blob: baf784cde2bc3cdb14d18959c1b9e7bd5a7248de [file] [log] [blame]
J. Duke319a3b92007-12-01 00:00:00 +00001/*
2 * Copyright 1996-2007 Sun Microsystems, Inc. All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Sun designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Sun in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
22 * CA 95054 USA or visit www.sun.com if you need additional information or
23 * have any questions.
24 */
25
26
27package sun.security.ssl;
28
29import java.math.BigInteger;
30import java.security.*;
31
32import javax.crypto.SecretKey;
33import javax.crypto.KeyAgreement;
34import javax.crypto.interfaces.DHPublicKey;
35import javax.crypto.spec.*;
36
37/**
38 * This class implements the Diffie-Hellman key exchange algorithm.
39 * D-H means combining your private key with your partners public key to
40 * generate a number. The peer does the same with its private key and our
41 * public key. Through the magic of Diffie-Hellman we both come up with the
42 * same number. This number is secret (discounting MITM attacks) and hence
43 * called the shared secret. It has the same length as the modulus, e.g. 512
44 * or 1024 bit. Man-in-the-middle attacks are typically countered by an
45 * independent authentication step using certificates (RSA, DSA, etc.).
46 *
47 * The thing to note is that the shared secret is constant for two partners
48 * with constant private keys. This is often not what we want, which is why
49 * it is generally a good idea to create a new private key for each session.
50 * Generating a private key involves one modular exponentiation assuming
51 * suitable D-H parameters are available.
52 *
53 * General usage of this class (TLS DHE case):
54 * . if we are server, call DHCrypt(keyLength,random). This generates
55 * an ephemeral keypair of the request length.
56 * . if we are client, call DHCrypt(modulus, base, random). This
57 * generates an ephemeral keypair using the parameters specified by the server.
58 * . send parameters and public value to remote peer
59 * . receive peers ephemeral public key
60 * . call getAgreedSecret() to calculate the shared secret
61 *
62 * In TLS the server chooses the parameter values itself, the client must use
63 * those sent to it by the server.
64 *
65 * The use of ephemeral keys as described above also achieves what is called
66 * "forward secrecy". This means that even if the authentication keys are
67 * broken at a later date, the shared secret remains secure. The session is
68 * compromised only if the authentication keys are already broken at the
69 * time the key exchange takes place and an active MITM attack is used.
70 * This is in contrast to straightforward encrypting RSA key exchanges.
71 *
72 * @author David Brownell
73 */
74final class DHCrypt {
75
76 // group parameters (prime modulus and generator)
77 private BigInteger modulus; // P (aka N)
78 private BigInteger base; // G (aka alpha)
79
80 // our private key (including private component x)
81 private PrivateKey privateKey;
82
83 // public component of our key, X = (g ^ x) mod p
84 private BigInteger publicValue; // X (aka y)
85
86 /**
87 * Generate a Diffie-Hellman keypair of the specified size.
88 */
89 DHCrypt(int keyLength, SecureRandom random) {
90 try {
91 KeyPairGenerator kpg = JsseJce.getKeyPairGenerator("DiffieHellman");
92 kpg.initialize(keyLength, random);
93 KeyPair kp = kpg.generateKeyPair();
94 privateKey = kp.getPrivate();
95 DHPublicKeySpec spec = getDHPublicKeySpec(kp.getPublic());
96 publicValue = spec.getY();
97 modulus = spec.getP();
98 base = spec.getG();
99 } catch (GeneralSecurityException e) {
100 throw new RuntimeException("Could not generate DH keypair", e);
101 }
102 }
103
104
105 /**
106 * Generate a Diffie-Hellman keypair using the specified parameters.
107 *
108 * @param modulus the Diffie-Hellman modulus P
109 * @param base the Diffie-Hellman base G
110 */
111 DHCrypt(BigInteger modulus, BigInteger base, SecureRandom random) {
112 this.modulus = modulus;
113 this.base = base;
114 try {
115 KeyPairGenerator kpg = JsseJce.getKeyPairGenerator("DiffieHellman");
116 DHParameterSpec params = new DHParameterSpec(modulus, base);
117 kpg.initialize(params, random);
118 KeyPair kp = kpg.generateKeyPair();
119 privateKey = kp.getPrivate();
120 DHPublicKeySpec spec = getDHPublicKeySpec(kp.getPublic());
121 publicValue = spec.getY();
122 } catch (GeneralSecurityException e) {
123 throw new RuntimeException("Could not generate DH keypair", e);
124 }
125 }
126
127 static DHPublicKeySpec getDHPublicKeySpec(PublicKey key) {
128 if (key instanceof DHPublicKey) {
129 DHPublicKey dhKey = (DHPublicKey)key;
130 DHParameterSpec params = dhKey.getParams();
131 return new DHPublicKeySpec(dhKey.getY(), params.getP(), params.getG());
132 }
133 try {
134 KeyFactory factory = JsseJce.getKeyFactory("DH");
135 return (DHPublicKeySpec)factory.getKeySpec
136 (key, DHPublicKeySpec.class);
137 } catch (Exception e) {
138 throw new RuntimeException(e);
139 }
140 }
141
142
143 /** Returns the Diffie-Hellman modulus. */
144 BigInteger getModulus() {
145 return modulus;
146 }
147
148 /** Returns the Diffie-Hellman base (generator). */
149 BigInteger getBase() {
150 return base;
151 }
152
153 /**
154 * Gets the public key of this end of the key exchange.
155 */
156 BigInteger getPublicKey() {
157 return publicValue;
158 }
159
160 /**
161 * Get the secret data that has been agreed on through Diffie-Hellman
162 * key agreement protocol. Note that in the two party protocol, if
163 * the peer keys are already known, no other data needs to be sent in
164 * order to agree on a secret. That is, a secured message may be
165 * sent without any mandatory round-trip overheads.
166 *
167 * <P>It is illegal to call this member function if the private key
168 * has not been set (or generated).
169 *
170 * @param peerPublicKey the peer's public key.
171 * @returns the secret, which is an unsigned big-endian integer
172 * the same size as the Diffie-Hellman modulus.
173 */
174 SecretKey getAgreedSecret(BigInteger peerPublicValue) {
175 try {
176 KeyFactory kf = JsseJce.getKeyFactory("DiffieHellman");
177 DHPublicKeySpec spec =
178 new DHPublicKeySpec(peerPublicValue, modulus, base);
179 PublicKey publicKey = kf.generatePublic(spec);
180 KeyAgreement ka = JsseJce.getKeyAgreement("DiffieHellman");
181 ka.init(privateKey);
182 ka.doPhase(publicKey, true);
183 return ka.generateSecret("TlsPremasterSecret");
184 } catch (GeneralSecurityException e) {
185 throw new RuntimeException("Could not generate secret", e);
186 }
187 }
188
189}