blob: 3f3beb76665da77088a0d67f9371e4ceba23370f [file] [log] [blame]
J. Duke319a3b92007-12-01 00:00:00 +00001/*
2 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
3 *
4 * This code is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License version 2 only, as
6 * published by the Free Software Foundation. Sun designates this
7 * particular file as subject to the "Classpath" exception as provided
8 * by Sun in the LICENSE file that accompanied this code.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21 * CA 95054 USA or visit www.sun.com if you need additional information or
22 * have any questions.
23 */
24
25// This file is available under and governed by the GNU General Public
26// License version 2 only, as published by the Free Software Foundation.
27// However, the following notice accompanied the original version of this
28// file:
29//
30//
31// Little cms
32// Copyright (C) 1998-2006 Marti Maria
33//
34// Permission is hereby granted, free of charge, to any person obtaining
35// a copy of this software and associated documentation files (the "Software"),
36// to deal in the Software without restriction, including without limitation
37// the rights to use, copy, modify, merge, publish, distribute, sublicense,
38// and/or sell copies of the Software, and to permit persons to whom the Software
39// is furnished to do so, subject to the following conditions:
40//
41// The above copyright notice and this permission notice shall be included in
42// all copies or substantial portions of the Software.
43//
44// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
45// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
46// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
47// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
48// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
49// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
50// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
51
52#include "lcms.h"
53
54// Uncomment this line if you want lcms to use the black point tag in profile,
55// if commented, lcms will compute the black point by its own.
56// It is safer to leve it commented out
57// #define HONOR_BLACK_POINT_TAG
58
59// Conversions
60
61void LCMSEXPORT cmsXYZ2xyY(LPcmsCIExyY Dest, const cmsCIEXYZ* Source)
62{
63 double ISum;
64
65 ISum = 1./(Source -> X + Source -> Y + Source -> Z);
66
67 Dest -> x = (Source -> X) * ISum;
68 Dest -> y = (Source -> Y) * ISum;
69 Dest -> Y = Source -> Y;
70}
71
72
73void LCMSEXPORT cmsxyY2XYZ(LPcmsCIEXYZ Dest, const cmsCIExyY* Source)
74{
75
76 Dest -> X = (Source -> x / Source -> y) * Source -> Y;
77 Dest -> Y = Source -> Y;
78 Dest -> Z = ((1 - Source -> x - Source -> y) / Source -> y) * Source -> Y;
79}
80
81
82
83// Obtains WhitePoint from Temperature
84
85BOOL LCMSEXPORT cmsWhitePointFromTemp(int TempK, LPcmsCIExyY WhitePoint)
86{
87 double x, y;
88 double T, T2, T3;
89 // double M1, M2;
90
91
92 // No optimization provided.
93
94 T = TempK;
95 T2 = T*T; // Square
96 T3 = T2*T; // Cube
97
98 // For correlated color temperature (T) between 4000K and 7000K:
99
100 if (T >= 4000. && T <= 7000.)
101 {
102 x = -4.6070*(1E9/T3) + 2.9678*(1E6/T2) + 0.09911*(1E3/T) + 0.244063;
103 }
104 else
105 // or for correlated color temperature (T) between 7000K and 25000K:
106
107 if (T > 7000.0 && T <= 25000.0)
108 {
109 x = -2.0064*(1E9/T3) + 1.9018*(1E6/T2) + 0.24748*(1E3/T) + 0.237040;
110 }
111 else {
112 cmsSignalError(LCMS_ERRC_ABORTED, "cmsWhitePointFromTemp: invalid temp");
113 return FALSE;
114 }
115
116 // Obtain y(x)
117
118 y = -3.000*(x*x) + 2.870*x - 0.275;
119
120 // wave factors (not used, but here for futures extensions)
121
122 // M1 = (-1.3515 - 1.7703*x + 5.9114 *y)/(0.0241 + 0.2562*x - 0.7341*y);
123 // M2 = (0.0300 - 31.4424*x + 30.0717*y)/(0.0241 + 0.2562*x - 0.7341*y);
124
125
126
127 // Fill WhitePoint struct
128
129 WhitePoint -> x = x;
130 WhitePoint -> y = y;
131 WhitePoint -> Y = 1.0;
132
133 return TRUE;
134}
135
136// Build a White point, primary chromas transfer matrix from RGB to CIE XYZ
137// This is just an approximation, I am not handling all the non-linear
138// aspects of the RGB to XYZ process, and assumming that the gamma correction
139// has transitive property in the tranformation chain.
140//
141// the alghoritm:
142//
143// - First I build the absolute conversion matrix using
144// primaries in XYZ. This matrix is next inverted
145// - Then I eval the source white point across this matrix
146// obtaining the coeficients of the transformation
147// - Then, I apply these coeficients to the original matrix
148
149
150BOOL LCMSEXPORT cmsBuildRGB2XYZtransferMatrix(LPMAT3 r, LPcmsCIExyY WhitePt,
151 LPcmsCIExyYTRIPLE Primrs)
152{
153 VEC3 WhitePoint, Coef;
154 MAT3 Result, Primaries;
155 double xn, yn;
156 double xr, yr;
157 double xg, yg;
158 double xb, yb;
159
160
161 xn = WhitePt -> x;
162 yn = WhitePt -> y;
163 xr = Primrs -> Red.x;
164 yr = Primrs -> Red.y;
165 xg = Primrs -> Green.x;
166 yg = Primrs -> Green.y;
167 xb = Primrs -> Blue.x;
168 yb = Primrs -> Blue.y;
169
170
171 // Build Primaries matrix
172
173 VEC3init(&Primaries.v[0], xr, xg, xb);
174 VEC3init(&Primaries.v[1], yr, yg, yb);
175 VEC3init(&Primaries.v[2], (1-xr-yr), (1-xg-yg), (1-xb-yb));
176
177
178 // Result = Primaries ^ (-1) inverse matrix
179
180 if (!MAT3inverse(&Primaries, &Result))
181 return FALSE;
182
183
184 VEC3init(&WhitePoint, xn/yn, 1.0, (1.0-xn-yn)/yn);
185
186 // Across inverse primaries ...
187
188 MAT3eval(&Coef, &Result, &WhitePoint);
189
190 // Give us the Coefs, then I build transformation matrix
191
192 VEC3init(&r -> v[0], Coef.n[VX]*xr, Coef.n[VY]*xg, Coef.n[VZ]*xb);
193 VEC3init(&r -> v[1], Coef.n[VX]*yr, Coef.n[VY]*yg, Coef.n[VZ]*yb);
194 VEC3init(&r -> v[2], Coef.n[VX]*(1.0-xr-yr), Coef.n[VY]*(1.0-xg-yg), Coef.n[VZ]*(1.0-xb-yb));
195
196
197 return TRUE;
198}
199
200
201
202// Compute chromatic adaptation matrix using Chad as cone matrix
203
204static
205void ComputeChromaticAdaptation(LPMAT3 Conversion,
206 LPcmsCIEXYZ SourceWhitePoint,
207 LPcmsCIEXYZ DestWhitePoint,
208 LPMAT3 Chad)
209
210{
211
212 MAT3 Chad_Inv;
213 VEC3 ConeSourceXYZ, ConeSourceRGB;
214 VEC3 ConeDestXYZ, ConeDestRGB;
215 MAT3 Cone, Tmp;
216
217
218 Tmp = *Chad;
219 MAT3inverse(&Tmp, &Chad_Inv);
220
221 VEC3init(&ConeSourceXYZ, SourceWhitePoint -> X,
222 SourceWhitePoint -> Y,
223 SourceWhitePoint -> Z);
224
225 VEC3init(&ConeDestXYZ, DestWhitePoint -> X,
226 DestWhitePoint -> Y,
227 DestWhitePoint -> Z);
228
229 MAT3eval(&ConeSourceRGB, Chad, &ConeSourceXYZ);
230 MAT3eval(&ConeDestRGB, Chad, &ConeDestXYZ);
231
232 // Build matrix
233
234 VEC3init(&Cone.v[0], ConeDestRGB.n[0]/ConeSourceRGB.n[0], 0.0, 0.0);
235 VEC3init(&Cone.v[1], 0.0, ConeDestRGB.n[1]/ConeSourceRGB.n[1], 0.0);
236 VEC3init(&Cone.v[2], 0.0, 0.0, ConeDestRGB.n[2]/ConeSourceRGB.n[2]);
237
238
239 // Normalize
240 MAT3per(&Tmp, &Cone, Chad);
241 MAT3per(Conversion, &Chad_Inv, &Tmp);
242
243}
244
245
246// Returns the final chrmatic adaptation from illuminant FromIll to Illuminant ToIll
247// The cone matrix can be specified in ConeMatrix. If NULL, Bradford is assumed
248
249BOOL cmsAdaptationMatrix(LPMAT3 r, LPMAT3 ConeMatrix, LPcmsCIEXYZ FromIll, LPcmsCIEXYZ ToIll)
250{
251 MAT3 LamRigg = {{ // Bradford matrix
252 {{ 0.8951, 0.2664, -0.1614 }},
253 {{ -0.7502, 1.7135, 0.0367 }},
254 {{ 0.0389, -0.0685, 1.0296 }}
255 }};
256
257
258 if (ConeMatrix == NULL)
259 ConeMatrix = &LamRigg;
260
261 ComputeChromaticAdaptation(r, FromIll, ToIll, ConeMatrix);
262 return TRUE;
263
264}
265
266// Same as anterior, but assuming D50 destination. White point is given in xyY
267
268BOOL cmsAdaptMatrixToD50(LPMAT3 r, LPcmsCIExyY SourceWhitePt)
269{
270 cmsCIEXYZ Dn;
271 MAT3 Bradford;
272 MAT3 Tmp;
273
274 cmsxyY2XYZ(&Dn, SourceWhitePt);
275
276 cmsAdaptationMatrix(&Bradford, NULL, &Dn, cmsD50_XYZ());
277
278 Tmp = *r;
279 MAT3per(r, &Bradford, &Tmp);
280
281 return TRUE;
282}
283
284
285// Same as anterior, but assuming D50 source. White point is given in xyY
286
287BOOL cmsAdaptMatrixFromD50(LPMAT3 r, LPcmsCIExyY DestWhitePt)
288{
289 cmsCIEXYZ Dn;
290 MAT3 Bradford;
291 MAT3 Tmp;
292
293 cmsxyY2XYZ(&Dn, DestWhitePt);
294
295 cmsAdaptationMatrix(&Bradford, NULL, cmsD50_XYZ(), &Dn);
296
297 Tmp = *r;
298 MAT3per(r, &Bradford, &Tmp);
299
300 return TRUE;
301}
302
303
304// Adapts a color to a given illuminant. Original color is expected to have
305// a SourceWhitePt white point.
306
307BOOL LCMSEXPORT cmsAdaptToIlluminant(LPcmsCIEXYZ Result,
308 LPcmsCIEXYZ SourceWhitePt,
309 LPcmsCIEXYZ Illuminant,
310 LPcmsCIEXYZ Value)
311{
312 MAT3 Bradford;
313 VEC3 In, Out;
314
315 // BradfordLamRiggChromaticAdaptation(&Bradford, SourceWhitePt, Illuminant);
316
317 cmsAdaptationMatrix(&Bradford, NULL, SourceWhitePt, Illuminant);
318
319 VEC3init(&In, Value -> X, Value -> Y, Value -> Z);
320 MAT3eval(&Out, &Bradford, &In);
321
322 Result -> X = Out.n[0];
323 Result -> Y = Out.n[1];
324 Result -> Z = Out.n[2];
325
326 return TRUE;
327}
328
329
330
331typedef struct {
332
333 double mirek; // temp (in microreciprocal kelvin)
334 double ut; // u coord of intersection w/ blackbody locus
335 double vt; // v coord of intersection w/ blackbody locus
336 double tt; // slope of ISOTEMPERATURE. line
337
338 } ISOTEMPERATURE,FAR* LPISOTEMPERATURE;
339
340static ISOTEMPERATURE isotempdata[] = {
341// {Mirek, Ut, Vt, Tt }
342 {0, 0.18006, 0.26352, -0.24341},
343 {10, 0.18066, 0.26589, -0.25479},
344 {20, 0.18133, 0.26846, -0.26876},
345 {30, 0.18208, 0.27119, -0.28539},
346 {40, 0.18293, 0.27407, -0.30470},
347 {50, 0.18388, 0.27709, -0.32675},
348 {60, 0.18494, 0.28021, -0.35156},
349 {70, 0.18611, 0.28342, -0.37915},
350 {80, 0.18740, 0.28668, -0.40955},
351 {90, 0.18880, 0.28997, -0.44278},
352 {100, 0.19032, 0.29326, -0.47888},
353 {125, 0.19462, 0.30141, -0.58204},
354 {150, 0.19962, 0.30921, -0.70471},
355 {175, 0.20525, 0.31647, -0.84901},
356 {200, 0.21142, 0.32312, -1.0182 },
357 {225, 0.21807, 0.32909, -1.2168 },
358 {250, 0.22511, 0.33439, -1.4512 },
359 {275, 0.23247, 0.33904, -1.7298 },
360 {300, 0.24010, 0.34308, -2.0637 },
361 {325, 0.24702, 0.34655, -2.4681 },
362 {350, 0.25591, 0.34951, -2.9641 },
363 {375, 0.26400, 0.35200, -3.5814 },
364 {400, 0.27218, 0.35407, -4.3633 },
365 {425, 0.28039, 0.35577, -5.3762 },
366 {450, 0.28863, 0.35714, -6.7262 },
367 {475, 0.29685, 0.35823, -8.5955 },
368 {500, 0.30505, 0.35907, -11.324 },
369 {525, 0.31320, 0.35968, -15.628 },
370 {550, 0.32129, 0.36011, -23.325 },
371 {575, 0.32931, 0.36038, -40.770 },
372 {600, 0.33724, 0.36051, -116.45 }
373};
374
375#define NISO sizeof(isotempdata)/sizeof(ISOTEMPERATURE)
376
377
378// Robertson's method
379
380static
381double Robertson(LPcmsCIExyY v)
382{
383 int j;
384 double us,vs;
385 double uj,vj,tj,di,dj,mi,mj;
386 double Tc = -1, xs, ys;
387
388 di = mi = 0;
389 xs = v -> x;
390 ys = v -> y;
391
392 // convert (x,y) to CIE 1960 (u,v)
393
394 us = (2*xs) / (-xs + 6*ys + 1.5);
395 vs = (3*ys) / (-xs + 6*ys + 1.5);
396
397
398 for (j=0; j < NISO; j++) {
399
400 uj = isotempdata[j].ut;
401 vj = isotempdata[j].vt;
402 tj = isotempdata[j].tt;
403 mj = isotempdata[j].mirek;
404
405 dj = ((vs - vj) - tj * (us - uj)) / sqrt(1 + tj*tj);
406
407
408
409 if ((j!=0) && (di/dj < 0.0)) {
410 Tc = 1000000.0 / (mi + (di / (di - dj)) * (mj - mi));
411 break;
412 }
413
414 di = dj;
415 mi = mj;
416 }
417
418
419 if (j == NISO) return -1;
420 return Tc;
421}
422
423
424
425static
426BOOL InRange(LPcmsCIExyY a, LPcmsCIExyY b, double tolerance)
427{
428 double dist_x, dist_y;
429
430 dist_x = fabs(a->x - b->x);
431 dist_y = fabs(a->y - b->y);
432
433 return (tolerance >= dist_x * dist_x + dist_y * dist_y);
434
435}
436
437
438typedef struct {
439 char Name[30];
440 cmsCIExyY Val;
441
442 } WHITEPOINTS,FAR *LPWHITEPOINTS;
443
444static
445int FromD40toD150(LPWHITEPOINTS pts)
446{
447 int i, n;
448
449 n = 0;
450 for (i=40; i < 150; i ++)
451 {
452 sprintf(pts[n].Name, "D%d", i);
453 cmsWhitePointFromTemp((int) (i*100.0), &pts[n].Val);
454 n++;
455 }
456
457 return n;
458}
459
460
461void _cmsIdentifyWhitePoint(char *Buffer, LPcmsCIEXYZ WhitePt)
462{
463 int i, n;
464 cmsCIExyY Val;
465 double T;
466 WHITEPOINTS SomeIlluminants[140] = {
467
468 {"CIE illuminant A", {0.4476, 0.4074, 1.0}},
469 {"CIE illuminant C", {0.3101, 0.3162, 1.0}},
470 {"D65 (daylight)", {0.3127, 0.3291, 1.0}},
471 };
472
473 n = FromD40toD150(&SomeIlluminants[3]) + 3;
474
475 cmsXYZ2xyY(&Val, WhitePt);
476
477 Val.Y = 1.;
478 for (i=0; i < n; i++)
479 {
480
481 if (InRange(&Val, &SomeIlluminants[i].Val, 0.000005))
482 {
483 strcpy(Buffer, "WhitePoint : ");
484 strcat(Buffer, SomeIlluminants[i].Name);
485 return;
486 }
487 }
488
489 T = Robertson(&Val);
490
491 if (T > 0)
492 sprintf(Buffer, "White point near %dK", (int) T);
493 else
494 {
495 sprintf(Buffer, "Unknown white point (X:%1.2g, Y:%1.2g, Z:%1.2g)",
496 WhitePt -> X, WhitePt -> Y, WhitePt -> Z);
497
498 }
499
500}
501
502
503// Use darker colorant to obtain black point
504
505static
506int BlackPointAsDarkerColorant(cmsHPROFILE hInput,
507 int Intent,
508 LPcmsCIEXYZ BlackPoint,
509 DWORD dwFlags)
510{
511 WORD *Black, *White;
512 cmsHTRANSFORM xform;
513 icColorSpaceSignature Space;
514 int nChannels;
515 DWORD dwFormat;
516 cmsHPROFILE hLab;
517 cmsCIELab Lab;
518 cmsCIEXYZ BlackXYZ, MediaWhite;
519
520 // If the profile does not support input direction, assume Black point 0
521
522 if (!cmsIsIntentSupported(hInput, Intent, LCMS_USED_AS_INPUT)) {
523
524 BlackPoint -> X = BlackPoint ->Y = BlackPoint -> Z = 0.0;
525 return 0;
526 }
527
528
529 // Try to get black by using black colorant
530
531 Space = cmsGetColorSpace(hInput);
532
533 if (!_cmsEndPointsBySpace(Space, &White, &Black, &nChannels)) {
534
535 BlackPoint -> X = BlackPoint ->Y = BlackPoint -> Z = 0.0;
536 return 0;
537 }
538
539 dwFormat = CHANNELS_SH(nChannels)|BYTES_SH(2);
540
541 hLab = cmsCreateLabProfile(NULL);
542
543 xform = cmsCreateTransform(hInput, dwFormat,
544 hLab, TYPE_Lab_DBL, Intent, cmsFLAGS_NOTPRECALC);
545
546
547 cmsDoTransform(xform, Black, &Lab, 1);
548
549 // Force it to be neutral, clip to max. L* of 50
550
551 Lab.a = Lab.b = 0;
552 if (Lab.L > 50) Lab.L = 50;
553
554 cmsCloseProfile(hLab);
555 cmsDeleteTransform(xform);
556
557 cmsLab2XYZ(NULL, &BlackXYZ, &Lab);
558
559 if (Intent == INTENT_ABSOLUTE_COLORIMETRIC) {
560
561 *BlackPoint = BlackXYZ;
562 }
563 else {
564
565 if (!(dwFlags & LCMS_BPFLAGS_D50_ADAPTED)) {
566
567 cmsTakeMediaWhitePoint(&MediaWhite, hInput);
568 cmsAdaptToIlluminant(BlackPoint, cmsD50_XYZ(), &MediaWhite, &BlackXYZ);
569 }
570 else
571 *BlackPoint = BlackXYZ;
572 }
573
574 return 1;
575}
576
577
578// Get a black point of output CMYK profile, discounting any ink-limiting embedded
579// in the profile. Fou doing that, use perceptual intent in input direction:
580// Lab (0, 0, 0) -> [Perceptual] Profile -> CMYK -> [Rel. colorimetric] Profile -> Lab
581
582static
583int BlackPointUsingPerceptualBlack(LPcmsCIEXYZ BlackPoint,
584 cmsHPROFILE hProfile,
585 DWORD dwFlags)
586{
587 cmsHTRANSFORM hPercLab2CMYK, hRelColCMYK2Lab;
588 cmsHPROFILE hLab;
589 cmsCIELab LabIn, LabOut;
590 WORD CMYK[MAXCHANNELS];
591 cmsCIEXYZ BlackXYZ, MediaWhite;
592
593
594 if (!cmsIsIntentSupported(hProfile, INTENT_PERCEPTUAL, LCMS_USED_AS_INPUT)) {
595
596 BlackPoint -> X = BlackPoint ->Y = BlackPoint -> Z = 0.0;
597 return 0;
598 }
599
600 hLab = cmsCreateLabProfile(NULL);
601
602 hPercLab2CMYK = cmsCreateTransform(hLab, TYPE_Lab_DBL,
603 hProfile, TYPE_CMYK_16,
604 INTENT_PERCEPTUAL, cmsFLAGS_NOTPRECALC);
605
606 hRelColCMYK2Lab = cmsCreateTransform(hProfile, TYPE_CMYK_16,
607 hLab, TYPE_Lab_DBL,
608 INTENT_RELATIVE_COLORIMETRIC, cmsFLAGS_NOTPRECALC);
609
610 LabIn.L = LabIn.a = LabIn.b = 0;
611
612 cmsDoTransform(hPercLab2CMYK, &LabIn, CMYK, 1);
613 cmsDoTransform(hRelColCMYK2Lab, CMYK, &LabOut, 1);
614
615 if (LabOut.L > 50) LabOut.L = 50;
616 LabOut.a = LabOut.b = 0;
617
618 cmsDeleteTransform(hPercLab2CMYK);
619 cmsDeleteTransform(hRelColCMYK2Lab);
620 cmsCloseProfile(hLab);
621
622 cmsLab2XYZ(NULL, &BlackXYZ, &LabOut);
623
624 if (!(dwFlags & LCMS_BPFLAGS_D50_ADAPTED)){
625 cmsTakeMediaWhitePoint(&MediaWhite, hProfile);
626 cmsAdaptToIlluminant(BlackPoint, cmsD50_XYZ(), &MediaWhite, &BlackXYZ);
627 }
628 else
629 *BlackPoint = BlackXYZ;
630
631 return 1;
632
633}
634
635
636// Get Perceptual black of v4 profiles.
637static
638int GetV4PerceptualBlack(LPcmsCIEXYZ BlackPoint, cmsHPROFILE hProfile, DWORD dwFlags)
639{
640 if (dwFlags & LCMS_BPFLAGS_D50_ADAPTED) {
641
642 BlackPoint->X = PERCEPTUAL_BLACK_X;
643 BlackPoint->Y = PERCEPTUAL_BLACK_Y;
644 BlackPoint->Z = PERCEPTUAL_BLACK_Z;
645 }
646 else {
647
648 cmsCIEXYZ D50BlackPoint, MediaWhite;
649
650 cmsTakeMediaWhitePoint(&MediaWhite, hProfile);
651 D50BlackPoint.X = PERCEPTUAL_BLACK_X;
652 D50BlackPoint.Y = PERCEPTUAL_BLACK_Y;
653 D50BlackPoint.Z = PERCEPTUAL_BLACK_Z;
654 cmsAdaptToIlluminant(BlackPoint, cmsD50_XYZ(), &MediaWhite, &D50BlackPoint);
655 }
656
657
658 return 1;
659}
660
661
662// This function shouldn't exist at all -- there is such quantity of broken
663// profiles on black point tag, that we must somehow fix chromaticity to
664// avoid huge tint when doing Black point compensation. This function does
665// just that. If BP is specified, then forces it to neutral and uses only L
666// component. If does not exist, computes it by taking 400% of ink or RGB=0 This
667// works well on relative intent and is undefined on perceptual & saturation.
668// However, I will support all intents for tricking & trapping.
669
670
671int cmsDetectBlackPoint(LPcmsCIEXYZ BlackPoint, cmsHPROFILE hProfile, int Intent, DWORD dwFlags)
672{
673
674 // v4 + perceptual & saturation intents does have its own black point
675
676 if ((cmsGetProfileICCversion(hProfile) >= 0x4000000) &&
677 (Intent == INTENT_PERCEPTUAL || Intent == INTENT_SATURATION)) {
678
679 // Matrix shaper share MRC & perceptual intents
680
681 if (_cmsIsMatrixShaper(hProfile))
682 return BlackPointAsDarkerColorant(hProfile, INTENT_RELATIVE_COLORIMETRIC, BlackPoint, cmsFLAGS_NOTPRECALC);
683
684 // Get fixed value
685 return GetV4PerceptualBlack(BlackPoint, hProfile, dwFlags);
686 }
687
688
689#ifdef HONOR_BLACK_POINT_TAG
690
691 // v2, v4 rel/abs colorimetric
692 if (cmsIsTag(hProfile, icSigMediaBlackPointTag) &&
693 Intent == INTENT_RELATIVE_COLORIMETRIC) {
694
695 cmsCIEXYZ BlackXYZ, UntrustedBlackPoint, TrustedBlackPoint, MediaWhite;
696 cmsCIELab Lab;
697
698 // If black point is specified, then use it,
699
700 cmsTakeMediaBlackPoint(&BlackXYZ, hProfile);
701 cmsTakeMediaWhitePoint(&MediaWhite, hProfile);
702
703 // Black point is absolute XYZ, so adapt to D50 to get PCS value
704
705 cmsAdaptToIlluminant(&UntrustedBlackPoint, &MediaWhite, cmsD50_XYZ(), &BlackXYZ);
706
707 // Force a=b=0 to get rid of any chroma
708
709 cmsXYZ2Lab(NULL, &Lab, &UntrustedBlackPoint);
710 Lab.a = Lab.b = 0;
711 if (Lab.L > 50) Lab.L = 50; // Clip to L* <= 50
712
713 cmsLab2XYZ(NULL, &TrustedBlackPoint, &Lab);
714
715 // Return BP as D50 relative or absolute XYZ (depends on flags)
716
717 if (!(dwFlags & LCMS_BPFLAGS_D50_ADAPTED))
718 cmsAdaptToIlluminant(BlackPoint, cmsD50_XYZ(), &MediaWhite, &TrustedBlackPoint);
719 else
720 *BlackPoint = TrustedBlackPoint;
721
722 return 1;
723 }
724
725#endif
726
727 // If output profile, discount ink-limiting
728
729 if (Intent == INTENT_RELATIVE_COLORIMETRIC &&
730 (cmsGetDeviceClass(hProfile) == icSigOutputClass) &&
731 (cmsGetColorSpace(hProfile) == icSigCmykData))
732 return BlackPointUsingPerceptualBlack(BlackPoint, hProfile, dwFlags);
733
734 // Nope, compute BP using current intent.
735
736 return BlackPointAsDarkerColorant(hProfile, Intent, BlackPoint, dwFlags);
737
738}