 return host.getComponentOrientation().isLeftToRight();
1196 }
1197
1198 /**
1199 * Returns a string representation of this {@code GroupLayout}.
1200 * This method is intended to be used for debugging purposes,
1201 * and the content and format of the returned string may vary
1202 * between implementations.
1203 *
1204 * @return a string representation of this {@code GroupLayout}
1205 **/
1206 public String toString() {
1207 if (springsChanged) {
1208 registerComponents(horizontalGroup, HORIZONTAL);
1209 registerComponents(verticalGroup, VERTICAL);
1210 }
1211 StringBuffer buffer = new StringBuffer();
1212 buffer.append("HORIZONTAL\n");
1213 createSpringDescription(buffer, horizontalGroup, " ", HORIZONTAL);
1214 buffer.append("\nVERTICAL\n");
1215 createSpringDescription(buffer, verticalGroup, " ", VERTICAL);
1216 return buffer.toString();
1217 }
1218
1219 private void createSpringDescription(StringBuffer buffer, Spring spring,
1220 String indent, int axis) {
1221 String origin = "";
1222 String padding = "";
1223 if (spring instanceof ComponentSpring) {
1224 ComponentSpring cSpring = (ComponentSpring)spring;
1225 origin = Integer.toString(cSpring.getOrigin()) + " ";
1226 String name = cSpring.getComponent().getName();
1227 if (name != null) {
1228 origin = "name=" + name + ", ";
1229 }
1230 }
1231 if (spring instanceof AutoPreferredGapSpring) {
1232 AutoPreferredGapSpring paddingSpring =
1233 (AutoPreferredGapSpring)spring;
1234 padding = ", userCreated=" + paddingSpring.getUserCreated() +
1235 ", matches=" + paddingSpring.getMatchDescription();
1236 }
1237 buffer.append(indent + spring.getClass().getName() + " " +
1238 Integer.toHexString(spring.hashCode()) + " " +
1239 origin +
1240 ", size=" + spring.getSize() +
1241 ", alignment=" + spring.getAlignment() +
1242 " prefs=[" + spring.getMinimumSize(axis) +
1243 " " + spring.getPreferredSize(axis) +
1244 " " + spring.getMaximumSize(axis) +
1245 padding + "]\n");
1246 if (spring instanceof Group) {
1247 List<Spring> springs = ((Group)spring).springs;
1248 indent += " ";
1249 for (int counter = 0; counter < springs.size(); counter++) {
1250 createSpringDescription(buffer, springs.get(counter), indent,
1251 axis);
1252 }
1253 }
1254 }
1255
1256
1257 /**
1258 * Spring consists of a range: min, pref and max, a value some where in
1259 * the middle of that, and a location. Spring caches the
1260 * min/max/pref. If the min/pref/max has internally changes, or needs
1261 * to be updated you must invoke clear.
1262 */
1263 private abstract class Spring {
1264 private int size;
1265 private int min;
1266 private int max;
1267 private int pref;
1268 private Spring parent;
1269
1270 private Alignment alignment;
1271
1272 Spring() {
1273 min = pref = max = UNSET;
1274 }
1275
1276 /**
1277 * Calculates and returns the minimum size.
1278 *
1279 * @param axis the axis of layout; one of HORIZONTAL or VERTICAL
1280 * @return the minimum size
1281 */
1282 abstract int calculateMinimumSize(int axis);
1283
1284 /**
1285 * Calculates and returns the preferred size.
1286 *
1287 * @param axis the axis of layout; one of HORIZONTAL or VERTICAL
1288 * @return the preferred size
1289 */
1290 abstract int calculatePreferredSize(int axis);
1291
1292 /**
1293 * Calculates and returns the minimum size.
1294 *
1295 * @param axis the axis of layout; one of HORIZONTAL or VERTICAL
1296 * @return the minimum size
1297 */
1298 abstract int calculateMaximumSize(int axis);
1299
1300 /**
1301 * Sets the parent of this Spring.
1302 */
1303 void setParent(Spring parent) {
1304 this.parent = parent;
1305 }
1306
1307 /**
1308 * Returns the parent of this spring.
1309 */
1310 Spring getParent() {
1311 return parent;
1312 }
1313
1314 // This is here purely as a conveniance for ParallelGroup to avoid
1315 // having to track alignment separately.
1316 void setAlignment(Alignment alignment) {
1317 this.alignment = alignment;
1318 }
1319
1320 /**
1321 * Alignment for this Spring, this may be null.
1322 */
1323 Alignment getAlignment() {
1324 return alignment;
1325 }
1326
1327 /**
1328 * Returns the minimum size.
1329 */
1330 final int getMinimumSize(int axis) {
1331 if (min == UNSET) {
1332 min = constrain(calculateMinimumSize(axis));
1333 }
1334 return min;
1335 }
1336
1337 /**
1338 * Returns the preferred size.
1339 */
1340 final int getPreferredSize(int axis) {
1341 if (pref == UNSET) {
1342 pref = constrain(calculatePreferredSize(axis));
1343 }
1344 return pref;
1345 }
1346
1347 /**
1348 * Returns the maximum size.
1349 */
1350 final int getMaximumSize(int axis) {
1351 if (max == UNSET) {
1352 max = constrain(calculateMaximumSize(axis));
1353 }
1354 return max;
1355 }
1356
1357 /**
1358 * Sets the value and location of the spring. Subclasses
1359 * will want to invoke super, then do any additional sizing.
1360 *
1361 * @param axis HORIZONTAL or VERTICAL
1362 * @param origin of this Spring
1363 * @param size of the Spring. If size is UNSET, this invokes
1364 * clear.
1365 */
1366 void setSize(int axis, int origin, int size) {
1367 this.size = size;
1368 if (size == UNSET) {
1369 unset();
1370 }
1371 }
1372
1373 /**
1374 * Resets the cached min/max/pref.
1375 */
1376 void unset() {
1377 size = min = pref = max = UNSET;
1378 }
1379
1380 /**
1381 * Returns the current size.
1382 */
1383 int getSize() {
1384 return size;
1385 }
1386
1387 int constrain(int value) {
1388 return Math.min(value, Short.MAX_VALUE);
1389 }
1390
1391 int getBaseline() {
1392 return -1;
1393 }
1394
1395 BaselineResizeBehavior getBaselineResizeBehavior() {
1396 return BaselineResizeBehavior.OTHER;
1397 }
1398
1399 final boolean isResizable(int axis) {
1400 int min = getMinimumSize(axis);
1401 int pref = getPreferredSize(axis);
1402 return (min != pref || pref != getMaximumSize(axis));
1403 }
1404
1405 /**
1406 * Returns {@code true} if this spring will ALWAYS have a zero
1407 * size. This should NOT check the current size, rather it's
1408 * meant to quickly test if this Spring will always have a
1409 * zero size.
1410 *
1411 * @param treatAutopaddingAsZeroSized if {@code true}, auto padding
1412 * springs should be treated as having a size of {@code 0}
1413 * @return {@code true} if this spring will have a zero size,
1414 * {@code false} otherwise
1415 */
1416 abstract boolean willHaveZeroSize(boolean treatAutopaddingAsZeroSized);
1417 }
1418
1419 /**
1420 * {@code Group} provides the basis for the two types of
1421 * operations supported by {@code GroupLayout}: laying out
1422 * components one after another ({@link SequentialGroup SequentialGroup})
1423 * or aligned ({@link ParallelGroup ParallelGroup}). {@code Group} and
1424 * its subclasses have no public constructor; to create one use
1425 * one of {@code createSequentialGroup} or
1426 * {@code createParallelGroup}. Additionally, taking a {@code Group}
1427 * created from one {@code GroupLayout} and using it with another
1428 * will produce undefined results.
1429 * <p>
1430 * Various methods in {@code Group} and its subclasses allow you
1431 * to explicitly specify the range. The arguments to these methods
1432 * can take two forms, either a value greater than or equal to 0,
1433 * or one of {@code DEFAULT_SIZE} or {@code PREFERRED_SIZE}. A
1434 * value greater than or equal to {@code 0} indicates a specific
1435 * size. {@code DEFAULT_SIZE} indicates the corresponding size
1436 * from the component should be used. For example, if {@code
1437 * DEFAULT_SIZE} is passed as the minimum size argument, the
1438 * minimum size is obtained from invoking {@code getMinimumSize}
1439 * on the component. Likewise, {@code PREFERRED_SIZE} indicates
1440 * the value from {@code getPreferredSize} should be used.
1441 * The following example adds {@code myComponent} to {@code group}
1442 * with specific values for the range. That is, the minimum is
1443 * explicitly specified as 100, preferred as 200, and maximum as
1444 * 300.
1445 * <pre>
1446 * group.addComponent(myComponent, 100, 200, 300);
1447 * </pre>
1448 * The following example adds {@code myComponent} to {@code group} using
1449 * a combination of the forms. The minimum size is forced to be the
1450 * same as the preferred size, the preferred size is determined by
1451 * using {@code myComponent.getPreferredSize} and the maximum is
1452 * determined by invoking {@code getMaximumSize} on the component.
1453 * <pre>
1454 * group.addComponent(myComponent, GroupLayout.PREFERRED_SIZE,
1455 * GroupLayout.PREFERRED_SIZE, GroupLayout.DEFAULT_SIZE);
1456 * </pre>
1457 * <p>
1458 * Unless otherwise specified all the methods of {@code Group} and
1459 * its subclasses that allow you to specify a range throw an
1460 * {@code IllegalArgumentException} if passed an invalid range. An
1461 * invalid range is one in which any of the values are &lt; 0 and
1462 * not one of {@code PREFERRED_SIZE} or {@code DEFAULT_SIZE}, or
1463 * the following is not met (for specific values): {@code min}
1464 * &lt;= {@code pref} &lt;= {@code max}.
1465 * <p>
1466 * Similarly any methods that take a {@code Component} throw a
1467 * {@code NullPointerException} if passed {@code null} and any methods
1468 * that take a {@code Group} throw an {@code IllegalArgumentException} if
1469 * passed {@code null}.
1470 *
1471 * @see #createSequentialGroup
1472 * @see #createParallelGroup
1473 * @since 1.6
1474 */
1475 public abstract class Group extends Spring {
1476 // private int origin;
1477 // private int size;
1478 List<Spring> springs;
1479
1480 Group() {
1481 springs = new ArrayList<Spring>();
1482 }
1483
1484 /**
1485 * Adds a {@code Group} to this {@code Group}.
1486 *
1487 * @param group the {@code Group} to add
1488 * @return this {@code Group}
1489 */
1490 public Group addGroup(Group group) {
1491 return addSpring(group);
1492 }
1493
1494 /**
1495 * Adds a {@code Component} to this {@code Group}.
1496 *
1497 * @param component the {@code Component} to add
1498 * @return this {@code Group}
1499 */
1500 public Group addComponent(Component component) {
1501 return addComponent(component, DEFAULT_SIZE, DEFAULT_SIZE,
1502 DEFAULT_SIZE);
1503 }
1504
1505 /**
1506 * Adds a {@code Component} to this {@code Group}
1507 * with the specified size.
1508 *
1509 * @param component the {@code Component} to add
1510 * @param min the minimum size or one of {@code DEFAULT_SIZE} or
1511 * {@code PREFERRED_SIZE}
1512 * @param pref the preferred size or one of {@code DEFAULT_SIZE} or
1513 * {@code PREFERRED_SIZE}
1514 * @param max the maximum size or one of {@code DEFAULT_SIZE} or
1515 * {@code PREFERRED_SIZE}
1516 * @return this {@code Group}
1517 */
1518 public Group addComponent(Component component, int min, int pref,
1519 int max) {
1520 return addSpring(new ComponentSpring(component, min, pref, max));
1521 }
1522
1523 /**
1524 * Adds a rigid gap to this {@code Group}.
1525 *
1526 * @param size the size of the gap
1527 * @return this {@code Group}
1528 * @throws IllegalArgumentException if {@code size} is less than
1529 * {@code 0}
1530 */
1531 public Group addGap(int size) {
1532 return addGap(size, size, size);
1533 }
1534
1535 /**
1536 * Adds a gap to this {@code Group} with the specified size.
1537 *
1538 * @param min the minimum size of the gap
1539 * @param pref the preferred size of the gap
1540 * @param max the maximum size of the gap
1541 * @throws IllegalArgumentException if any of the values are
1542 * less than {@code 0}
1543 * @return this {@code Group}
1544 */
1545 public Group addGap(int min, int pref, int max) {
1546 return addSpring(new GapSpring(min, pref, max));
1547 }
1548
1549 Spring getSpring(int index) {
1550 return springs.get(index);
1551 }
1552
1553 int indexOf(Spring spring) {
1554 return springs.indexOf(spring);
1555 }
1556
1557 /**
1558 * Adds the Spring to the list of {@code Spring}s and returns
1559 * the receiver.
1560 */
1561 Group addSpring(Spring spring) {
1562 springs.add(spring);
1563 spring.setParent(this);
1564 if (!(spring instanceof AutoPreferredGapSpring) ||
1565 !((AutoPreferredGapSpring)spring).getUserCreated()) {
1566 springsChanged = true;
1567 }
1568 return this;
1569 }
1570
1571 //
1572 // Spring methods
1573 //
1574
1575 void setSize(int axis, int origin, int size) {
1576 super.setSize(axis, origin, size);
1577 if (size == UNSET) {
1578 for (int counter = springs.size() - 1; counter >= 0;
1579 counter--) {
1580 getSpring(counter).setSize(axis, origin, size);
1581 }
1582 } else {
1583 setValidSize(axis, origin, size);
1584 }
1585 }
1586
1587 /**
1588 * This is invoked from {@code setSize} if passed a value
1589 * other than UNSET.
1590 */
1591 abstract void setValidSize(int axis, int origin, int size);
1592
1593 int calculateMinimumSize(int axis) {
1594 return calculateSize(axis, MIN_SIZE);
1595 }
1596
1597 int calculatePreferredSize(int axis) {
1598 return calculateSize(axis, PREF_SIZE);
1599 }
1600
1601 int calculateMaximumSize(int axis) {
1602 return calculateSize(axis, MAX_SIZE);
1603 }
1604
1605 /**
1606 * Calculates the specified size. This is called from
1607 * one of the {@code getMinimumSize0},
1608 * {@code getPreferredSize0} or
1609 * {@code getMaximumSize0} methods. This will invoke
1610 * to {@code operator} to combine the values.
1611 */
1612 int calculateSize(int axis, int type) {
1613 int count = springs.size();
1614 if (count == 0) {
1615 return 0;
1616 }
1617 if (count == 1) {
1618 return getSpringSize(getSpring(0), axis, type);
1619 }
1620 int size = constrain(operator(getSpringSize(getSpring(0), axis,
1621 type), getSpringSize(getSpring(1), axis, type)));
1622 for (int counter = 2; counter < count; counter++) {
1623 size = constrain(operator(size, getSpringSize(
1624 getSpring(counter), axis, type)));
1625 }
1626 return size;
1627 }
1628
1629 int getSpringSize(Spring spring, int axis, int type) {
1630 switch(type) {
1631 case MIN_SIZE:
1632 return spring.getMinimumSize(axis);
1633 case PREF_SIZE:
1634 return spring.getPreferredSize(axis);
1635 case MAX_SIZE:
1636 return spring.getMaximumSize(axis);
1637 }
1638 assert false;
1639 return 0;
1640 }
1641
1642 /**
1643 * Used to compute how the two values representing two springs
1644 * will be combined. For example, a group that layed things out
1645 * one after the next would return {@code a + b}.
1646 */
1647 abstract int operator(int a, int b);
1648
1649 //
1650 // Padding
1651 //
1652
1653 /**
1654 * Adjusts the autopadding springs in this group and its children.
1655 * If {@code insert} is true this will insert auto padding
1656 * springs, otherwise this will only adjust the springs that
1657 * comprise auto preferred padding springs.
1658 *
1659 * @param axis the axis of the springs; HORIZONTAL or VERTICAL
1660 * @param leadingPadding List of AutopaddingSprings that occur before
1661 * this Group
1662 * @param trailingPadding any trailing autopadding springs are added
1663 * to this on exit
1664 * @param leading List of ComponentSprings that occur before this Group
1665 * @param trailing any trailing ComponentSpring are added to this
1666 * List
1667 * @param insert Whether or not to insert AutopaddingSprings or just
1668 * adjust any existing AutopaddingSprings.
1669 */
1670 abstract void insertAutopadding(int axis,
1671 List<AutoPreferredGapSpring> leadingPadding,
1672 List<AutoPreferredGapSpring> trailingPadding,
1673 List<ComponentSpring> leading, List<ComponentSpring> trailing,
1674 boolean insert);
1675
1676 /**
1677 * Removes any AutopaddingSprings for this Group and its children.
1678 */
1679 void removeAutopadding() {
1680 unset();
1681 for (int counter = springs.size() - 1; counter >= 0; counter--) {
1682 Spring spring = springs.get(counter);
1683 if (spring instanceof AutoPreferredGapSpring) {
1684 if (((AutoPreferredGapSpring)spring).getUserCreated()) {
1685 ((AutoPreferredGapSpring)spring).reset();
1686 } else {
1687 springs.remove(counter);
1688 }
1689 } else if (spring instanceof Group) {
1690 ((Group)spring).removeAutopadding();
1691 }
1692 }
1693 }
1694
1695 void unsetAutopadding() {
1696 // Clear cached pref/min/max.
1697 unset();
1698 for (int counter = springs.size() - 1; counter >= 0; counter--) {
1699 Spring spring = springs.get(counter);
1700 if (spring instanceof AutoPreferredGapSpring) {
1701 ((AutoPreferredGapSpring)spring).unset();
1702 } else if (spring instanceof Group) {
1703 ((Group)spring).unsetAutopadding();
1704 }
1705 }
1706 }
1707
1708 void calculateAutopadding(int axis) {
1709 for (int counter = springs.size() - 1; counter >= 0; counter--) {
1710 Spring spring = springs.get(counter);
1711 if (spring instanceof AutoPreferredGapSpring) {
1712 // Force size to be reset.
1713 spring.unset();
1714 ((AutoPreferredGapSpring)spring).calculatePadding(axis);
1715 } else if (spring instanceof Group) {
1716 ((Group)spring).calculateAutopadding(axis);
1717 }
1718 }
1719 // Clear cached pref/min/max.
1720 unset();
1721 }
1722
1723 @Override
1724 boolean willHaveZeroSize(boolean treatAutopaddingAsZeroSized) {
1725 for (int i = springs.size() - 1; i >= 0; i--) {
1726 Spring spring = springs.get(i);
1727 if (!spring.willHaveZeroSize(treatAutopaddingAsZeroSized)) {
1728 return false;
1729 }
1730 }
1731 return true;
1732 }
1733 }
1734
1735
1736 /**
1737 * A {@code Group} that positions and sizes its elements
1738 * sequentially, one after another. This class has no public
1739 * constructor, use the {@code createSequentialGroup} method
1740 * to create one.
1741 * <p>
1742 * In order to align a {@code SequentialGroup} along the baseline
1743 * of a baseline aligned {@code ParallelGroup} you need to specify
1744 * which of the elements of the {@code SequentialGroup} is used to
1745 * determine the baseline. The element used to calculate the
1746 * baseline is specified using one of the {@code add} methods that
1747 * take a {@code boolean}. The last element added with a value of
1748 * {@code true} for {@code useAsBaseline} is used to calculate the
1749 * baseline.
1750 *
1751 * @see #createSequentialGroup
1752 * @since 1.6
1753 */
1754 public class SequentialGroup extends Group {
1755 private Spring baselineSpring;
1756
1757 SequentialGroup() {
1758 }
1759
1760 /**
1761 * {@inheritDoc}
1762 */
1763 public SequentialGroup addGroup(Group group) {
1764 return (SequentialGroup)super.addGroup(group);
1765 }
1766
1767 /**
1768 * Adds a {@code Group} to this {@code Group}.
1769 *
1770 * @param group the {@code Group} to add
1771 * @param useAsBaseline whether the specified {@code Group} should
1772 * be used to calculate the baseline for this {@code Group}
1773 * @return this {@code Group}
1774 */
1775 public SequentialGroup addGroup(boolean useAsBaseline, Group group) {
1776 super.addGroup(group);
1777 if (useAsBaseline) {
1778 baselineSpring = group;
1779 }
1780 return this;
1781 }
1782
1783 /**
1784 * {@inheritDoc}
1785 */
1786 public SequentialGroup addComponent(Component component) {
1787 return (SequentialGroup)super.addComponent(component);
1788 }
1789
1790 /**
1791 * Adds a {@code Component} to this {@code Group}.
1792 *
1793 * @param useAsBaseline whether the specified {@code Component} should
1794 * be used to calculate the baseline for this {@code Group}
1795 * @param component the {@code Component} to add
1796 * @return this {@code Group}
1797 */
1798 public SequentialGroup addComponent(boolean useAsBaseline,
1799 Component component) {
1800 super.addComponent(component);
1801 if (useAsBaseline) {
1802 baselineSpring = springs.get(springs.size() - 1);
1803 }
1804 return this;
1805 }
1806
1807 /**
1808 * {@inheritDoc}
1809 */
1810 public SequentialGroup addComponent(Component component, int min,
1811 int pref, int max) {
1812 return (SequentialGroup)super.addComponent(
1813 component, min, pref, max);
1814 }
1815
1816 /**
1817 * Adds a {@code Component} to this {@code Group}
1818 * with the specified size.
1819 *
1820 * @param useAsBaseline whether the specified {@code Component} should
1821 * be used to calculate the baseline for this {@code Group}
1822 * @param component the {@code Component} to add
1823 * @param min the minimum size or one of {@code DEFAULT_SIZE} or
1824 * {@code PREFERRED_SIZE}
1825 * @param pref the preferred size or one of {@code DEFAULT_SIZE} or
1826 * {@code PREFERRED_SIZE}
1827 * @param max the maximum size or one of {@code DEFAULT_SIZE} or
1828 * {@code PREFERRED_SIZE}
1829 * @return this {@code Group}
1830 */
1831 public SequentialGroup addComponent(boolean useAsBaseline,
1832 Component component, int min, int pref, int max) {
1833 super.addComponent(component, min, pref, max);
1834 if (useAsBaseline) {
1835 baselineSpring = springs.get(springs.size() - 1);
1836 }
1837 return this;
1838 }
1839
1840 /**
1841 * {@inheritDoc}
1842 */
1843 public SequentialGroup addGap(int size) {
1844 return (SequentialGroup)super.addGap(size);
1845 }
1846
1847 /**
1848 * {@inheritDoc}
1849 */
1850 public SequentialGroup addGap(int min, int pref, int max) {
1851 return (SequentialGroup)super.addGap(min, pref, max);
1852 }
1853
1854 /**
1855 * Adds an element representing the preferred gap between two
1856 * components. The element created to represent the gap is not
1857 * resizable.
1858 *
1859 * @param comp1 the first component
1860 * @param comp2 the second component
1861 * @param type the type of gap; one of the constants defined by
1862 * {@code LayoutStyle}
1863 * @return this {@code SequentialGroup}
1864 * @throws IllegalArgumentException if {@code type}, {@code comp1} or
1865 * {@code comp2} is {@code null}
1866 * @see LayoutStyle
1867 */
1868 public SequentialGroup addPreferredGap(JComponent comp1,
1869 JComponent comp2, ComponentPlacement type) {
1870 return addPreferredGap(comp1, comp2, type, DEFAULT_SIZE,
1871 PREFERRED_SIZE);
1872 }
1873
1874 /**
1875 * Adds an element representing the preferred gap between two
1876 * components.
1877 *
1878 * @param comp1 the first component
1879 * @param comp2 the second component
1880 * @param type the type of gap
1881 * @param pref the preferred size of the grap; one of
1882 * {@code DEFAULT_SIZE} or a value &gt;= 0
1883 * @param max the maximum size of the gap; one of
1884 * {@code DEFAULT_SIZE}, {@code PREFERRED_SIZE}
1885 * or a value &gt;= 0
1886 * @return this {@code SequentialGroup}
1887 * @throws IllegalArgumentException if {@code type}, {@code comp1} or
1888 * {@code comp2} is {@code null}
1889 * @see LayoutStyle
1890 */
1891 public SequentialGroup addPreferredGap(JComponent comp1,
1892 JComponent comp2, ComponentPlacement type, int pref,
1893 int max) {
1894 if (type == null) {
1895 throw new IllegalArgumentException("Type must be non-null");
1896 }
1897 if (comp1 == null || comp2 == null) {
1898 throw new IllegalArgumentException(
1899 "Components must be non-null");
1900 }
1901 checkPreferredGapValues(pref, max);
1902 return (SequentialGroup)addSpring(new PreferredGapSpring(
1903 comp1, comp2, type, pref, max));
1904 }
1905
1906 /**
1907 * Adds an element representing the preferred gap between the
1908 * nearest components. During layout, neighboring
1909 * components are found, and the size of the added gap is set
1910 * based on the preferred gap between the components. If no
1911 * neighboring components are found the gap has a size of {@code 0}.
1912 * <p>
1913 * The element created to represent the gap is not
1914 * resizable.
1915 *
1916 * @param type the type of gap; one of
1917 * {@code LayoutStyle.ComponentPlacement.RELATED} or
1918 * {@code LayoutStyle.ComponentPlacement.UNRELATED}
1919 * @return this {@code SequentialGroup}
1920 * @see LayoutStyle
1921 * @throws IllegalArgumentException if {@code type} is not one of
1922 * {@code LayoutStyle.ComponentPlacement.RELATED} or
1923 * {@code LayoutStyle.ComponentPlacement.UNRELATED}
1924 */
1925 public SequentialGroup addPreferredGap(ComponentPlacement type) {
1926 return addPreferredGap(type, DEFAULT_SIZE, DEFAULT_SIZE);
1927 }
1928
1929 /**
1930 * Adds an element representing the preferred gap between the
1931 * nearest components. During layout, neighboring
1932 * components are found, and the minimum of this
1933 * gap is set based on the size of the preferred gap between the
1934 * neighboring components. If no neighboring components are found the
1935 * minimum size is set to 0.
1936 *
1937 * @param type the type of gap; one of
1938 * {@code LayoutStyle.ComponentPlacement.RELATED} or
1939 * {@code LayoutStyle.ComponentPlacement.UNRELATED}
1940 * @param pref the preferred size of the grap; one of
1941 * {@code DEFAULT_SIZE} or a value &gt;= 0
1942 * @param max the maximum size of the gap; one of
1943 * {@code DEFAULT_SIZE}, {@code PREFERRED_SIZE}
1944 * or a value &gt;= 0
1945 * @return this {@code SequentialGroup}
1946 * @throws IllegalArgumentException if {@code type} is not one of
1947 * {@code LayoutStyle.ComponentPlacement.RELATED} or
1948 * {@code LayoutStyle.ComponentPlacement.UNRELATED}
1949 * @see LayoutStyle
1950 */
1951 public SequentialGroup addPreferredGap(ComponentPlacement type,
1952 int pref, int max) {
1953 if (type != ComponentPlacement.RELATED &&
1954 type != ComponentPlacement.UNRELATED) {
1955 throw new IllegalArgumentException(
1956 "Type must be one of " +
1957 "LayoutStyle.ComponentPlacement.RELATED or " +
1958 "LayoutStyle.ComponentPlacement.UNRELATED");
1959 }
1960 checkPreferredGapValues(pref, max);
1961 hasPreferredPaddingSprings = true;
1962 return (SequentialGroup)addSpring(new AutoPreferredGapSpring(
1963 type, pref, max));
1964 }
1965
1966 /**
1967 * Adds an element representing the preferred gap between an edge
1968 * the container and components that touch the border of the
1969 * container. This has no effect if the added gap does not
1970 * touch an edge of the parent container.
1971 * <p>
1972 * The element created to represent the gap is not
1973 * resizable.
1974 *
1975 * @return this {@code SequentialGroup}
1976 */
1977 public SequentialGroup addContainerGap() {
1978 return addContainerGap(DEFAULT_SIZE, DEFAULT_SIZE);
1979 }
1980
1981 /**
1982 * Adds an element representing the preferred gap between one
1983 * edge of the container and the next or previous {@code
1984 * Component} with the specified size. This has no
1985 * effect if the next or previous element is not a {@code
1986 * Component} and does not touch one edge of the parent
1987 * container.
1988 *
1989 * @param pref the preferred size; one of {@code DEFAULT_SIZE} or a
1990 * value &gt;= 0
1991 * @param max the maximum size; one of {@code DEFAULT_SIZE},
1992 * {@code PREFERRED_SIZE} or a value &gt;= 0
1993 * @return this {@code SequentialGroup}
1994 */
1995 public SequentialGroup addContainerGap(int pref, int max) {
1996 if ((pref < 0 && pref != DEFAULT_SIZE) ||
1997 (max < 0 && max != DEFAULT_SIZE && max != PREFERRED_SIZE)||
1998 (pref >= 0 && max >= 0 && pref > max)) {
1999 throw new IllegalArgumentException(
2000 "Pref and max must be either DEFAULT_VALUE " +
2001 "or >= 0 and pref <= max");
2002 }
2003 hasPreferredPaddingSprings = true;
2004 return (SequentialGroup)addSpring(
2005 new ContainerAutoPreferredGapSpring(pref, max));
2006 }
2007
2008 int operator(int a, int b) {
2009 return constrain(a) + constrain(b);
2010 }
2011
2012 void setValidSize(int axis, int origin, int size) {
2013 int pref = getPreferredSize(axis);
2014 if (size == pref) {
2015 // Layout at preferred size
2016 for (Spring spring : springs) {
2017 int springPref = spring.getPreferredSize(axis);
2018 spring.setSize(axis, origin, springPref);
2019 origin += springPref;
2020 }
2021 } else if (springs.size() == 1) {
2022 Spring spring = getSpring(0);
2023 spring.setSize(axis, origin, Math.min(
2024 Math.max(size, spring.getMinimumSize(axis)),
2025 spring.getMaximumSize(axis)));
2026 } else if (springs.size() > 1) {
2027 // Adjust between min/pref
2028 setValidSizeNotPreferred(axis, origin, size);
2029 }
2030 }
2031
2032 private void setValidSizeNotPreferred(int axis, int origin, int size) {
2033 int delta = size - getPreferredSize(axis);
2034 assert delta != 0;
2035 boolean useMin = (delta < 0);
2036 int springCount = springs.size();
2037 if (useMin) {
2038 delta *= -1;
2039 }
2040
2041 // The following algorithm if used for resizing springs:
2042 // 1. Calculate the resizability of each spring (pref - min or
2043 // max - pref) into a list.
2044 // 2. Sort the list in ascending order
2045 // 3. Iterate through each of the resizable Springs, attempting
2046 // to give them (pref - size) / resizeCount
2047 // 4. For any Springs that can not accomodate that much space
2048 // add the remainder back to the amount to distribute and
2049 // recalculate how must space the remaining springs will get.
2050 // 5. Set the size of the springs.
2051
2052 // First pass, sort the resizable springs into the List resizable
2053 List<SpringDelta> resizable = buildResizableList(axis, useMin);
2054 int resizableCount = resizable.size();
2055
2056 if (resizableCount > 0) {
2057 // How much we would like to give each Spring.
2058 int sDelta = delta / resizableCount;
2059 // Remaining space.
2060 int slop = delta - sDelta * resizableCount;
2061 int[] sizes = new int[springCount];
2062 int sign = useMin ? -1 : 1;
2063 // Second pass, accumulate the resulting deltas (relative to
2064 // preferred) into sizes.
2065 for (int counter = 0; counter < resizableCount; counter++) {
2066 SpringDelta springDelta = resizable.get(counter);
2067 if ((counter + 1) == resizableCount) {
2068 sDelta += slop;
2069 }
2070 springDelta.delta = Math.min(sDelta, springDelta.delta);
2071 delta -= springDelta.delta;
2072 if (springDelta.delta != sDelta && counter + 1 <
2073 resizableCount) {
2074 // Spring didn't take all the space, reset how much
2075 // each spring will get.
2076 sDelta = delta / (resizableCount - counter - 1);
2077 slop = delta - sDelta * (resizableCount - counter - 1);
2078 }
2079 sizes[springDelta.index] = sign * springDelta.delta;
2080 }
2081
2082 // And finally set the size of each spring
2083 for (int counter = 0; counter < springCount; counter++) {
2084 Spring spring = getSpring(counter);
2085 int sSize = spring.getPreferredSize(axis) + sizes[counter];
2086 spring.setSize(axis, origin, sSize);
2087 origin += sSize;
2088 }
2089 } else {
2090 // Nothing resizable, use the min or max of each of the
2091 // springs.
2092 for (int counter = 0; counter < springCount; counter++) {
2093 Spring spring = getSpring(counter);
2094 int sSize;
2095 if (useMin) {
2096 sSize = spring.getMinimumSize(axis);
2097 } else {
2098 sSize = spring.getMaximumSize(axis);
2099 }
2100 spring.setSize(axis, origin, sSize);
2101 origin += sSize;
2102 }
2103 }
2104 }
2105
2106 /**
2107 * Returns the sorted list of SpringDelta's for the current set of
2108 * Springs. The list is ordered based on the amount of flexibility of
2109 * the springs.
2110 */
2111 private List<SpringDelta> buildResizableList(int axis,
2112 boolean useMin) {
2113 // First pass, figure out what is resizable
2114 int size = springs.size();
2115 List<SpringDelta> sorted = new ArrayList<SpringDelta>(size);
2116 for (int counter = 0; counter < size; counter++) {
2117 Spring spring = getSpring(counter);
2118 int sDelta;
2119 if (useMin) {
2120 sDelta = spring.getPreferredSize(axis) -
2121 spring.getMinimumSize(axis);
2122 } else {
2123 sDelta = spring.getMaximumSize(axis) -
2124 spring.getPreferredSize(axis);
2125 }
2126 if (sDelta > 0) {
2127 sorted.add(new SpringDelta(counter, sDelta));
2128 }
2129 }
2130 Collections.sort(sorted);
2131 return sorted;
2132 }
2133
2134 private int indexOfNextNonZeroSpring(
2135 int index, boolean treatAutopaddingAsZeroSized) {
2136 while (index < springs.size()) {
2137 Spring spring = springs.get(index);
2138 if (!spring.willHaveZeroSize(treatAutopaddingAsZeroSized)) {
2139 return index;
2140 }
2141 index++;
2142 }
2143 return index;
2144 }
2145
2146 @Override
2147 void insertAutopadding(int axis,
2148 List<AutoPreferredGapSpring> leadingPadding,
2149 List<AutoPreferredGapSpring> trailingPadding,
2150 List<ComponentSpring> leading, List<ComponentSpring> trailing,
2151 boolean insert) {
2152 List<AutoPreferredGapSpring> newLeadingPadding =
2153 new ArrayList<AutoPreferredGapSpring>(leadingPadding);
2154 List<AutoPreferredGapSpring> newTrailingPadding =
2155 new ArrayList<AutoPreferredGapSpring>(1);
2156 List<ComponentSpring> newLeading =
2157 new ArrayList<ComponentSpring>(leading);
2158 List<ComponentSpring> newTrailing = null;
2159 int counter = 0;
2160 // Warning, this must use springs.size, as it may change during the
2161 // loop.
2162 while (counter < springs.size()) {
2163 Spring spring = getSpring(counter);
2164 if (spring instanceof AutoPreferredGapSpring) {
2165 if (newLeadingPadding.size() == 0) {
2166 // Autopadding spring. Set the sources of the
2167 // autopadding spring based on newLeading.
2168 AutoPreferredGapSpring padding =
2169 (AutoPreferredGapSpring)spring;
2170 padding.setSources(newLeading);
2171 newLeading.clear();
2172 counter = indexOfNextNonZeroSpring(counter + 1, true);
2173 if (counter == springs.size()) {
2174 // Last spring in the list, add it to
2175 // trailingPadding.
2176 if (!(padding instanceof
2177 ContainerAutoPreferredGapSpring)) {
2178 trailingPadding.add(padding);
2179 }
2180 } else {
2181 newLeadingPadding.clear();
2182 newLeadingPadding.add(padding);
2183 }
2184 } else {
2185 counter = indexOfNextNonZeroSpring(counter + 1, true);
2186 }
2187 } else {
2188 // Not a padding spring
2189 if (newLeading.size() > 0 && insert) {
2190 // There's leading ComponentSprings, create an
2191 // autopadding spring.
2192 AutoPreferredGapSpring padding =
2193 new AutoPreferredGapSpring();
2194 // Force the newly created spring to be considered
2195 // by NOT incrementing counter
2196 springs.add(counter, padding);
2197 continue;
2198 }
2199 if (spring instanceof ComponentSpring) {
2200 // Spring is a Component, make it the target of any
2201 // leading AutopaddingSpring.
2202 ComponentSpring cSpring = (ComponentSpring)spring;
2203 if (!cSpring.isVisible()) {
2204 counter++;
2205 continue;
2206 }
2207 for (AutoPreferredGapSpring gapSpring : newLeadingPadding) {
2208 gapSpring.addTarget(cSpring, axis);
2209 }
2210 newLeading.clear();
2211 newLeadingPadding.clear();
2212 counter = indexOfNextNonZeroSpring(counter + 1, false);
2213 if (counter == springs.size()) {
2214 // Last Spring, add it to trailing
2215 trailing.add(cSpring);
2216 } else {
2217 // Not that last Spring, add it to leading
2218 newLeading.add(cSpring);
2219 }
2220 } else if (spring instanceof Group) {
2221 // Forward call to child Group
2222 if (newTrailing == null) {
2223 newTrailing = new ArrayList<ComponentSpring>(1);
2224 } else {
2225 newTrailing.clear();
2226 }
2227 newTrailingPadding.clear();
2228 ((Group)spring).insertAutopadding(axis,
2229 newLeadingPadding, newTrailingPadding,
2230 newLeading, newTrailing, insert);
2231 newLeading.clear();
2232 newLeadingPadding.clear();
2233 counter = indexOfNextNonZeroSpring(
2234 counter + 1, (newTrailing.size() == 0));
2235 if (counter == springs.size()) {
2236 trailing.addAll(newTrailing);
2237 trailingPadding.addAll(newTrailingPadding);
2238 } else {
2239 newLeading.addAll(newTrailing);
2240 newLeadingPadding.addAll(newTrailingPadding);
2241 }
2242 } else {
2243 // Gap
2244 newLeadingPadding.clear();
2245 newLeading.clear();
2246 counter++;
2247 }
2248 }
2249 }
2250 }
2251
2252 int getBaseline() {
2253 if (baselineSpring != null) {
2254 int baseline = baselineSpring.getBaseline();
2255 if (baseline >= 0) {
2256 int size = 0;
2257 for (Spring spring : springs) {
2258 if (spring == baselineSpring) {
2259 return size + baseline;
2260 } else {
2261 size += spring.getPreferredSize(VERTICAL);
2262 }
2263 }
2264 }
2265 }
2266 return -1;
2267 }
2268
2269 BaselineResizeBehavior getBaselineResizeBehavior() {
2270 if (isResizable(VERTICAL)) {
2271 if (!baselineSpring.isResizable(VERTICAL)) {
2272 // Spring to use for baseline isn't resizable. In this case
2273 // baseline resize behavior can be determined based on how
2274 // preceeding springs resize.
2275 boolean leadingResizable = false;
2276 for (Spring spring : springs) {
2277 if (spring == baselineSpring) {
2278 break;
2279 } else if (spring.isResizable(VERTICAL)) {
2280 leadingResizable = true;
2281 break;
2282 }
2283 }
2284 boolean trailingResizable = false;
2285 for (int i = springs.size() - 1; i >= 0; i--) {
2286 Spring spring = springs.get(i);
2287 if (spring == baselineSpring) {
2288 break;
2289 }
2290 if (spring.isResizable(VERTICAL)) {
2291 trailingResizable = true;
2292 break;
2293 }
2294 }
2295 if (leadingResizable && !trailingResizable) {
2296 return BaselineResizeBehavior.CONSTANT_DESCENT;
2297 } else if (!leadingResizable && trailingResizable) {
2298 return BaselineResizeBehavior.CONSTANT_ASCENT;
2299 }
2300 // If we get here, both leading and trailing springs are
2301 // resizable. Fall through to OTHER.
2302 } else {
2303 BaselineResizeBehavior brb = baselineSpring.getBaselineResizeBehavior();
2304 if (brb == BaselineResizeBehavior.CONSTANT_ASCENT) {
2305 for (Spring spring : springs) {
2306 if (spring == baselineSpring) {
2307 return BaselineResizeBehavior.CONSTANT_ASCENT;
2308 }
2309 if (spring.isResizable(VERTICAL)) {
2310 return BaselineResizeBehavior.OTHER;
2311 }
2312 }
2313 } else if (brb == BaselineResizeBehavior.CONSTANT_DESCENT) {
2314 for (int i = springs.size() - 1; i >= 0; i--) {
2315 Spring spring = springs.get(i);
2316 if (spring == baselineSpring) {
2317 return BaselineResizeBehavior.CONSTANT_DESCENT;
2318 }
2319 if (spring.isResizable(VERTICAL)) {
2320 return BaselineResizeBehavior.OTHER;
2321 }
2322 }
2323 }
2324 }
2325 return BaselineResizeBehavior.OTHER;
2326 }
2327 // Not resizable, treat as constant_ascent
2328 return BaselineResizeBehavior.CONSTANT_ASCENT;
2329 }
2330
2331 private void checkPreferredGapValues(int pref, int max) {
2332 if ((pref < 0 && pref != DEFAULT_SIZE && pref != PREFERRED_SIZE) ||
2333 (max < 0 && max != DEFAULT_SIZE && max != PREFERRED_SIZE)||
2334 (pref >= 0 && max >= 0 && pref > max)) {
2335 throw new IllegalArgumentException(
2336 "Pref and max must be either DEFAULT_SIZE, " +
2337 "PREFERRED_SIZE, or >= 0 and pref <= max");
2338 }
2339 }
2340 }
2341
2342
2343 /**
2344 * Used by SequentialGroup in calculating resizability of springs.
2345 */
2346 private static final class SpringDelta implements Comparable<SpringDelta> {
2347 // Original index.
2348 public final int index;
2349 // Delta, one of pref - min or max - pref.
2350 public int delta;
2351
2352 public SpringDelta(int index, int delta) {
2353 this.index = index;
2354 this.delta = delta;
2355 }
2356
2357 public int compareTo(SpringDelta o) {
2358 return delta - o.delta;
2359 }
2360
2361 public String toString() {
2362 return super.toString() + "[index=" + index + ", delta=" +
2363 delta + "]";
2364 }
2365 }
2366
2367
2368 /**
2369 * A {@code Group} that aligns and sizes it's children.
2370 * {@code ParallelGroup} aligns it's children in
2371 * four possible ways: along the baseline, centered, anchored to the
2372 * leading edge, or anchored to the trailing edge.
2373 * <h3>Baseline</h3>
2374 * A {@code ParallelGroup} that aligns it's children along the
2375 * baseline must first decide where the baseline is
2376 * anchored. The baseline can either be anchored to the top, or
2377 * anchored to the bottom of the group. That is, the distance between the
2378 * baseline and the beginning of the group can be a constant
2379 * distance, or the distance between the end of the group and the
2380 * baseline can be a constant distance. The possible choices
2381 * correspond to the {@code BaselineResizeBehavior} constants
2382 * {@link
2383 * java.awt.Component.BaselineResizeBehavior#CONSTANT_ASCENT CONSTANT_ASCENT} and
2384 * {@link
2385 * java.awt.Component.BaselineResizeBehavior#CONSTANT_DESCENT CONSTANT_DESCENT}.
2386 * <p>
2387 * The baseline anchor may be explicitly specified by the
2388 * {@code createBaselineGroup} method, or determined based on the elements.
2389 * If not explicitly specified, the baseline will be anchored to
2390 * the bottom if all the elements with a baseline, and that are
2391 * aligned to the baseline, have a baseline resize behavior of
2392 * {@code CONSTANT_DESCENT}; otherwise the baseline is anchored to the top
2393 * of the group.
2394 * <p>
2395 * Elements aligned to the baseline are resizable if they have have
2396 * a baseline resize behavior of {@code CONSTANT_ASCENT} or
2397 * {@code CONSTANT_DESCENT}. Elements with a baseline resize
2398 * behavior of {@code OTHER} or {@code CENTER_OFFSET} are not resizable.
2399 * <p>
2400 * The baseline is calculated based on the preferred height of each
2401 * of the elements that have a baseline. The baseline is
2402 * calculated using the following algorithm:
2403 * {@code max(maxNonBaselineHeight, maxAscent + maxDescent)}, where the
2404 * {@code maxNonBaselineHeight} is the maximum height of all elements
2405 * that do not have a baseline, or are not aligned along the baseline.
2406 * {@code maxAscent} is the maximum ascent (baseline) of all elements that
2407 * have a baseline and are aligned along the baseline.
2408 * {@code maxDescent} is the maximum descent (preferred height - baseline)
2409 * of all elements that have a baseline and are aligned along the baseline.
2410 * <p>
2411 * A {@code ParallelGroup} that aligns it's elements along the baseline
2412 * is only useful along the vertical axis. If you create a
2413 * baseline group and use it along the horizontal axis an
2414 * {@code IllegalStateException} is thrown when you ask
2415 * {@code GroupLayout} for the minimum, preferred or maximum size or
2416 * attempt to layout the components.
2417 * <p>
2418 * Elements that are not aligned to the baseline and smaller than the size
2419 * of the {@code ParallelGroup} are positioned in one of three
2420 * ways: centered, anchored to the leading edge, or anchored to the
2421 * trailing edge.
2422 *
2423 * <h3>Non-baseline {@code ParallelGroup}</h3>
2424 * {@code ParallelGroup}s created with an alignment other than
2425 * {@code BASELINE} align elements that are smaller than the size
2426 * of the group in one of three ways: centered, anchored to the
2427 * leading edge, or anchored to the trailing edge.
2428 * <p>
2429 * The leading edge is based on the axis and {@code
2430 * ComponentOrientation}. For the vertical axis the top edge is
2431 * always the leading edge, and the bottom edge is always the
2432 * trailing edge. When the {@code ComponentOrientation} is {@code
2433 * LEFT_TO_RIGHT}, the leading edge is the left edge and the
2434 * trailing edge the right edge. A {@code ComponentOrientation} of
2435 * {@code RIGHT_TO_LEFT} flips the left and right edges. Child
2436 * elements are aligned based on the specified alignment the
2437 * element was added with. If you do not specify an alignment, the
2438 * alignment specified for the {@code ParallelGroup} is used.
2439 * <p>
2440 * To align elements along the baseline you {@code createBaselineGroup},
2441 * or {@code createParallelGroup} with an alignment of {@code BASELINE}.
2442 * If the group was not created with a baseline alignment, and you attempt
2443 * to add an element specifying a baseline alignment, an
2444 * {@code IllegalArgumentException} is thrown.
2445 *
2446 * @see #createParallelGroup()
2447 * @see #createBaselineGroup(boolean,boolean)
2448 * @since 1.6
2449 */
2450 public class ParallelGroup extends Group {
2451 // How children are layed out.
2452 private final Alignment childAlignment;
2453 // Whether or not we're resizable.
2454 private final boolean resizable;
2455
2456 ParallelGroup(Alignment childAlignment, boolean resizable) {
2457 this.childAlignment = childAlignment;
2458 this.resizable = resizable;
2459 }
2460
2461 /**
2462 * {@inheritDoc}
2463 */
2464 public ParallelGroup addGroup(Group group) {
2465 return (ParallelGroup)super.addGroup(group);
2466 }
2467
2468 /**
2469 * {@inheritDoc}
2470 */
2471 public ParallelGroup addComponent(Component component) {
2472 return (ParallelGroup)super.addComponent(component);
2473 }
2474
2475 /**
2476 * {@inheritDoc}
2477 */
2478 public ParallelGroup addComponent(Component component, int min, int pref,
2479 int max) {
2480 return (ParallelGroup)super.addComponent(component, min, pref, max);
2481 }
2482
2483 /**
2484 * {@inheritDoc}
2485 */
2486 public ParallelGroup addGap(int pref) {
2487 return (ParallelGroup)super.addGap(pref);
2488 }
2489
2490 /**
2491 * {@inheritDoc}
2492 */
2493 public ParallelGroup addGap(int min, int pref, int max) {
2494 return (ParallelGroup)super.addGap(min, pref, max);
2495 }
2496
2497 /**
2498 * Adds a {@code Group} to this {@code ParallelGroup} with the
2499 * specified alignment. If the child is smaller than the
2500 * {@code Group} it is aligned based on the specified
2501 * alignment.
2502 *
2503 * @param alignment the alignment
2504 * @param group the {@code Group} to add
2505 * @return this {@code ParallelGroup}
2506 * @throws IllegalArgumentException if {@code alignment} is
2507 * {@code null}
2508 */
2509 public ParallelGroup addGroup(Alignment alignment, Group group) {
2510 checkChildAlignment(alignment);
2511 group.setAlignment(alignment);
2512 return (ParallelGroup)addSpring(group);
2513 }
2514
2515 /**
2516 * Adds a {@code Component} to this {@code ParallelGroup} with
2517 * the specified alignment.
2518 *
2519 * @param alignment the alignment
2520 * @param component the {@code Component} to add
2521 * @return this {@code Group}
2522 * @throws IllegalArgumentException if {@code alignment} is
2523 * {@code null}
2524 */
2525 public ParallelGroup addComponent(Component component,
2526 Alignment alignment) {
2527 return addComponent(component, alignment, DEFAULT_SIZE, DEFAULT_SIZE,
2528 DEFAULT_SIZE);
2529 }
2530
2531 /**
2532 * Adds a {@code Component} to this {@code ParallelGroup} with the
2533 * specified alignment and size.
2534 *
2535 * @param alignment the alignment
2536 * @param component the {@code Component} to add
2537 * @param min the minimum size
2538 * @param pref the preferred size
2539 * @param max the maximum size
2540 * @throws IllegalArgumentException if {@code alignment} is
2541 * {@code null}
2542 * @return this {@code Group}
2543 */
2544 public ParallelGroup addComponent(Component component,
2545 Alignment alignment, int min, int pref, int max) {
2546 checkChildAlignment(alignment);
2547 ComponentSpring spring = new ComponentSpring(component,
2548 min, pref, max);
2549 spring.setAlignment(alignment);
2550 return (ParallelGroup)addSpring(spring);
2551 }
2552
2553 boolean isResizable() {
2554 return resizable;
2555 }
2556
2557 int operator(int a, int b) {
2558 return Math.max(a, b);
2559 }
2560
2561 int calculateMinimumSize(int axis) {
2562 if (!isResizable()) {
2563 return getPreferredSize(axis);
2564 }
2565 return super.calculateMinimumSize(axis);
2566 }
2567
2568 int calculateMaximumSize(int axis) {
2569 if (!isResizable()) {
2570 return getPreferredSize(axis);
2571 }
2572 return super.calculateMaximumSize(axis);
2573 }
2574
2575 void setValidSize(int axis, int origin, int size) {
2576 for (Spring spring : springs) {
2577 setChildSize(spring, axis, origin, size);
2578 }
2579 }
2580
2581 void setChildSize(Spring spring, int axis, int origin, int size) {
2582 Alignment alignment = spring.getAlignment();
2583 int springSize = Math.min(
2584 Math.max(spring.getMinimumSize(axis), size),
2585 spring.getMaximumSize(axis));
2586 if (alignment == null) {
2587 alignment = childAlignment;
2588 }
2589 switch (alignment) {
2590 case TRAILING:
2591 spring.setSize(axis, origin + size - springSize,
2592 springSize);
2593 break;
2594 case CENTER:
2595 spring.setSize(axis, origin +
2596 (size - springSize) / 2,springSize);
2597 break;
2598 default: // LEADING, or BASELINE
2599 spring.setSize(axis, origin, springSize);
2600 break;
2601 }
2602 }
2603
2604 @Override
2605 void insertAutopadding(int axis,
2606 List<AutoPreferredGapSpring> leadingPadding,
2607 List<AutoPreferredGapSpring> trailingPadding,
2608 List<ComponentSpring> leading, List<ComponentSpring> trailing,
2609 boolean insert) {
2610 for (Spring spring : springs) {
2611 if (spring instanceof ComponentSpring) {
2612 if (((ComponentSpring)spring).isVisible()) {
2613 for (AutoPreferredGapSpring gapSpring :
2614 leadingPadding) {
2615 gapSpring.addTarget((ComponentSpring)spring, axis);
2616 }
2617 trailing.add((ComponentSpring)spring);
2618 }
2619 } else if (spring instanceof Group) {
2620 ((Group)spring).insertAutopadding(axis, leadingPadding,
2621 trailingPadding, leading, trailing, insert);
2622 } else if (spring instanceof AutoPreferredGapSpring) {
2623 ((AutoPreferredGapSpring)spring).setSources(leading);
2624 trailingPadding.add((AutoPreferredGapSpring)spring);
2625 }
2626 }
2627 }
2628
2629 private void checkChildAlignment(Alignment alignment) {
2630 checkChildAlignment(alignment, (this instanceof BaselineGroup));
2631 }
2632
2633 private void checkChildAlignment(Alignment alignment,
2634 boolean allowsBaseline) {
2635 if (alignment == null) {
2636 throw new IllegalArgumentException("Alignment must be non-null");
2637 }
2638 if (!allowsBaseline && alignment == Alignment.BASELINE) {
2639 throw new IllegalArgumentException("Alignment must be one of:" +
2640 "LEADING, TRAILING or CENTER");
2641 }
2642 }
2643 }
2644
2645
2646 /**
2647 * An extension of {@code ParallelGroup} that aligns its
2648 * constituent {@code Spring}s along the baseline.
2649 */
2650 private class BaselineGroup extends ParallelGroup {
2651 // Whether or not all child springs have a baseline
2652 private boolean allSpringsHaveBaseline;
2653
2654 // max(spring.getBaseline()) of all springs aligned along the baseline
2655 // that have a baseline
2656 private int prefAscent;
2657
2658 // max(spring.getPreferredSize().height - spring.getBaseline()) of all
2659 // springs aligned along the baseline that have a baseline
2660 private int prefDescent;
2661
2662 // Whether baselineAnchoredToTop was explicitly set
2663 private boolean baselineAnchorSet;
2664
2665 // Whether the baseline is anchored to the top or the bottom.
2666 // If anchored to the top the baseline is always at prefAscent,
2667 // otherwise the baseline is at (height - prefDescent)
2668 private boolean baselineAnchoredToTop;
2669
2670 // Whether or not the baseline has been calculated.
2671 private boolean calcedBaseline;
2672
2673 BaselineGroup(boolean resizable) {
2674 super(Alignment.LEADING, resizable);
2675 prefAscent = prefDescent = -1;
2676 calcedBaseline = false;
2677 }
2678
2679 BaselineGroup(boolean resizable, boolean baselineAnchoredToTop) {
2680 this(resizable);
2681 this.baselineAnchoredToTop = baselineAnchoredToTop;
2682 baselineAnchorSet = true;
2683 }
2684
2685 void unset() {
2686 super.unset();
2687 prefAscent = prefDescent = -1;
2688 calcedBaseline = false;
2689 }
2690
2691 void setValidSize(int axis, int origin, int size) {
2692 checkAxis(axis);
2693 if (prefAscent == -1) {
2694 super.setValidSize(axis, origin, size);
2695 } else {
2696 // do baseline layout
2697 baselineLayout(origin, size);
2698 }
2699 }
2700
2701 int calculateSize(int axis, int type) {
2702 checkAxis(axis);
2703 if (!calcedBaseline) {
2704 calculateBaselineAndResizeBehavior();
2705 }
2706 if (type == MIN_SIZE) {
2707 return calculateMinSize();
2708 }
2709 if (type == MAX_SIZE) {
2710 return calculateMaxSize();
2711 }
2712 if (allSpringsHaveBaseline) {
2713 return prefAscent + prefDescent;
2714 }
2715 return Math.max(prefAscent + prefDescent,
2716 super.calculateSize(axis, type));
2717 }
2718
2719 private void calculateBaselineAndResizeBehavior() {
2720 // calculate baseline
2721 prefAscent = 0;
2722 prefDescent = 0;
2723 int baselineSpringCount = 0;
2724 BaselineResizeBehavior resizeBehavior = null;
2725 for (Spring spring : springs) {
2726 if (spring.getAlignment() == null ||
2727 spring.getAlignment() == Alignment.BASELINE) {
2728 int baseline = spring.getBaseline();
2729 if (baseline >= 0) {
2730 if (spring.isResizable(VERTICAL)) {
2731 BaselineResizeBehavior brb = spring.
2732 getBaselineResizeBehavior();
2733 if (resizeBehavior == null) {
2734 resizeBehavior = brb;
2735 } else if (brb != resizeBehavior) {
2736 resizeBehavior = BaselineResizeBehavior.
2737 CONSTANT_ASCENT;
2738 }
2739 }
2740 prefAscent = Math.max(prefAscent, baseline);
2741 prefDescent = Math.max(prefDescent, spring.
2742 getPreferredSize(VERTICAL) - baseline);
2743 baselineSpringCount++;
2744 }
2745 }
2746 }
2747 if (!baselineAnchorSet) {
2748 if (resizeBehavior == BaselineResizeBehavior.CONSTANT_DESCENT){
2749 this.baselineAnchoredToTop = false;
2750 } else {
2751 this.baselineAnchoredToTop = true;
2752 }
2753 }
2754 allSpringsHaveBaseline = (baselineSpringCount == springs.size());
2755 calcedBaseline = true;
2756 }
2757
2758 private int calculateMaxSize() {
2759 int maxAscent = prefAscent;
2760 int maxDescent = prefDescent;
2761 int nonBaselineMax = 0;
2762 for (Spring spring : springs) {
2763 int baseline;
2764 int springMax = spring.getMaximumSize(VERTICAL);
2765 if ((spring.getAlignment() == null ||
2766 spring.getAlignment() == Alignment.BASELINE) &&
2767 (baseline = spring.getBaseline()) >= 0) {
2768 int springPref = spring.getPreferredSize(VERTICAL);
2769 if (springPref != springMax) {
2770 switch (spring.getBaselineResizeBehavior()) {
2771 case CONSTANT_ASCENT:
2772 if (baselineAnchoredToTop) {
2773 maxDescent = Math.max(maxDescent,
2774 springMax - baseline);
2775 }
2776 break;
2777 case CONSTANT_DESCENT:
2778 if (!baselineAnchoredToTop) {
2779 maxAscent = Math.max(maxAscent,
2780 springMax - springPref + baseline);
2781 }
2782 break;
2783 default: // CENTER_OFFSET and OTHER, not resizable
2784 break;
2785 }
2786 }
2787 } else {
2788 // Not aligned along the baseline, or no baseline.
2789 nonBaselineMax = Math.max(nonBaselineMax, springMax);
2790 }
2791 }
2792 return Math.max(nonBaselineMax, maxAscent + maxDescent);
2793 }
2794
2795 private int calculateMinSize() {
2796 int minAscent = 0;
2797 int minDescent = 0;
2798 int nonBaselineMin = 0;
2799 if (baselineAnchoredToTop) {
2800 minAscent = prefAscent;
2801 } else {
2802 minDescent = prefDescent;
2803 }
2804 for (Spring spring : springs) {
2805 int springMin = spring.getMinimumSize(VERTICAL);
2806 int baseline;
2807 if ((spring.getAlignment() == null ||
2808 spring.getAlignment() == Alignment.BASELINE) &&
2809 (baseline = spring.getBaseline()) >= 0) {
2810 int springPref = spring.getPreferredSize(VERTICAL);
2811 BaselineResizeBehavior brb = spring.
2812 getBaselineResizeBehavior();
2813 switch (brb) {
2814 case CONSTANT_ASCENT:
2815 if (baselineAnchoredToTop) {
2816 minDescent = Math.max(springMin - baseline,
2817 minDescent);
2818 } else {
2819 minAscent = Math.max(baseline, minAscent);
2820 }
2821 break;
2822 case CONSTANT_DESCENT:
2823 if (!baselineAnchoredToTop) {
2824 minAscent = Math.max(
2825 baseline - (springPref - springMin),
2826 minAscent);
2827 } else {
2828 minDescent = Math.max(springPref - baseline,
2829 minDescent);
2830 }
2831 break;
2832 default:
2833 // CENTER_OFFSET and OTHER are !resizable, use
2834 // the preferred size.
2835 minAscent = Math.max(baseline, minAscent);
2836 minDescent = Math.max(springPref - baseline,
2837 minDescent);
2838 break;
2839 }
2840 } else {
2841 // Not aligned along the baseline, or no baseline.
2842 nonBaselineMin = Math.max(nonBaselineMin, springMin);
2843 }
2844 }
2845 return Math.max(nonBaselineMin, minAscent + minDescent);
2846 }
2847
2848 /**
2849 * Lays out springs that have a baseline along the baseline. All
2850 * others are centered.
2851 */
2852 private void baselineLayout(int origin, int size) {
2853 int ascent;
2854 int descent;
2855 if (baselineAnchoredToTop) {
2856 ascent = prefAscent;
2857 descent = size - ascent;
2858 } else {
2859 ascent = size - prefDescent;
2860 descent = prefDescent;
2861 }
2862 for (Spring spring : springs) {
2863 Alignment alignment = spring.getAlignment();
2864 if (alignment == null || alignment == Alignment.BASELINE) {
2865 int baseline = spring.getBaseline();
2866 if (baseline >= 0) {
2867 int springMax = spring.getMaximumSize(VERTICAL);
2868 int springPref = spring.getPreferredSize(VERTICAL);
2869 int height = springPref;
2870 int y;
2871 switch(spring.getBaselineResizeBehavior()) {
2872 case CONSTANT_ASCENT:
2873 y = origin + ascent - baseline;
2874 height = Math.min(descent, springMax -
2875 baseline) + baseline;
2876 break;
2877 case CONSTANT_DESCENT:
2878 height = Math.min(ascent, springMax -
2879 springPref + baseline) +
2880 (springPref - baseline);
2881 y = origin + ascent +
2882 (springPref - baseline) - height;
2883 break;
2884 default: // CENTER_OFFSET & OTHER, not resizable
2885 y = origin + ascent - baseline;
2886 break;
2887 }
2888 spring.setSize(VERTICAL, y, height);
2889 } else {
2890 setChildSize(spring, VERTICAL, origin, size);
2891 }
2892 } else {
2893 setChildSize(spring, VERTICAL, origin, size);
2894 }
2895 }
2896 }
2897
2898 int getBaseline() {
2899 if (springs.size() > 1) {
2900 // Force the baseline to be calculated
2901 getPreferredSize(VERTICAL);
2902 return prefAscent;
2903 } else if (springs.size() == 1) {
2904 return springs.get(0).getBaseline();
2905 }
2906 return -1;
2907 }
2908
2909 BaselineResizeBehavior getBaselineResizeBehavior() {
2910 if (springs.size() == 1) {
2911 return springs.get(0).getBaselineResizeBehavior();
2912 }
2913 if (baselineAnchoredToTop) {
2914 return BaselineResizeBehavior.CONSTANT_ASCENT;
2915 }
2916 return BaselineResizeBehavior.CONSTANT_DESCENT;
2917 }
2918
2919 // If the axis is VERTICAL, throws an IllegalStateException
2920 private void checkAxis(int axis) {
2921 if (axis == HORIZONTAL) {
2922 throw new IllegalStateException(
2923 "Baseline must be used along vertical axis");
2924 }
2925 }
2926 }
2927
2928
2929 private final class ComponentSpring extends Spring {
2930 private Component component;
2931 private int origin;
2932
2933 // min/pref/max are either a value >= 0 or one of
2934 // DEFAULT_SIZE or PREFERRED_SIZE
2935 private final int min;
2936 private final int pref;
2937 private final int max;
2938
2939 // Baseline for the component, computed as necessary.
2940 private int baseline = -1;
2941
2942 // Whether or not the size has been requested yet.
2943 private boolean installed;
2944
2945 private ComponentSpring(Component component, int min, int pref,
2946 int max) {
2947 this.component = component;
2948 if (component == null) {
2949 throw new IllegalArgumentException(
2950 "Component must be non-null");
2951 }
2952
2953 checkSize(min, pref, max, true);
2954
2955 this.min = min;
2956 this.max = max;
2957 this.pref = pref;
2958
2959 // getComponentInfo makes sure component is a child of the
2960 // Container GroupLayout is the LayoutManager for.
2961 getComponentInfo(component);
2962 }
2963
2964 int calculateMinimumSize(int axis) {
2965 if (isLinked(axis)) {
2966 return getLinkSize(axis, MIN_SIZE);
2967 }
2968 return calculateNonlinkedMinimumSize(axis);
2969 }
2970
2971 int calculatePreferredSize(int axis) {
2972 if (isLinked(axis)) {
2973 return getLinkSize(axis, PREF_SIZE);
2974 }
2975 int min = getMinimumSize(axis);
2976 int pref = calculateNonlinkedPreferredSize(axis);
2977 int max = getMaximumSize(axis);
2978 return Math.min(max, Math.max(min, pref));
2979 }
2980
2981 int calculateMaximumSize(int axis) {
2982 if (isLinked(axis)) {
2983 return getLinkSize(axis, MAX_SIZE);
2984 }
2985 return Math.max(getMinimumSize(axis),
2986 calculateNonlinkedMaximumSize(axis));
2987 }
2988
2989 boolean isVisible() {
2990 return getComponentInfo(getComponent()).isVisible();
2991 }
2992
2993 int calculateNonlinkedMinimumSize(int axis) {
2994 if (!isVisible()) {
2995 return 0;
2996 }
2997 if (min >= 0) {
2998 return min;
2999 }
3000 if (min == PREFERRED_SIZE) {
3001 return calculateNonlinkedPreferredSize(axis);
3002 }
3003 assert (min == DEFAULT_SIZE);
3004 return getSizeAlongAxis(axis, component.getMinimumSize());
3005 }
3006
3007 int calculateNonlinkedPreferredSize(int axis) {
3008 if (!isVisible()) {
3009 return 0;
3010 }
3011 if (pref >= 0) {
3012 return pref;
3013 }
3014 assert (pref == DEFAULT_SIZE || pref == PREFERRED_SIZE);
3015 return getSizeAlongAxis(axis, component.getPreferredSize());
3016 }
3017
3018 int calculateNonlinkedMaximumSize(int axis) {
3019 if (!isVisible()) {
3020 return 0;
3021 }
3022 if (max >= 0) {
3023 return max;
3024 }
3025 if (max == PREFERRED_SIZE) {
3026 return calculateNonlinkedPreferredSize(axis);
3027 }
3028 assert (max == DEFAULT_SIZE);
3029 return getSizeAlongAxis(axis, component.getMaximumSize());
3030 }
3031
3032 private int getSizeAlongAxis(int axis, Dimension size) {
3033 return (axis == HORIZONTAL) ? size.width : size.height;
3034 }
3035
3036 private int getLinkSize(int axis, int type) {
3037 if (!isVisible()) {
3038 return 0;
3039 }
3040 ComponentInfo ci = getComponentInfo(component);
3041 return ci.getLinkSize(axis, type);
3042 }
3043
3044 void setSize(int axis, int origin, int size) {
3045 super.setSize(axis, origin, size);
3046 this.origin = origin;
3047 if (size == UNSET) {
3048 baseline = -1;
3049 }
3050 }
3051
3052 int getOrigin() {
3053 return origin;
3054 }
3055
3056 void setComponent(Component component) {
3057 this.component = component;
3058 }
3059
3060 Component getComponent() {
3061 return component;
3062 }
3063
3064 int getBaseline() {
3065 if (baseline == -1) {
3066 Spring horizontalSpring = getComponentInfo(component).
3067 horizontalSpring;
3068 int width = horizontalSpring.getPreferredSize(HORIZONTAL);
3069 int height = getPreferredSize(VERTICAL);
3070 if (width > 0 && height > 0) {
3071 baseline = component.getBaseline(width, height);
3072 }
3073 }
3074 return baseline;
3075 }
3076
3077 BaselineResizeBehavior getBaselineResizeBehavior() {
3078 return getComponent().getBaselineResizeBehavior();
3079 }
3080
3081 private boolean isLinked(int axis) {
3082 return getComponentInfo(component).isLinked(axis);
3083 }
3084
3085 void installIfNecessary(int axis) {
3086 if (!installed) {
3087 installed = true;
3088 if (axis == HORIZONTAL) {
3089 getComponentInfo(component).horizontalSpring = this;
3090 } else {
3091 getComponentInfo(component).verticalSpring = this;
3092 }
3093 }
3094 }
3095
3096 @Override
3097 boolean willHaveZeroSize(boolean treatAutopaddingAsZeroSized) {
3098 return !isVisible();
3099 }
3100 }
3101
3102
3103 /**
3104 * Spring representing the preferred distance between two components.
3105 */
3106 private class PreferredGapSpring extends Spring {
3107 private final JComponent source;
3108 private final JComponent target;
3109 private final ComponentPlacement type;
3110 private final int pref;
3111 private final int max;
3112
3113 PreferredGapSpring(JComponent source, JComponent target,
3114 ComponentPlacement type, int pref, int max) {
3115 this.source = source;
3116 this.target = target;
3117 this.type = type;
3118 this.pref = pref;
3119 this.max = max;
3120 }
3121
3122 int calculateMinimumSize(int axis) {
3123 return getPadding(axis);
3124 }
3125
3126 int calculatePreferredSize(int axis) {
3127 if (pref == DEFAULT_SIZE || pref == PREFERRED_SIZE) {
3128 return getMinimumSize(axis);
3129 }
3130 int min = getMinimumSize(axis);
3131 int max = getMaximumSize(axis);
3132 return Math.min(max, Math.max(min, pref));
3133 }
3134
3135 int calculateMaximumSize(int axis) {
3136 if (max == PREFERRED_SIZE || max == DEFAULT_SIZE) {
3137 return getPadding(axis);
3138 }
3139 return Math.max(getMinimumSize(axis), max);
3140 }
3141
3142 private int getPadding(int axis) {
3143 int position;
3144 if (axis == HORIZONTAL) {
3145 position = SwingConstants.EAST;
3146 } else {
3147 position = SwingConstants.SOUTH;
3148 }
3149 return getLayoutStyle0().getPreferredGap(source,
3150 target, type, position, host);
3151 }
3152
3153 @Override
3154 boolean willHaveZeroSize(boolean treatAutopaddingAsZeroSized) {
3155 return false;
3156 }
3157 }
3158
3159
3160 /**
3161 * Spring represented a certain amount of space.
3162 */
3163 private class GapSpring extends Spring {
3164 private final int min;
3165 private final int pref;
3166 private final int max;
3167
3168 GapSpring(int min, int pref, int max) {
3169 checkSize(min, pref, max, false);
3170 this.min = min;
3171 this.pref = pref;
3172 this.max = max;
3173 }
3174
3175 int calculateMinimumSize(int axis) {
3176 if (min == PREFERRED_SIZE) {
3177 return getPreferredSize(axis);
3178 }
3179 return min;
3180 }
3181
3182 int calculatePreferredSize(int axis) {
3183 return pref;
3184 }
3185
3186 int calculateMaximumSize(int axis) {
3187 if (max == PREFERRED_SIZE) {
3188 return getPreferredSize(axis);
3189 }
3190 return max;
3191 }
3192
3193 @Override
3194 boolean willHaveZeroSize(boolean treatAutopaddingAsZeroSized) {
3195 return false;
3196 }
3197 }
3198
3199
3200 /**
3201 * Spring reprensenting the distance between any number of sources and
3202 * targets. The targets and sources are computed during layout. An
3203 * instance of this can either be dynamically created when
3204 * autocreatePadding is true, or explicitly created by the developer.
3205 */
3206 private class AutoPreferredGapSpring extends Spring {
3207 List<ComponentSpring> sources;
3208 ComponentSpring source;
3209 private List<AutoPreferredGapMatch> matches;
3210 int size;
3211 int lastSize;
3212 private final int pref;
3213 private final int max;
3214 // Type of gap
3215 private ComponentPlacement type;
3216 private boolean userCreated;
3217
3218 private AutoPreferredGapSpring() {
3219 this.pref = PREFERRED_SIZE;
3220 this.max = PREFERRED_SIZE;
3221 this.type = ComponentPlacement.RELATED;
3222 }
3223
3224 AutoPreferredGapSpring(int pref, int max) {
3225 this.pref = pref;
3226 this.max = max;
3227 }
3228
3229 AutoPreferredGapSpring(ComponentPlacement type, int pref, int max) {
3230 this.type = type;
3231 this.pref = pref;
3232 this.max = max;
3233 this.userCreated = true;
3234 }
3235
3236 public void setSource(ComponentSpring source) {
3237 this.source = source;
3238 }
3239
3240 public void setSources(List<ComponentSpring> sources) {
3241 this.sources = new ArrayList<ComponentSpring>(sources);
3242 }
3243
3244 public void setUserCreated(boolean userCreated) {
3245 this.userCreated = userCreated;
3246 }
3247
3248 public boolean getUserCreated() {
3249 return userCreated;
3250 }
3251
3252 void unset() {
3253 lastSize = getSize();
3254 super.unset();
3255 size = 0;
3256 }
3257
3258 public void reset() {
3259 size = 0;
3260 sources = null;
3261 source = null;
3262 matches = null;
3263 }
3264
3265 public void calculatePadding(int axis) {
3266 size = UNSET;
3267 int maxPadding = UNSET;
3268 if (matches != null) {
3269 LayoutStyle p = getLayoutStyle0();
3270 int position;
3271 if (axis == HORIZONTAL) {
3272 if (isLeftToRight()) {
3273 position = SwingConstants.EAST;
3274 } else {
3275 position = SwingConstants.WEST;
3276 }
3277 } else {
3278 position = SwingConstants.SOUTH;
3279 }
3280 for (int i = matches.size() - 1; i >= 0; i--) {
3281 AutoPreferredGapMatch match = matches.get(i);
3282 maxPadding = Math.max(maxPadding,
3283 calculatePadding(p, position, match.source,
3284 match.target));
3285 }
3286 }
3287 if (size == UNSET) {
3288 size = 0;
3289 }
3290 if (maxPadding == UNSET) {
3291 maxPadding = 0;
3292 }
3293 if (lastSize != UNSET) {
3294 size += Math.min(maxPadding, lastSize);
3295 }
3296 }
3297
3298 private int calculatePadding(LayoutStyle p, int position,
3299 ComponentSpring source,
3300 ComponentSpring target) {
3301 int delta = target.getOrigin() - (source.getOrigin() +
3302 source.getSize());
3303 if (delta >= 0) {
3304 int padding;
3305 if ((source.getComponent() instanceof JComponent) &&
3306 (target.getComponent() instanceof JComponent)) {
3307 padding = p.getPreferredGap(
3308 (JComponent)source.getComponent(),
3309 (JComponent)target.getComponent(), type, position,
3310 host);
3311 } else {
3312 padding = 10;
3313 }
3314 if (padding > delta) {
3315 size = Math.max(size, padding - delta);
3316 }
3317 return padding;
3318 }
3319 return 0;
3320 }
3321
3322 public void addTarget(ComponentSpring spring, int axis) {
3323 int oAxis = (axis == HORIZONTAL) ? VERTICAL : HORIZONTAL;
3324 if (source != null) {
3325 if (areParallelSiblings(source.getComponent(),
3326 spring.getComponent(), oAxis)) {
3327 addValidTarget(source, spring);
3328 }
3329 } else {
3330 Component component = spring.getComponent();
3331 for (int counter = sources.size() - 1; counter >= 0;
3332 counter--){
3333 ComponentSpring source = sources.get(counter);
3334 if (areParallelSiblings(source.getComponent(),
3335 component, oAxis)) {
3336 addValidTarget(source, spring);
3337 }
3338 }
3339 }
3340 }
3341
3342 private void addValidTarget(ComponentSpring source,
3343 ComponentSpring target) {
3344 if (matches == null) {
3345 matches = new ArrayList<AutoPreferredGapMatch>(1);
3346 }
3347 matches.add(new AutoPreferredGapMatch(source, target));
3348 }
3349
3350 int calculateMinimumSize(int axis) {
3351 return size;
3352 }
3353
3354 int calculatePreferredSize(int axis) {
3355 if (pref == PREFERRED_SIZE || pref == DEFAULT_SIZE) {
3356 return size;
3357 }
3358 return Math.max(size, pref);
3359 }
3360
3361 int calculateMaximumSize(int axis) {
3362 if (max >= 0) {
3363 return Math.max(getPreferredSize(axis), max);
3364 }
3365 return size;
3366 }
3367
3368 String getMatchDescription() {
3369 return (matches == null) ? "" : matches.toString();
3370 }
3371
3372 public String toString() {
3373 return super.toString() + getMatchDescription();
3374 }
3375
3376 @Override
3377 boolean willHaveZeroSize(boolean treatAutopaddingAsZeroSized) {
3378 return treatAutopaddingAsZeroSized;
3379 }
3380 }
3381
3382
3383 /**
3384 * Represents two springs that should have autopadding inserted between
3385 * them.
3386 */
3387 private final static class AutoPreferredGapMatch {
3388 public final ComponentSpring source;
3389 public final ComponentSpring target;
3390
3391 AutoPreferredGapMatch(ComponentSpring source, ComponentSpring target) {
3392 this.source = source;
3393 this.target = target;
3394 }
3395
3396 private String toString(ComponentSpring spring) {
3397 return spring.getComponent().getName();
3398 }
3399
3400 public String toString() {
3401 return "[" + toString(source) + "-" + toString(target) + "]";
3402 }
3403 }
3404
3405
3406 /**
3407 * An extension of AutopaddingSpring used for container level padding.
3408 */
3409 private class ContainerAutoPreferredGapSpring extends
3410 AutoPreferredGapSpring {
3411 private List<ComponentSpring> targets;
3412
3413 ContainerAutoPreferredGapSpring() {
3414 super();
3415 setUserCreated(true);
3416 }
3417
3418 ContainerAutoPreferredGapSpring(int pref, int max) {
3419 super(pref, max);
3420 setUserCreated(true);
3421 }
3422
3423 public void addTarget(ComponentSpring spring, int axis) {
3424 if (targets == null) {
3425 targets = new ArrayList<ComponentSpring>(1);
3426 }
3427 targets.add(spring);
3428 }
3429
3430 public void calculatePadding(int axis) {
3431 LayoutStyle p = getLayoutStyle0();
3432 int maxPadding = 0;
3433 int position;
3434 size = 0;
3435 if (targets != null) {
3436 // Leading
3437 if (axis == HORIZONTAL) {
3438 if (isLeftToRight()) {
3439 position = SwingConstants.WEST;
3440 } else {
3441 position = SwingConstants.EAST;
3442 }
3443 } else {
3444 position = SwingConstants.SOUTH;
3445 }
3446 for (int i = targets.size() - 1; i >= 0; i--) {
3447 ComponentSpring targetSpring = targets.get(i);
3448 int padding = 10;
3449 if (targetSpring.getComponent() instanceof JComponent) {
3450 padding = p.getContainerGap(
3451 (JComponent)targetSpring.getComponent(),
3452 position, host);
3453 maxPadding = Math.max(padding, maxPadding);
3454 padding -= targetSpring.getOrigin();
3455 } else {
3456 maxPadding = Math.max(padding, maxPadding);
3457 }
3458 size = Math.max(size, padding);
3459 }
3460 } else {
3461 // Trailing
3462 if (axis == HORIZONTAL) {
3463 if (isLeftToRight()) {
3464 position = SwingConstants.EAST;
3465 } else {
3466 position = SwingConstants.WEST;
3467 }
3468 } else {
3469 position = SwingConstants.SOUTH;
3470 }
3471 if (sources != null) {
3472 for (int i = sources.size() - 1; i >= 0; i--) {
3473 ComponentSpring sourceSpring = sources.get(i);
3474 maxPadding = Math.max(maxPadding,
3475 updateSize(p, sourceSpring, position));
3476 }
3477 } else if (source != null) {
3478 maxPadding = updateSize(p, source, position);
3479 }
3480 }
3481 if (lastSize != UNSET) {
3482 size += Math.min(maxPadding, lastSize);
3483 }
3484 }
3485
3486 private int updateSize(LayoutStyle p, ComponentSpring sourceSpring,
3487 int position) {
3488 int padding = 10;
3489 if (sourceSpring.getComponent() instanceof JComponent) {
3490 padding = p.getContainerGap(
3491 (JComponent)sourceSpring.getComponent(), position,
3492 host);
3493 }
3494 int delta = Math.max(0, getParent().getSize() -
3495 sourceSpring.getSize() - sourceSpring.getOrigin());
3496 size = Math.max(size, padding - delta);
3497 return padding;
3498 }
3499
3500 String getMatchDescription() {
3501 if (targets != null) {
3502 return "leading: " + targets.toString();
3503 }
3504 if (sources != null) {
3505 return "trailing: " + sources.toString();
3506 }
3507 return "--";
3508 }
3509 }
3510
3511
3512 // LinkInfo contains the set of ComponentInfosthat are linked along a
3513 // particular axis.
3514 private static class LinkInfo {
3515 private final int axis;
3516 private final List<ComponentInfo> linked;
3517 private int size;
3518
3519 LinkInfo(int axis) {
3520 linked = new ArrayList<ComponentInfo>();
3521 size = UNSET;
3522 this.axis = axis;
3523 }
3524
3525 public void add(ComponentInfo child) {
3526 LinkInfo childMaster = child.getLinkInfo(axis, false);
3527 if (childMaster == null) {
3528 linked.add(child);
3529 child.setLinkInfo(axis, this);
3530 } else if (childMaster != this) {
3531 linked.addAll(childMaster.linked);
3532 for (ComponentInfo childInfo : childMaster.linked) {
3533 childInfo.setLinkInfo(axis, this);
3534 }
3535 }
3536 clearCachedSize();
3537 }
3538
3539 public void remove(ComponentInfo info) {
3540 linked.remove(info);
3541 info.setLinkInfo(axis, null);
3542 if (linked.size() == 1) {
3543 linked.get(0).setLinkInfo(axis, null);
3544 }
3545 clearCachedSize();
3546 }
3547
3548 public void clearCachedSize() {
3549 size = UNSET;
3550 }
3551
3552 public int getSize(int axis) {
3553 if (size == UNSET) {
3554 size = calculateLinkedSize(axis);
3555 }
3556 return size;
3557 }
3558
3559 private int calculateLinkedSize(int axis) {
3560 int size = 0;
3561 for (ComponentInfo info : linked) {
3562 ComponentSpring spring;
3563 if (axis == HORIZONTAL) {
3564 spring = info.horizontalSpring;
3565 } else {
3566 assert (axis == VERTICAL);
3567 spring = info.verticalSpring;
3568 }
3569 size = Math.max(size,
3570 spring.calculateNonlinkedPreferredSize(axis));
3571 }
3572 return size;
3573 }
3574 }
3575
3576 /**
3577 * Tracks the horizontal/vertical Springs for a Component.
3578 * This class is also used to handle Springs that have their sizes
3579 * linked.
3580 */
3581 private class ComponentInfo {
3582 // Component being layed out
3583 private Component component;
3584
3585 ComponentSpring horizontalSpring;
3586 ComponentSpring verticalSpring;
3587
3588 // If the component's size is linked to other components, the
3589 // horizontalMaster and/or verticalMaster reference the group of
3590 // linked components.
3591 private LinkInfo horizontalMaster;
3592 private LinkInfo verticalMaster;
3593
3594 private boolean visible;
3595 private Boolean honorsVisibility;
3596
3597 ComponentInfo(Component component) {
3598 this.component = component;
3599 updateVisibility();
3600 }
3601
3602 public void dispose() {
3603 // Remove horizontal/vertical springs
3604 removeSpring(horizontalSpring);
3605 horizontalSpring = null;
3606 removeSpring(verticalSpring);
3607 verticalSpring = null;
3608 // Clean up links
3609 if (horizontalMaster != null) {
3610 horizontalMaster.remove(this);
3611 }
3612 if (verticalMaster != null) {
3613 verticalMaster.remove(this);
3614 }
3615 }
3616
3617 void setHonorsVisibility(Boolean honorsVisibility) {
3618 this.honorsVisibility = honorsVisibility;
3619 }
3620
3621 private void removeSpring(Spring spring) {
3622 if (spring != null) {
3623 ((Group)spring.getParent()).springs.remove(spring);
3624 }
3625 }
3626
3627 public boolean isVisible() {
3628 return visible;
3629 }
3630
3631 /**
3632 * Updates the cached visibility.
3633 *
3634 * @return true if the visibility changed
3635 */
3636 boolean updateVisibility() {
3637 boolean honorsVisibility;
3638 if (this.honorsVisibility == null) {
3639 honorsVisibility = GroupLayout.this.getHonorsVisibility();
3640 } else {
3641 honorsVisibility = this.honorsVisibility;
3642 }
3643 boolean newVisible = (honorsVisibility) ?
3644 component.isVisible() : true;
3645 if (visible != newVisible) {
3646 visible = newVisible;
3647 return true;
3648 }
3649 return false;
3650 }
3651
3652 public void setBounds(Insets insets, int parentWidth, boolean ltr) {
3653 int x = horizontalSpring.getOrigin();
3654 int w = horizontalSpring.getSize();
3655 int y = verticalSpring.getOrigin();
3656 int h = verticalSpring.getSize();
3657
3658 if (!ltr) {
3659 x = parentWidth - x - w;
3660 }
3661 component.setBounds(x + insets.left, y + insets.top, w, h);
3662 }
3663
3664 public void setComponent(Component component) {
3665 this.component = component;
3666 if (horizontalSpring != null) {
3667 horizontalSpring.setComponent(component);
3668 }
3669 if (verticalSpring != null) {
3670 verticalSpring.setComponent(component);
3671 }
3672 }
3673
3674 public Component getComponent() {
3675 return component;
3676 }
3677
3678 /**
3679 * Returns true if this component has its size linked to
3680 * other components.
3681 */
3682 public boolean isLinked(int axis) {
3683 if (axis == HORIZONTAL) {
3684 return horizontalMaster != null;
3685 }
3686 assert (axis == VERTICAL);
3687 return (verticalMaster != null);
3688 }
3689
3690 private void setLinkInfo(int axis, LinkInfo linkInfo) {
3691 if (axis == HORIZONTAL) {
3692 horizontalMaster = linkInfo;
3693 } else {
3694 assert (axis == VERTICAL);
3695 verticalMaster = linkInfo;
3696 }
3697 }
3698
3699 public LinkInfo getLinkInfo(int axis) {
3700 return getLinkInfo(axis, true);
3701 }
3702
3703 private LinkInfo getLinkInfo(int axis, boolean create) {
3704 if (axis == HORIZONTAL) {
3705 if (horizontalMaster == null && create) {
3706 // horizontalMaster field is directly set by adding
3707 // us to the LinkInfo.
3708 new LinkInfo(HORIZONTAL).add(this);
3709 }
3710 return horizontalMaster;
3711 } else {
3712 assert (axis == VERTICAL);
3713 if (verticalMaster == null && create) {
3714 // verticalMaster field is directly set by adding
3715 // us to the LinkInfo.
3716 new LinkInfo(VERTICAL).add(this);
3717 }
3718 return verticalMaster;
3719 }
3720 }
3721
3722 public void clearCachedSize() {
3723 if (horizontalMaster != null) {
3724 horizontalMaster.clearCachedSize();
3725 }
3726 if (verticalMaster != null) {
3727 verticalMaster.clearCachedSize();
3728 }
3729 }
3730
3731 int getLinkSize(int axis, int type) {
3732 if (axis == HORIZONTAL) {
3733 return horizontalMaster.getSize(axis);
3734 } else {
3735 assert (axis == VERTICAL);
3736 return verticalMaster.getSize(axis);
3737 }
3738 }
3739
3740 }
3741}