blob: 778a1f186f7566905adf04657c522186296018f6 [file] [log] [blame]
J. Duke319a3b92007-12-01 00:00:00 +00001/*
2 * reserved comment block
3 * DO NOT REMOVE OR ALTER!
4 */
5/*
6 * jmemmgr.c
7 *
8 * Copyright (C) 1991-1997, Thomas G. Lane.
9 * This file is part of the Independent JPEG Group's software.
10 * For conditions of distribution and use, see the accompanying README file.
11 *
12 * This file contains the JPEG system-independent memory management
13 * routines. This code is usable across a wide variety of machines; most
14 * of the system dependencies have been isolated in a separate file.
15 * The major functions provided here are:
16 * * pool-based allocation and freeing of memory;
17 * * policy decisions about how to divide available memory among the
18 * virtual arrays;
19 * * control logic for swapping virtual arrays between main memory and
20 * backing storage.
21 * The separate system-dependent file provides the actual backing-storage
22 * access code, and it contains the policy decision about how much total
23 * main memory to use.
24 * This file is system-dependent in the sense that some of its functions
25 * are unnecessary in some systems. For example, if there is enough virtual
26 * memory so that backing storage will never be used, much of the virtual
27 * array control logic could be removed. (Of course, if you have that much
28 * memory then you shouldn't care about a little bit of unused code...)
29 */
30
31#define JPEG_INTERNALS
32#define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */
33#include "jinclude.h"
34#include "jpeglib.h"
35#include "jmemsys.h" /* import the system-dependent declarations */
36
37#ifndef NO_GETENV
38#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare getenv() */
39extern char * getenv JPP((const char * name));
40#endif
41#endif
42
43
44/*
45 * Some important notes:
46 * The allocation routines provided here must never return NULL.
47 * They should exit to error_exit if unsuccessful.
48 *
49 * It's not a good idea to try to merge the sarray and barray routines,
50 * even though they are textually almost the same, because samples are
51 * usually stored as bytes while coefficients are shorts or ints. Thus,
52 * in machines where byte pointers have a different representation from
53 * word pointers, the resulting machine code could not be the same.
54 */
55
56
57/*
58 * Many machines require storage alignment: longs must start on 4-byte
59 * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc()
60 * always returns pointers that are multiples of the worst-case alignment
61 * requirement, and we had better do so too.
62 * There isn't any really portable way to determine the worst-case alignment
63 * requirement. This module assumes that the alignment requirement is
64 * multiples of sizeof(ALIGN_TYPE).
65 * By default, we define ALIGN_TYPE as double. This is necessary on some
66 * workstations (where doubles really do need 8-byte alignment) and will work
67 * fine on nearly everything. If your machine has lesser alignment needs,
68 * you can save a few bytes by making ALIGN_TYPE smaller.
69 * The only place I know of where this will NOT work is certain Macintosh
70 * 680x0 compilers that define double as a 10-byte IEEE extended float.
71 * Doing 10-byte alignment is counterproductive because longwords won't be
72 * aligned well. Put "#define ALIGN_TYPE long" in jconfig.h if you have
73 * such a compiler.
74 */
75
76#ifndef ALIGN_TYPE /* so can override from jconfig.h */
77#define ALIGN_TYPE double
78#endif
79
80
81/*
82 * We allocate objects from "pools", where each pool is gotten with a single
83 * request to jpeg_get_small() or jpeg_get_large(). There is no per-object
84 * overhead within a pool, except for alignment padding. Each pool has a
85 * header with a link to the next pool of the same class.
86 * Small and large pool headers are identical except that the latter's
87 * link pointer must be FAR on 80x86 machines.
88 * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE
89 * field. This forces the compiler to make SIZEOF(small_pool_hdr) a multiple
90 * of the alignment requirement of ALIGN_TYPE.
91 */
92
93typedef union small_pool_struct * small_pool_ptr;
94
95typedef union small_pool_struct {
96 struct {
97 small_pool_ptr next; /* next in list of pools */
98 size_t bytes_used; /* how many bytes already used within pool */
99 size_t bytes_left; /* bytes still available in this pool */
100 } hdr;
101 ALIGN_TYPE dummy; /* included in union to ensure alignment */
102} small_pool_hdr;
103
104typedef union large_pool_struct FAR * large_pool_ptr;
105
106typedef union large_pool_struct {
107 struct {
108 large_pool_ptr next; /* next in list of pools */
109 size_t bytes_used; /* how many bytes already used within pool */
110 size_t bytes_left; /* bytes still available in this pool */
111 } hdr;
112 ALIGN_TYPE dummy; /* included in union to ensure alignment */
113} large_pool_hdr;
114
115
116/*
117 * Here is the full definition of a memory manager object.
118 */
119
120typedef struct {
121 struct jpeg_memory_mgr pub; /* public fields */
122
123 /* Each pool identifier (lifetime class) names a linked list of pools. */
124 small_pool_ptr small_list[JPOOL_NUMPOOLS];
125 large_pool_ptr large_list[JPOOL_NUMPOOLS];
126
127 /* Since we only have one lifetime class of virtual arrays, only one
128 * linked list is necessary (for each datatype). Note that the virtual
129 * array control blocks being linked together are actually stored somewhere
130 * in the small-pool list.
131 */
132 jvirt_sarray_ptr virt_sarray_list;
133 jvirt_barray_ptr virt_barray_list;
134
135 /* This counts total space obtained from jpeg_get_small/large */
136 long total_space_allocated;
137
138 /* alloc_sarray and alloc_barray set this value for use by virtual
139 * array routines.
140 */
141 JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */
142} my_memory_mgr;
143
144typedef my_memory_mgr * my_mem_ptr;
145
146
147/*
148 * The control blocks for virtual arrays.
149 * Note that these blocks are allocated in the "small" pool area.
150 * System-dependent info for the associated backing store (if any) is hidden
151 * inside the backing_store_info struct.
152 */
153
154struct jvirt_sarray_control {
155 JSAMPARRAY mem_buffer; /* => the in-memory buffer */
156 JDIMENSION rows_in_array; /* total virtual array height */
157 JDIMENSION samplesperrow; /* width of array (and of memory buffer) */
158 JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */
159 JDIMENSION rows_in_mem; /* height of memory buffer */
160 JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
161 JDIMENSION cur_start_row; /* first logical row # in the buffer */
162 JDIMENSION first_undef_row; /* row # of first uninitialized row */
163 boolean pre_zero; /* pre-zero mode requested? */
164 boolean dirty; /* do current buffer contents need written? */
165 boolean b_s_open; /* is backing-store data valid? */
166 jvirt_sarray_ptr next; /* link to next virtual sarray control block */
167 backing_store_info b_s_info; /* System-dependent control info */
168};
169
170struct jvirt_barray_control {
171 JBLOCKARRAY mem_buffer; /* => the in-memory buffer */
172 JDIMENSION rows_in_array; /* total virtual array height */
173 JDIMENSION blocksperrow; /* width of array (and of memory buffer) */
174 JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */
175 JDIMENSION rows_in_mem; /* height of memory buffer */
176 JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
177 JDIMENSION cur_start_row; /* first logical row # in the buffer */
178 JDIMENSION first_undef_row; /* row # of first uninitialized row */
179 boolean pre_zero; /* pre-zero mode requested? */
180 boolean dirty; /* do current buffer contents need written? */
181 boolean b_s_open; /* is backing-store data valid? */
182 jvirt_barray_ptr next; /* link to next virtual barray control block */
183 backing_store_info b_s_info; /* System-dependent control info */
184};
185
186
187#ifdef MEM_STATS /* optional extra stuff for statistics */
188
189LOCAL(void)
190print_mem_stats (j_common_ptr cinfo, int pool_id)
191{
192 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
193 small_pool_ptr shdr_ptr;
194 large_pool_ptr lhdr_ptr;
195
196 /* Since this is only a debugging stub, we can cheat a little by using
197 * fprintf directly rather than going through the trace message code.
198 * This is helpful because message parm array can't handle longs.
199 */
200 fprintf(stderr, "Freeing pool %d, total space = %ld\n",
201 pool_id, mem->total_space_allocated);
202
203 for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
204 lhdr_ptr = lhdr_ptr->hdr.next) {
205 fprintf(stderr, " Large chunk used %ld\n",
206 (long) lhdr_ptr->hdr.bytes_used);
207 }
208
209 for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
210 shdr_ptr = shdr_ptr->hdr.next) {
211 fprintf(stderr, " Small chunk used %ld free %ld\n",
212 (long) shdr_ptr->hdr.bytes_used,
213 (long) shdr_ptr->hdr.bytes_left);
214 }
215}
216
217#endif /* MEM_STATS */
218
219
220LOCAL(void)
221out_of_memory (j_common_ptr cinfo, int which)
222/* Report an out-of-memory error and stop execution */
223/* If we compiled MEM_STATS support, report alloc requests before dying */
224{
225#ifdef MEM_STATS
226 cinfo->err->trace_level = 2; /* force self_destruct to report stats */
227#endif
228 ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
229}
230
231
232/*
233 * Allocation of "small" objects.
234 *
235 * For these, we use pooled storage. When a new pool must be created,
236 * we try to get enough space for the current request plus a "slop" factor,
237 * where the slop will be the amount of leftover space in the new pool.
238 * The speed vs. space tradeoff is largely determined by the slop values.
239 * A different slop value is provided for each pool class (lifetime),
240 * and we also distinguish the first pool of a class from later ones.
241 * NOTE: the values given work fairly well on both 16- and 32-bit-int
242 * machines, but may be too small if longs are 64 bits or more.
243 */
244
245static const size_t first_pool_slop[JPOOL_NUMPOOLS] =
246{
247 1600, /* first PERMANENT pool */
248 16000 /* first IMAGE pool */
249};
250
251static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =
252{
253 0, /* additional PERMANENT pools */
254 5000 /* additional IMAGE pools */
255};
256
257#define MIN_SLOP 50 /* greater than 0 to avoid futile looping */
258
259
260METHODDEF(void *)
261alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
262/* Allocate a "small" object */
263{
264 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
265 small_pool_ptr hdr_ptr, prev_hdr_ptr;
266 char * data_ptr;
267 size_t odd_bytes, min_request, slop;
268
269 /* Check for unsatisfiable request (do now to ensure no overflow below) */
270 if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr)))
271 out_of_memory(cinfo, 1); /* request exceeds malloc's ability */
272
273 /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
274 odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
275 if (odd_bytes > 0)
276 sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
277
278 /* See if space is available in any existing pool */
279 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
280 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
281 prev_hdr_ptr = NULL;
282 hdr_ptr = mem->small_list[pool_id];
283 while (hdr_ptr != NULL) {
284 if (hdr_ptr->hdr.bytes_left >= sizeofobject)
285 break; /* found pool with enough space */
286 prev_hdr_ptr = hdr_ptr;
287 hdr_ptr = hdr_ptr->hdr.next;
288 }
289
290 /* Time to make a new pool? */
291 if (hdr_ptr == NULL) {
292 /* min_request is what we need now, slop is what will be leftover */
293 min_request = sizeofobject + SIZEOF(small_pool_hdr);
294 if (prev_hdr_ptr == NULL) /* first pool in class? */
295 slop = first_pool_slop[pool_id];
296 else
297 slop = extra_pool_slop[pool_id];
298 /* Don't ask for more than MAX_ALLOC_CHUNK */
299 if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
300 slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
301 /* Try to get space, if fail reduce slop and try again */
302 for (;;) {
303 hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
304 if (hdr_ptr != NULL)
305 break;
306 slop /= 2;
307 if (slop < MIN_SLOP) /* give up when it gets real small */
308 out_of_memory(cinfo, 2); /* jpeg_get_small failed */
309 }
310 mem->total_space_allocated += min_request + slop;
311 /* Success, initialize the new pool header and add to end of list */
312 hdr_ptr->hdr.next = NULL;
313 hdr_ptr->hdr.bytes_used = 0;
314 hdr_ptr->hdr.bytes_left = sizeofobject + slop;
315 if (prev_hdr_ptr == NULL) /* first pool in class? */
316 mem->small_list[pool_id] = hdr_ptr;
317 else
318 prev_hdr_ptr->hdr.next = hdr_ptr;
319 }
320
321 /* OK, allocate the object from the current pool */
322 data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */
323 data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */
324 hdr_ptr->hdr.bytes_used += sizeofobject;
325 hdr_ptr->hdr.bytes_left -= sizeofobject;
326
327 return (void *) data_ptr;
328}
329
330
331/*
332 * Allocation of "large" objects.
333 *
334 * The external semantics of these are the same as "small" objects,
335 * except that FAR pointers are used on 80x86. However the pool
336 * management heuristics are quite different. We assume that each
337 * request is large enough that it may as well be passed directly to
338 * jpeg_get_large; the pool management just links everything together
339 * so that we can free it all on demand.
340 * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
341 * structures. The routines that create these structures (see below)
342 * deliberately bunch rows together to ensure a large request size.
343 */
344
345METHODDEF(void FAR *)
346alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
347/* Allocate a "large" object */
348{
349 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
350 large_pool_ptr hdr_ptr;
351 size_t odd_bytes;
352
353 /* Check for unsatisfiable request (do now to ensure no overflow below) */
354 if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)))
355 out_of_memory(cinfo, 3); /* request exceeds malloc's ability */
356
357 /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
358 odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
359 if (odd_bytes > 0)
360 sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
361
362 /* Always make a new pool */
363 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
364 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
365
366 hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
367 SIZEOF(large_pool_hdr));
368 if (hdr_ptr == NULL)
369 out_of_memory(cinfo, 4); /* jpeg_get_large failed */
370 mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr);
371
372 /* Success, initialize the new pool header and add to list */
373 hdr_ptr->hdr.next = mem->large_list[pool_id];
374 /* We maintain space counts in each pool header for statistical purposes,
375 * even though they are not needed for allocation.
376 */
377 hdr_ptr->hdr.bytes_used = sizeofobject;
378 hdr_ptr->hdr.bytes_left = 0;
379 mem->large_list[pool_id] = hdr_ptr;
380
381 return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */
382}
383
384
385/*
386 * Creation of 2-D sample arrays.
387 * The pointers are in near heap, the samples themselves in FAR heap.
388 *
389 * To minimize allocation overhead and to allow I/O of large contiguous
390 * blocks, we allocate the sample rows in groups of as many rows as possible
391 * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
392 * NB: the virtual array control routines, later in this file, know about
393 * this chunking of rows. The rowsperchunk value is left in the mem manager
394 * object so that it can be saved away if this sarray is the workspace for
395 * a virtual array.
396 */
397
398METHODDEF(JSAMPARRAY)
399alloc_sarray (j_common_ptr cinfo, int pool_id,
400 JDIMENSION samplesperrow, JDIMENSION numrows)
401/* Allocate a 2-D sample array */
402{
403 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
404 JSAMPARRAY result;
405 JSAMPROW workspace;
406 JDIMENSION rowsperchunk, currow, i;
407 long ltemp;
408
409 /* Calculate max # of rows allowed in one allocation chunk */
410 ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
411 ((long) samplesperrow * SIZEOF(JSAMPLE));
412 if (ltemp <= 0)
413 ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
414 if (ltemp < (long) numrows)
415 rowsperchunk = (JDIMENSION) ltemp;
416 else
417 rowsperchunk = numrows;
418 mem->last_rowsperchunk = rowsperchunk;
419
420 /* Get space for row pointers (small object) */
421 result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
422 (size_t) (numrows * SIZEOF(JSAMPROW)));
423
424 /* Get the rows themselves (large objects) */
425 currow = 0;
426 while (currow < numrows) {
427 rowsperchunk = MIN(rowsperchunk, numrows - currow);
428 workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
429 (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
430 * SIZEOF(JSAMPLE)));
431 for (i = rowsperchunk; i > 0; i--) {
432 result[currow++] = workspace;
433 workspace += samplesperrow;
434 }
435 }
436
437 return result;
438}
439
440
441/*
442 * Creation of 2-D coefficient-block arrays.
443 * This is essentially the same as the code for sample arrays, above.
444 */
445
446METHODDEF(JBLOCKARRAY)
447alloc_barray (j_common_ptr cinfo, int pool_id,
448 JDIMENSION blocksperrow, JDIMENSION numrows)
449/* Allocate a 2-D coefficient-block array */
450{
451 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
452 JBLOCKARRAY result;
453 JBLOCKROW workspace;
454 JDIMENSION rowsperchunk, currow, i;
455 long ltemp;
456
457 /* Calculate max # of rows allowed in one allocation chunk */
458 ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
459 ((long) blocksperrow * SIZEOF(JBLOCK));
460 if (ltemp <= 0)
461 ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
462 if (ltemp < (long) numrows)
463 rowsperchunk = (JDIMENSION) ltemp;
464 else
465 rowsperchunk = numrows;
466 mem->last_rowsperchunk = rowsperchunk;
467
468 /* Get space for row pointers (small object) */
469 result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
470 (size_t) (numrows * SIZEOF(JBLOCKROW)));
471
472 /* Get the rows themselves (large objects) */
473 currow = 0;
474 while (currow < numrows) {
475 rowsperchunk = MIN(rowsperchunk, numrows - currow);
476 workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
477 (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
478 * SIZEOF(JBLOCK)));
479 for (i = rowsperchunk; i > 0; i--) {
480 result[currow++] = workspace;
481 workspace += blocksperrow;
482 }
483 }
484
485 return result;
486}
487
488
489/*
490 * About virtual array management:
491 *
492 * The above "normal" array routines are only used to allocate strip buffers
493 * (as wide as the image, but just a few rows high). Full-image-sized buffers
494 * are handled as "virtual" arrays. The array is still accessed a strip at a
495 * time, but the memory manager must save the whole array for repeated
496 * accesses. The intended implementation is that there is a strip buffer in
497 * memory (as high as is possible given the desired memory limit), plus a
498 * backing file that holds the rest of the array.
499 *
500 * The request_virt_array routines are told the total size of the image and
501 * the maximum number of rows that will be accessed at once. The in-memory
502 * buffer must be at least as large as the maxaccess value.
503 *
504 * The request routines create control blocks but not the in-memory buffers.
505 * That is postponed until realize_virt_arrays is called. At that time the
506 * total amount of space needed is known (approximately, anyway), so free
507 * memory can be divided up fairly.
508 *
509 * The access_virt_array routines are responsible for making a specific strip
510 * area accessible (after reading or writing the backing file, if necessary).
511 * Note that the access routines are told whether the caller intends to modify
512 * the accessed strip; during a read-only pass this saves having to rewrite
513 * data to disk. The access routines are also responsible for pre-zeroing
514 * any newly accessed rows, if pre-zeroing was requested.
515 *
516 * In current usage, the access requests are usually for nonoverlapping
517 * strips; that is, successive access start_row numbers differ by exactly
518 * num_rows = maxaccess. This means we can get good performance with simple
519 * buffer dump/reload logic, by making the in-memory buffer be a multiple
520 * of the access height; then there will never be accesses across bufferload
521 * boundaries. The code will still work with overlapping access requests,
522 * but it doesn't handle bufferload overlaps very efficiently.
523 */
524
525
526METHODDEF(jvirt_sarray_ptr)
527request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
528 JDIMENSION samplesperrow, JDIMENSION numrows,
529 JDIMENSION maxaccess)
530/* Request a virtual 2-D sample array */
531{
532 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
533 jvirt_sarray_ptr result;
534
535 /* Only IMAGE-lifetime virtual arrays are currently supported */
536 if (pool_id != JPOOL_IMAGE)
537 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
538
539 /* get control block */
540 result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
541 SIZEOF(struct jvirt_sarray_control));
542
543 result->mem_buffer = NULL; /* marks array not yet realized */
544 result->rows_in_array = numrows;
545 result->samplesperrow = samplesperrow;
546 result->maxaccess = maxaccess;
547 result->pre_zero = pre_zero;
548 result->b_s_open = FALSE; /* no associated backing-store object */
549 result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
550 mem->virt_sarray_list = result;
551
552 return result;
553}
554
555
556METHODDEF(jvirt_barray_ptr)
557request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
558 JDIMENSION blocksperrow, JDIMENSION numrows,
559 JDIMENSION maxaccess)
560/* Request a virtual 2-D coefficient-block array */
561{
562 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
563 jvirt_barray_ptr result;
564
565 /* Only IMAGE-lifetime virtual arrays are currently supported */
566 if (pool_id != JPOOL_IMAGE)
567 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
568
569 /* get control block */
570 result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
571 SIZEOF(struct jvirt_barray_control));
572
573 result->mem_buffer = NULL; /* marks array not yet realized */
574 result->rows_in_array = numrows;
575 result->blocksperrow = blocksperrow;
576 result->maxaccess = maxaccess;
577 result->pre_zero = pre_zero;
578 result->b_s_open = FALSE; /* no associated backing-store object */
579 result->next = mem->virt_barray_list; /* add to list of virtual arrays */
580 mem->virt_barray_list = result;
581
582 return result;
583}
584
585
586METHODDEF(void)
587realize_virt_arrays (j_common_ptr cinfo)
588/* Allocate the in-memory buffers for any unrealized virtual arrays */
589{
590 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
591 long space_per_minheight, maximum_space, avail_mem;
592 long minheights, max_minheights;
593 jvirt_sarray_ptr sptr;
594 jvirt_barray_ptr bptr;
595
596 /* Compute the minimum space needed (maxaccess rows in each buffer)
597 * and the maximum space needed (full image height in each buffer).
598 * These may be of use to the system-dependent jpeg_mem_available routine.
599 */
600 space_per_minheight = 0;
601 maximum_space = 0;
602 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
603 if (sptr->mem_buffer == NULL) { /* if not realized yet */
604 space_per_minheight += (long) sptr->maxaccess *
605 (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
606 maximum_space += (long) sptr->rows_in_array *
607 (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
608 }
609 }
610 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
611 if (bptr->mem_buffer == NULL) { /* if not realized yet */
612 space_per_minheight += (long) bptr->maxaccess *
613 (long) bptr->blocksperrow * SIZEOF(JBLOCK);
614 maximum_space += (long) bptr->rows_in_array *
615 (long) bptr->blocksperrow * SIZEOF(JBLOCK);
616 }
617 }
618
619 if (space_per_minheight <= 0)
620 return; /* no unrealized arrays, no work */
621
622 /* Determine amount of memory to actually use; this is system-dependent. */
623 avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
624 mem->total_space_allocated);
625
626 /* If the maximum space needed is available, make all the buffers full
627 * height; otherwise parcel it out with the same number of minheights
628 * in each buffer.
629 */
630 if (avail_mem >= maximum_space)
631 max_minheights = 1000000000L;
632 else {
633 max_minheights = avail_mem / space_per_minheight;
634 /* If there doesn't seem to be enough space, try to get the minimum
635 * anyway. This allows a "stub" implementation of jpeg_mem_available().
636 */
637 if (max_minheights <= 0)
638 max_minheights = 1;
639 }
640
641 /* Allocate the in-memory buffers and initialize backing store as needed. */
642
643 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
644 if (sptr->mem_buffer == NULL) { /* if not realized yet */
645 minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
646 if (minheights <= max_minheights) {
647 /* This buffer fits in memory */
648 sptr->rows_in_mem = sptr->rows_in_array;
649 } else {
650 /* It doesn't fit in memory, create backing store. */
651 sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
652 jpeg_open_backing_store(cinfo, & sptr->b_s_info,
653 (long) sptr->rows_in_array *
654 (long) sptr->samplesperrow *
655 (long) SIZEOF(JSAMPLE));
656 sptr->b_s_open = TRUE;
657 }
658 sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
659 sptr->samplesperrow, sptr->rows_in_mem);
660 sptr->rowsperchunk = mem->last_rowsperchunk;
661 sptr->cur_start_row = 0;
662 sptr->first_undef_row = 0;
663 sptr->dirty = FALSE;
664 }
665 }
666
667 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
668 if (bptr->mem_buffer == NULL) { /* if not realized yet */
669 minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
670 if (minheights <= max_minheights) {
671 /* This buffer fits in memory */
672 bptr->rows_in_mem = bptr->rows_in_array;
673 } else {
674 /* It doesn't fit in memory, create backing store. */
675 bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
676 jpeg_open_backing_store(cinfo, & bptr->b_s_info,
677 (long) bptr->rows_in_array *
678 (long) bptr->blocksperrow *
679 (long) SIZEOF(JBLOCK));
680 bptr->b_s_open = TRUE;
681 }
682 bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
683 bptr->blocksperrow, bptr->rows_in_mem);
684 bptr->rowsperchunk = mem->last_rowsperchunk;
685 bptr->cur_start_row = 0;
686 bptr->first_undef_row = 0;
687 bptr->dirty = FALSE;
688 }
689 }
690}
691
692
693LOCAL(void)
694do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
695/* Do backing store read or write of a virtual sample array */
696{
697 long bytesperrow, file_offset, byte_count, rows, thisrow, i;
698
699 bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);
700 file_offset = ptr->cur_start_row * bytesperrow;
701 /* Loop to read or write each allocation chunk in mem_buffer */
702 for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
703 /* One chunk, but check for short chunk at end of buffer */
704 rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
705 /* Transfer no more than is currently defined */
706 thisrow = (long) ptr->cur_start_row + i;
707 rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
708 /* Transfer no more than fits in file */
709 rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
710 if (rows <= 0) /* this chunk might be past end of file! */
711 break;
712 byte_count = rows * bytesperrow;
713 if (writing)
714 (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
715 (void FAR *) ptr->mem_buffer[i],
716 file_offset, byte_count);
717 else
718 (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
719 (void FAR *) ptr->mem_buffer[i],
720 file_offset, byte_count);
721 file_offset += byte_count;
722 }
723}
724
725
726LOCAL(void)
727do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
728/* Do backing store read or write of a virtual coefficient-block array */
729{
730 long bytesperrow, file_offset, byte_count, rows, thisrow, i;
731
732 bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);
733 file_offset = ptr->cur_start_row * bytesperrow;
734 /* Loop to read or write each allocation chunk in mem_buffer */
735 for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
736 /* One chunk, but check for short chunk at end of buffer */
737 rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
738 /* Transfer no more than is currently defined */
739 thisrow = (long) ptr->cur_start_row + i;
740 rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
741 /* Transfer no more than fits in file */
742 rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
743 if (rows <= 0) /* this chunk might be past end of file! */
744 break;
745 byte_count = rows * bytesperrow;
746 if (writing)
747 (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
748 (void FAR *) ptr->mem_buffer[i],
749 file_offset, byte_count);
750 else
751 (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
752 (void FAR *) ptr->mem_buffer[i],
753 file_offset, byte_count);
754 file_offset += byte_count;
755 }
756}
757
758
759METHODDEF(JSAMPARRAY)
760access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
761 JDIMENSION start_row, JDIMENSION num_rows,
762 boolean writable)
763/* Access the part of a virtual sample array starting at start_row */
764/* and extending for num_rows rows. writable is true if */
765/* caller intends to modify the accessed area. */
766{
767 JDIMENSION end_row = start_row + num_rows;
768 JDIMENSION undef_row;
769
770 /* debugging check */
771 if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
772 ptr->mem_buffer == NULL)
773 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
774
775 /* Make the desired part of the virtual array accessible */
776 if (start_row < ptr->cur_start_row ||
777 end_row > ptr->cur_start_row+ptr->rows_in_mem) {
778 if (! ptr->b_s_open)
779 ERREXIT(cinfo, JERR_VIRTUAL_BUG);
780 /* Flush old buffer contents if necessary */
781 if (ptr->dirty) {
782 do_sarray_io(cinfo, ptr, TRUE);
783 ptr->dirty = FALSE;
784 }
785 /* Decide what part of virtual array to access.
786 * Algorithm: if target address > current window, assume forward scan,
787 * load starting at target address. If target address < current window,
788 * assume backward scan, load so that target area is top of window.
789 * Note that when switching from forward write to forward read, will have
790 * start_row = 0, so the limiting case applies and we load from 0 anyway.
791 */
792 if (start_row > ptr->cur_start_row) {
793 ptr->cur_start_row = start_row;
794 } else {
795 /* use long arithmetic here to avoid overflow & unsigned problems */
796 long ltemp;
797
798 ltemp = (long) end_row - (long) ptr->rows_in_mem;
799 if (ltemp < 0)
800 ltemp = 0; /* don't fall off front end of file */
801 ptr->cur_start_row = (JDIMENSION) ltemp;
802 }
803 /* Read in the selected part of the array.
804 * During the initial write pass, we will do no actual read
805 * because the selected part is all undefined.
806 */
807 do_sarray_io(cinfo, ptr, FALSE);
808 }
809 /* Ensure the accessed part of the array is defined; prezero if needed.
810 * To improve locality of access, we only prezero the part of the array
811 * that the caller is about to access, not the entire in-memory array.
812 */
813 if (ptr->first_undef_row < end_row) {
814 if (ptr->first_undef_row < start_row) {
815 if (writable) /* writer skipped over a section of array */
816 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
817 undef_row = start_row; /* but reader is allowed to read ahead */
818 } else {
819 undef_row = ptr->first_undef_row;
820 }
821 if (writable)
822 ptr->first_undef_row = end_row;
823 if (ptr->pre_zero) {
824 size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);
825 undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
826 end_row -= ptr->cur_start_row;
827 while (undef_row < end_row) {
828 jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
829 undef_row++;
830 }
831 } else {
832 if (! writable) /* reader looking at undefined data */
833 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
834 }
835 }
836 /* Flag the buffer dirty if caller will write in it */
837 if (writable)
838 ptr->dirty = TRUE;
839 /* Return address of proper part of the buffer */
840 return ptr->mem_buffer + (start_row - ptr->cur_start_row);
841}
842
843
844METHODDEF(JBLOCKARRAY)
845access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
846 JDIMENSION start_row, JDIMENSION num_rows,
847 boolean writable)
848/* Access the part of a virtual block array starting at start_row */
849/* and extending for num_rows rows. writable is true if */
850/* caller intends to modify the accessed area. */
851{
852 JDIMENSION end_row = start_row + num_rows;
853 JDIMENSION undef_row;
854
855 /* debugging check */
856 if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
857 ptr->mem_buffer == NULL)
858 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
859
860 /* Make the desired part of the virtual array accessible */
861 if (start_row < ptr->cur_start_row ||
862 end_row > ptr->cur_start_row+ptr->rows_in_mem) {
863 if (! ptr->b_s_open)
864 ERREXIT(cinfo, JERR_VIRTUAL_BUG);
865 /* Flush old buffer contents if necessary */
866 if (ptr->dirty) {
867 do_barray_io(cinfo, ptr, TRUE);
868 ptr->dirty = FALSE;
869 }
870 /* Decide what part of virtual array to access.
871 * Algorithm: if target address > current window, assume forward scan,
872 * load starting at target address. If target address < current window,
873 * assume backward scan, load so that target area is top of window.
874 * Note that when switching from forward write to forward read, will have
875 * start_row = 0, so the limiting case applies and we load from 0 anyway.
876 */
877 if (start_row > ptr->cur_start_row) {
878 ptr->cur_start_row = start_row;
879 } else {
880 /* use long arithmetic here to avoid overflow & unsigned problems */
881 long ltemp;
882
883 ltemp = (long) end_row - (long) ptr->rows_in_mem;
884 if (ltemp < 0)
885 ltemp = 0; /* don't fall off front end of file */
886 ptr->cur_start_row = (JDIMENSION) ltemp;
887 }
888 /* Read in the selected part of the array.
889 * During the initial write pass, we will do no actual read
890 * because the selected part is all undefined.
891 */
892 do_barray_io(cinfo, ptr, FALSE);
893 }
894 /* Ensure the accessed part of the array is defined; prezero if needed.
895 * To improve locality of access, we only prezero the part of the array
896 * that the caller is about to access, not the entire in-memory array.
897 */
898 if (ptr->first_undef_row < end_row) {
899 if (ptr->first_undef_row < start_row) {
900 if (writable) /* writer skipped over a section of array */
901 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
902 undef_row = start_row; /* but reader is allowed to read ahead */
903 } else {
904 undef_row = ptr->first_undef_row;
905 }
906 if (writable)
907 ptr->first_undef_row = end_row;
908 if (ptr->pre_zero) {
909 size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);
910 undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
911 end_row -= ptr->cur_start_row;
912 while (undef_row < end_row) {
913 jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
914 undef_row++;
915 }
916 } else {
917 if (! writable) /* reader looking at undefined data */
918 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
919 }
920 }
921 /* Flag the buffer dirty if caller will write in it */
922 if (writable)
923 ptr->dirty = TRUE;
924 /* Return address of proper part of the buffer */
925 return ptr->mem_buffer + (start_row - ptr->cur_start_row);
926}
927
928
929/*
930 * Release all objects belonging to a specified pool.
931 */
932
933METHODDEF(void)
934free_pool (j_common_ptr cinfo, int pool_id)
935{
936 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
937 small_pool_ptr shdr_ptr;
938 large_pool_ptr lhdr_ptr;
939 size_t space_freed;
940
941 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
942 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
943
944#ifdef MEM_STATS
945 if (cinfo->err->trace_level > 1)
946 print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
947#endif
948
949 /* If freeing IMAGE pool, close any virtual arrays first */
950 if (pool_id == JPOOL_IMAGE) {
951 jvirt_sarray_ptr sptr;
952 jvirt_barray_ptr bptr;
953
954 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
955 if (sptr->b_s_open) { /* there may be no backing store */
956 sptr->b_s_open = FALSE; /* prevent recursive close if error */
957 (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
958 }
959 }
960 mem->virt_sarray_list = NULL;
961 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
962 if (bptr->b_s_open) { /* there may be no backing store */
963 bptr->b_s_open = FALSE; /* prevent recursive close if error */
964 (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
965 }
966 }
967 mem->virt_barray_list = NULL;
968 }
969
970 /* Release large objects */
971 lhdr_ptr = mem->large_list[pool_id];
972 mem->large_list[pool_id] = NULL;
973
974 while (lhdr_ptr != NULL) {
975 large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next;
976 space_freed = lhdr_ptr->hdr.bytes_used +
977 lhdr_ptr->hdr.bytes_left +
978 SIZEOF(large_pool_hdr);
979 jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
980 mem->total_space_allocated -= space_freed;
981 lhdr_ptr = next_lhdr_ptr;
982 }
983
984 /* Release small objects */
985 shdr_ptr = mem->small_list[pool_id];
986 mem->small_list[pool_id] = NULL;
987
988 while (shdr_ptr != NULL) {
989 small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next;
990 space_freed = shdr_ptr->hdr.bytes_used +
991 shdr_ptr->hdr.bytes_left +
992 SIZEOF(small_pool_hdr);
993 jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
994 mem->total_space_allocated -= space_freed;
995 shdr_ptr = next_shdr_ptr;
996 }
997}
998
999
1000/*
1001 * Close up shop entirely.
1002 * Note that this cannot be called unless cinfo->mem is non-NULL.
1003 */
1004
1005METHODDEF(void)
1006self_destruct (j_common_ptr cinfo)
1007{
1008 int pool;
1009
1010 /* Close all backing store, release all memory.
1011 * Releasing pools in reverse order might help avoid fragmentation
1012 * with some (brain-damaged) malloc libraries.
1013 */
1014 for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1015 free_pool(cinfo, pool);
1016 }
1017
1018 /* Release the memory manager control block too. */
1019 jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));
1020 cinfo->mem = NULL; /* ensures I will be called only once */
1021
1022 jpeg_mem_term(cinfo); /* system-dependent cleanup */
1023}
1024
1025
1026/*
1027 * Memory manager initialization.
1028 * When this is called, only the error manager pointer is valid in cinfo!
1029 */
1030
1031GLOBAL(void)
1032jinit_memory_mgr (j_common_ptr cinfo)
1033{
1034 my_mem_ptr mem;
1035 long max_to_use;
1036 int pool;
1037 size_t test_mac;
1038
1039 cinfo->mem = NULL; /* for safety if init fails */
1040
1041 /* Check for configuration errors.
1042 * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
1043 * doesn't reflect any real hardware alignment requirement.
1044 * The test is a little tricky: for X>0, X and X-1 have no one-bits
1045 * in common if and only if X is a power of 2, ie has only one one-bit.
1046 * Some compilers may give an "unreachable code" warning here; ignore it.
1047 */
1048 if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0)
1049 ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
1050 /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
1051 * a multiple of SIZEOF(ALIGN_TYPE).
1052 * Again, an "unreachable code" warning may be ignored here.
1053 * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
1054 */
1055 test_mac = (size_t) MAX_ALLOC_CHUNK;
1056 if ((long) test_mac != MAX_ALLOC_CHUNK ||
1057 (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0)
1058 ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
1059
1060 max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
1061
1062 /* Attempt to allocate memory manager's control block */
1063 mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));
1064
1065 if (mem == NULL) {
1066 jpeg_mem_term(cinfo); /* system-dependent cleanup */
1067 ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
1068 }
1069
1070 /* OK, fill in the method pointers */
1071 mem->pub.alloc_small = alloc_small;
1072 mem->pub.alloc_large = alloc_large;
1073 mem->pub.alloc_sarray = alloc_sarray;
1074 mem->pub.alloc_barray = alloc_barray;
1075 mem->pub.request_virt_sarray = request_virt_sarray;
1076 mem->pub.request_virt_barray = request_virt_barray;
1077 mem->pub.realize_virt_arrays = realize_virt_arrays;
1078 mem->pub.access_virt_sarray = access_virt_sarray;
1079 mem->pub.access_virt_barray = access_virt_barray;
1080 mem->pub.free_pool = free_pool;
1081 mem->pub.self_destruct = self_destruct;
1082
1083 /* Make MAX_ALLOC_CHUNK accessible to other modules */
1084 mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
1085
1086 /* Initialize working state */
1087 mem->pub.max_memory_to_use = max_to_use;
1088
1089 for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1090 mem->small_list[pool] = NULL;
1091 mem->large_list[pool] = NULL;
1092 }
1093 mem->virt_sarray_list = NULL;
1094 mem->virt_barray_list = NULL;
1095
1096 mem->total_space_allocated = SIZEOF(my_memory_mgr);
1097
1098 /* Declare ourselves open for business */
1099 cinfo->mem = & mem->pub;
1100
1101 /* Check for an environment variable JPEGMEM; if found, override the
1102 * default max_memory setting from jpeg_mem_init. Note that the
1103 * surrounding application may again override this value.
1104 * If your system doesn't support getenv(), define NO_GETENV to disable
1105 * this feature.
1106 */
1107#ifndef NO_GETENV
1108 { char * memenv;
1109
1110 if ((memenv = getenv("JPEGMEM")) != NULL) {
1111 char ch = 'x';
1112
1113 if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
1114 if (ch == 'm' || ch == 'M')
1115 max_to_use *= 1000L;
1116 mem->pub.max_memory_to_use = max_to_use * 1000L;
1117 }
1118 }
1119 }
1120#endif
1121
1122}