blob: f85dd3e7887f48e4e655cf9905c058048307153b [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.android.calculator2;
import java.math.BigInteger;
import com.hp.creals.CR;
import com.hp.creals.UnaryCRFunction;
/**
* Computable real numbers, represented so that we can get exact decidable comparisons
* for a number of interesting special cases, including rational computations.
*
* A real number is represented as the product of two numbers with different representations:
* A) A BoundedRational that can only represent a subset of the rationals, but supports
* exact computable comparisons.
* B) A lazily evaluated "constructive real number" that provides operations to evaluate
* itself to any requested number of digits.
* Whenever possible, we choose (B) to be one of a small set of known constants about which we
* know more. For example, whenever we can, we represent rationals such that (B) is 1.
* This scheme allows us to do some very limited symbolic computation on numbers when both
* have the same (B) value, as well as in some other situations. We try to maximize that
* possibility.
*
* Arithmetic operations and operations that produce finite approximations may throw unchecked
* exceptions produced by the underlying CR and BoundedRational packages, including
* CR.PrecisionOverflowException and CR.AbortedException.
*/
public class UnifiedReal {
private final BoundedRational mRatFactor;
private final CR mCrFactor;
// TODO: It would be helpful to add flags to indicate whether the result is known
// irrational, etc. This sometimes happens even if mCrFactor is not one of the known ones.
// And exact comparisons between rationals and known irrationals are decidable.
/**
* Perform some nontrivial consistency checks.
* @hide
*/
public static boolean enableChecks = true;
private static void check(boolean b) {
if (!b) {
throw new AssertionError();
}
}
private UnifiedReal(BoundedRational rat, CR cr) {
if (rat == null) {
throw new ArithmeticException("Building UnifiedReal from null");
}
// We don't normally traffic in null CRs, and hence don't test explicitly.
mCrFactor = cr;
mRatFactor = rat;
}
public UnifiedReal(CR cr) {
this(BoundedRational.ONE, cr);
}
public UnifiedReal(BoundedRational rat) {
this(rat, CR_ONE);
}
public UnifiedReal(BigInteger n) {
this(new BoundedRational(n));
}
public UnifiedReal(long n) {
this(new BoundedRational(n));
}
public static UnifiedReal valueOf(double x) {
if (x == 0.0 || x == 1.0) {
return valueOf((long) x);
}
return new UnifiedReal(BoundedRational.valueOf(x));
}
public static UnifiedReal valueOf(long x) {
if (x == 0) {
return UnifiedReal.ZERO;
} else if (x == 1) {
return UnifiedReal.ONE;
} else {
return new UnifiedReal(BoundedRational.valueOf(x));
}
}
// Various helpful constants
private final static BigInteger BIG_24 = BigInteger.valueOf(24);
private final static int DEFAULT_COMPARE_TOLERANCE = -1000;
// Well-known CR constants we try to use in the mCrFactor position:
private final static CR CR_ONE = CR.ONE;
private final static CR CR_PI = CR.PI;
private final static CR CR_E = CR.ONE.exp();
private final static CR CR_SQRT2 = CR.valueOf(2).sqrt();
private final static CR CR_SQRT3 = CR.valueOf(3).sqrt();
private final static CR CR_LN2 = CR.valueOf(2).ln();
private final static CR CR_LN3 = CR.valueOf(3).ln();
private final static CR CR_LN5 = CR.valueOf(5).ln();
private final static CR CR_LN6 = CR.valueOf(6).ln();
private final static CR CR_LN7 = CR.valueOf(7).ln();
private final static CR CR_LN10 = CR.valueOf(10).ln();
// Square roots that we try to recognize.
// We currently recognize only a small fixed collection, since the sqrt() function needs to
// identify numbers of the form <SQRT[i]>*n^2, and we don't otherwise know of a good
// algorithm for that.
private final static CR sSqrts[] = {
null,
CR.ONE,
CR_SQRT2,
CR_SQRT3,
null,
CR.valueOf(5).sqrt(),
CR.valueOf(6).sqrt(),
CR.valueOf(7).sqrt(),
null,
null,
CR.valueOf(10).sqrt() };
// Natural logs of small integers that we try to recognize.
private final static CR sLogs[] = {
null,
null,
CR_LN2,
CR_LN3,
null,
CR_LN5,
CR_LN6,
CR_LN7,
null,
null,
CR_LN10 };
// Some convenient UnifiedReal constants.
public static final UnifiedReal PI = new UnifiedReal(CR_PI);
public static final UnifiedReal E = new UnifiedReal(CR_E);
public static final UnifiedReal ZERO = new UnifiedReal(BoundedRational.ZERO);
public static final UnifiedReal ONE = new UnifiedReal(BoundedRational.ONE);
public static final UnifiedReal MINUS_ONE = new UnifiedReal(BoundedRational.MINUS_ONE);
public static final UnifiedReal TWO = new UnifiedReal(BoundedRational.TWO);
public static final UnifiedReal MINUS_TWO = new UnifiedReal(BoundedRational.MINUS_TWO);
public static final UnifiedReal HALF = new UnifiedReal(BoundedRational.HALF);
public static final UnifiedReal MINUS_HALF = new UnifiedReal(BoundedRational.MINUS_HALF);
public static final UnifiedReal TEN = new UnifiedReal(BoundedRational.TEN);
public static final UnifiedReal RADIANS_PER_DEGREE
= new UnifiedReal(new BoundedRational(1, 180), CR_PI);
private static final UnifiedReal SIX = new UnifiedReal(6);
private static final UnifiedReal HALF_SQRT2 = new UnifiedReal(BoundedRational.HALF, CR_SQRT2);
private static final UnifiedReal SQRT3 = new UnifiedReal(CR_SQRT3);
private static final UnifiedReal HALF_SQRT3 = new UnifiedReal(BoundedRational.HALF, CR_SQRT3);
private static final UnifiedReal THIRD_SQRT3 = new UnifiedReal(BoundedRational.THIRD, CR_SQRT3);
private static final UnifiedReal PI_OVER_2 = new UnifiedReal(BoundedRational.HALF, CR_PI);
private static final UnifiedReal PI_OVER_3 = new UnifiedReal(BoundedRational.THIRD, CR_PI);
private static final UnifiedReal PI_OVER_4 = new UnifiedReal(BoundedRational.QUARTER, CR_PI);
private static final UnifiedReal PI_OVER_6 = new UnifiedReal(BoundedRational.SIXTH, CR_PI);
/**
* Given a constructive real cr, try to determine whether cr is the square root of
* a small integer. If so, return its square as a BoundedRational. Otherwise return null.
* We make this determination by simple table lookup, so spurious null returns are
* entirely possible, or even likely.
*/
private static BoundedRational getSquare(CR cr) {
for (int i = 0; i < sSqrts.length; ++i) {
if (sSqrts[i] == cr) {
return new BoundedRational(i);
}
}
return null;
}
/**
* Given a constructive real cr, try to determine whether cr is the logarithm of a small
* integer. If so, return exp(cr) as a BoundedRational. Otherwise return null.
* We make this determination by simple table lookup, so spurious null returns are
* entirely possible, or even likely.
*/
private BoundedRational getExp(CR cr) {
for (int i = 0; i < sLogs.length; ++i) {
if (sLogs[i] == cr) {
return new BoundedRational(i);
}
}
return null;
}
/**
* If the argument is a well-known constructive real, return its name.
* The name of "CR_ONE" is the empty string.
* No named constructive reals are rational multiples of each other.
* Thus two UnifiedReals with different named mCrFactors can be equal only if both
* mRatFactors are zero or possibly if one is CR_PI and the other is CR_E.
* (The latter is apparently an open problem.)
*/
private static String crName(CR cr) {
if (cr == CR_ONE) {
return "";
}
if (cr == CR_PI) {
return "\u03C0"; // GREEK SMALL LETTER PI
}
if (cr == CR_E) {
return "e";
}
for (int i = 0; i < sSqrts.length; ++i) {
if (cr == sSqrts[i]) {
return "\u221A" /* SQUARE ROOT */ + i;
}
}
for (int i = 0; i < sLogs.length; ++i) {
if (cr == sLogs[i]) {
return "ln(" + i + ")";
}
}
return null;
}
/**
* Would crName() return non-Null?
*/
private static boolean isNamed(CR cr) {
if (cr == CR_ONE || cr == CR_PI || cr == CR_E) {
return true;
}
for (CR r: sSqrts) {
if (cr == r) {
return true;
}
}
for (CR r: sLogs) {
if (cr == r) {
return true;
}
}
return false;
}
/**
* Is cr known to be algebraic (as opposed to transcendental)?
* Currently only produces meaningful results for the above known special
* constructive reals.
*/
private static boolean definitelyAlgebraic(CR cr) {
return cr == CR_ONE || getSquare(cr) != null;
}
/**
* Is this number known to be rational?
*/
public boolean definitelyRational() {
return mCrFactor == CR_ONE || mRatFactor.signum() == 0;
}
/**
* Is this number known to be irrational?
* TODO: We could track the fact that something is irrational with an explicit flag, which
* could cover many more cases. Whether that matters in practice is TBD.
*/
public boolean definitelyIrrational() {
return !definitelyRational() && isNamed(mCrFactor);
}
/**
* Is this number known to be algebraic?
*/
public boolean definitelyAlgebraic() {
return definitelyAlgebraic(mCrFactor) || mRatFactor.signum() == 0;
}
/**
* Is this number known to be transcendental?
*/
public boolean definitelyTranscendental() {
return !definitelyAlgebraic() && isNamed(mCrFactor);
}
/**
* Is it known that the two constructive reals differ by something other than a
* a rational factor, i.e. is it known that two UnifiedReals
* with those mCrFactors will compare unequal unless both mRatFactors are zero?
* If this returns true, then a comparison of two UnifiedReals using those two
* mCrFactors cannot diverge, though we don't know of a good runtime bound.
*/
private static boolean definitelyIndependent(CR r1, CR r2) {
// The question here is whether r1 = x*r2, where x is rational, where r1 and r2
// are in our set of special known CRs, can have a solution.
// This cannot happen if one is CR_ONE and the other is not.
// (Since all others are irrational.)
// This cannot happen for two named square roots, which have no repeated factors.
// (To see this, square both sides of the equation and factor. Each prime
// factor in the numerator and denominator occurs twice.)
// This cannot happen for e or pi on one side, and a square root on the other.
// (One is transcendental, the other is algebraic.)
// This cannot happen for two of our special natural logs.
// (Otherwise ln(m) = (a/b)ln(n) ==> m = n^(a/b) ==> m^b = n^a, which is impossible
// because either m or n includes a prime factor not shared by the other.)
// This cannot happen for a log and a square root.
// (The Lindemann-Weierstrass theorem tells us, among other things, that if
// a is algebraic, then exp(a) is transcendental. Thus if l in our finite
// set of logs where algebraic, expl(l), must be transacendental.
// But exp(l) is an integer. Thus the logs are transcendental. But of course the
// square roots are algebraic. Thus they can't be rational multiples.)
// Unfortunately, we do not know whether e/pi is rational.
if (r1 == r2) {
return false;
}
CR other;
if (r1 == CR_E || r1 == CR_PI) {
return definitelyAlgebraic(r2);
}
if (r2 == CR_E || r2 == CR_PI) {
return definitelyAlgebraic(r1);
}
return isNamed(r1) && isNamed(r2);
}
/**
* Convert to String reflecting raw representation.
* Debug or log messages only, not pretty.
*/
public String toString() {
return mRatFactor.toString() + "*" + mCrFactor.toString();
}
/**
* Convert to readable String.
* Intended for user output. Produces exact expression when possible.
*/
public String toNiceString() {
if (mCrFactor == CR_ONE || mRatFactor.signum() == 0) {
return mRatFactor.toNiceString();
}
String name = crName(mCrFactor);
if (name != null) {
BigInteger bi = BoundedRational.asBigInteger(mRatFactor);
if (bi != null) {
if (bi.equals(BigInteger.ONE)) {
return name;
}
return mRatFactor.toNiceString() + name;
}
return "(" + mRatFactor.toNiceString() + ")" + name;
}
if (mRatFactor.equals(BoundedRational.ONE)) {
return mCrFactor.toString();
}
return crValue().toString();
}
/**
* Will toNiceString() produce an exact representation?
*/
public boolean exactlyDisplayable() {
return crName(mCrFactor) != null;
}
// Number of extra bits used in evaluation below to prefer truncation to rounding.
// Must be <= 30.
private final static int EXTRA_PREC = 10;
/*
* Returns a truncated representation of the result.
* If exactlyTruncatable(), we round correctly towards zero. Otherwise the resulting digit
* string may occasionally be rounded up instead.
* Always includes a decimal point in the result.
* The result includes n digits to the right of the decimal point.
* @param n result precision, >= 0
*/
public String toStringTruncated(int n) {
if (mCrFactor == CR_ONE || mRatFactor == BoundedRational.ZERO) {
return mRatFactor.toStringTruncated(n);
}
final CR scaled = CR.valueOf(BigInteger.TEN.pow(n)).multiply(crValue());
boolean negative = false;
BigInteger intScaled;
if (exactlyTruncatable()) {
intScaled = scaled.get_appr(0);
if (intScaled.signum() < 0) {
negative = true;
intScaled = intScaled.negate();
}
if (CR.valueOf(intScaled).compareTo(scaled.abs()) > 0) {
intScaled = intScaled.subtract(BigInteger.ONE);
}
check(CR.valueOf(intScaled).compareTo(scaled.abs()) < 0);
} else {
// Approximate case. Exact comparisons are impossible.
intScaled = scaled.get_appr(-EXTRA_PREC);
if (intScaled.signum() < 0) {
negative = true;
intScaled = intScaled.negate();
}
intScaled = intScaled.shiftRight(EXTRA_PREC);
}
String digits = intScaled.toString();
int len = digits.length();
if (len < n + 1) {
digits = StringUtils.repeat('0', n + 1 - len) + digits;
len = n + 1;
}
return (negative ? "-" : "") + digits.substring(0, len - n) + "."
+ digits.substring(len - n);
}
/*
* Can we compute correctly truncated approximations of this number?
*/
public boolean exactlyTruncatable() {
// If the value is known rational, we can do exact comparisons.
// If the value is known irrational, then we can safely compare to rational approximations;
// equality is impossible; hence the comparison must converge.
// The only problem cases are the ones in which we don't know.
return mCrFactor == CR_ONE || mRatFactor == BoundedRational.ZERO || definitelyIrrational();
}
/**
* Return a double approximation.
* Rational arguments are currently rounded to nearest, with ties away from zero.
* TODO: Improve rounding.
*/
public double doubleValue() {
if (mCrFactor == CR_ONE) {
return mRatFactor.doubleValue(); // Hopefully correctly rounded
} else {
return crValue().doubleValue(); // Approximately correctly rounded
}
}
public CR crValue() {
return mRatFactor.crValue().multiply(mCrFactor);
}
/**
* Are this and r exactly comparable?
*/
public boolean isComparable(UnifiedReal u) {
// We check for ONE only to speed up the common case.
// The use of a tolerance here means we can spuriously return false, not true.
return mCrFactor == u.mCrFactor
&& (isNamed(mCrFactor) || mCrFactor.signum(DEFAULT_COMPARE_TOLERANCE) != 0)
|| mRatFactor.signum() == 0 && u.mRatFactor.signum() == 0
|| definitelyIndependent(mCrFactor, u.mCrFactor)
|| crValue().compareTo(u.crValue(), DEFAULT_COMPARE_TOLERANCE) != 0;
}
/**
* Return +1 if this is greater than r, -1 if this is less than r, or 0 of the two are
* known to be equal.
* May diverge if the two are equal and !isComparable(r).
*/
public int compareTo(UnifiedReal u) {
if (definitelyZero() && u.definitelyZero()) return 0;
if (mCrFactor == u.mCrFactor) {
int signum = mCrFactor.signum(); // Can diverge if mCRFactor == 0.
return signum * mRatFactor.compareTo(u.mRatFactor);
}
return crValue().compareTo(u.crValue()); // Can also diverge.
}
/**
* Return +1 if this is greater than r, -1 if this is less than r, or possibly 0 of the two are
* within 2^a of each other.
*/
public int compareTo(UnifiedReal u, int a) {
if (isComparable(u)) {
return compareTo(u);
} else {
return crValue().compareTo(u.crValue(), a);
}
}
/**
* Return compareTo(ZERO, a).
*/
public int signum(int a) {
return compareTo(ZERO, a);
}
/**
* Return compareTo(ZERO).
* May diverge for ZERO argument if !isComparable(ZERO).
*/
public int signum() {
return compareTo(ZERO);
}
/**
* Equality comparison. May erroneously return true if values differ by less than 2^a,
* and !isComparable(u).
*/
public boolean approxEquals(UnifiedReal u, int a) {
if (isComparable(u)) {
if (definitelyIndependent(mCrFactor, u.mCrFactor)
&& (mRatFactor.signum() != 0 || u.mRatFactor.signum() != 0)) {
// No need to actually evaluate, though we don't know which is larger.
return false;
} else {
return compareTo(u) == 0;
}
}
return crValue().compareTo(u.crValue(), a) == 0;
}
/**
* Returns true if values are definitely known to be equal, false in all other cases.
* This does not satisfy the contract for Object.equals().
*/
public boolean definitelyEquals(UnifiedReal u) {
return isComparable(u) && compareTo(u) == 0;
}
@Override
public int hashCode() {
// Better useless than wrong. Probably.
return 0;
}
@Override
public boolean equals(Object r) {
if (r == null || !(r instanceof UnifiedReal)) {
return false;
}
// This is almost certainly a programming error. Don't even try.
throw new AssertionError("Can't compare UnifiedReals for exact equality");
}
/**
* Returns true if values are definitely known not to be equal, false in all other cases.
* Performs no approximate evaluation.
*/
public boolean definitelyNotEquals(UnifiedReal u) {
boolean isNamed = isNamed(mCrFactor);
boolean uIsNamed = isNamed(u.mCrFactor);
if (isNamed && uIsNamed) {
if (definitelyIndependent(mCrFactor, u.mCrFactor)) {
return mRatFactor.signum() != 0 || u.mRatFactor.signum() != 0;
} else if (mCrFactor == u.mCrFactor) {
return !mRatFactor.equals(u.mRatFactor);
}
return !mRatFactor.equals(u.mRatFactor);
}
if (mRatFactor.signum() == 0) {
return uIsNamed && u.mRatFactor.signum() != 0;
}
if (u.mRatFactor.signum() == 0) {
return isNamed && mRatFactor.signum() != 0;
}
return false;
}
// And some slightly faster convenience functions for special cases:
public boolean definitelyZero() {
return mRatFactor.signum() == 0;
}
/**
* Can this number be determined to be definitely nonzero without performing approximate
* evaluation?
*/
public boolean definitelyNonZero() {
return isNamed(mCrFactor) && mRatFactor.signum() != 0;
}
public boolean definitelyOne() {
return mCrFactor == CR_ONE && mRatFactor.equals(BoundedRational.ONE);
}
/**
* Return equivalent BoundedRational, if known to exist, null otherwise
*/
public BoundedRational boundedRationalValue() {
if (mCrFactor == CR_ONE || mRatFactor.signum() == 0) {
return mRatFactor;
}
return null;
}
/**
* Returns equivalent BigInteger result if it exists, null if not.
*/
public BigInteger bigIntegerValue() {
final BoundedRational r = boundedRationalValue();
return BoundedRational.asBigInteger(r);
}
public UnifiedReal add(UnifiedReal u) {
if (mCrFactor == u.mCrFactor) {
BoundedRational nRatFactor = BoundedRational.add(mRatFactor, u.mRatFactor);
if (nRatFactor != null) {
return new UnifiedReal(nRatFactor, mCrFactor);
}
}
if (definitelyZero()) {
// Avoid creating new mCrFactor, even if they don't currently match.
return u;
}
if (u.definitelyZero()) {
return this;
}
return new UnifiedReal(crValue().add(u.crValue()));
}
public UnifiedReal negate() {
return new UnifiedReal(BoundedRational.negate(mRatFactor), mCrFactor);
}
public UnifiedReal subtract(UnifiedReal u) {
return add(u.negate());
}
public UnifiedReal multiply(UnifiedReal u) {
// Preserve a preexisting mCrFactor when we can.
if (mCrFactor == CR_ONE) {
BoundedRational nRatFactor = BoundedRational.multiply(mRatFactor, u.mRatFactor);
if (nRatFactor != null) {
return new UnifiedReal(nRatFactor, u.mCrFactor);
}
}
if (u.mCrFactor == CR_ONE) {
BoundedRational nRatFactor = BoundedRational.multiply(mRatFactor, u.mRatFactor);
if (nRatFactor != null) {
return new UnifiedReal(nRatFactor, mCrFactor);
}
}
if (definitelyZero() || u.definitelyZero()) {
return ZERO;
}
if (mCrFactor == u.mCrFactor) {
BoundedRational square = getSquare(mCrFactor);
if (square != null) {
BoundedRational nRatFactor = BoundedRational.multiply(
BoundedRational.multiply(square, mRatFactor), u.mRatFactor);
if (nRatFactor != null) {
return new UnifiedReal(nRatFactor);
}
}
}
// Probably a bit cheaper to multiply component-wise.
BoundedRational nRatFactor = BoundedRational.multiply(mRatFactor, u.mRatFactor);
if (nRatFactor != null) {
return new UnifiedReal(nRatFactor, mCrFactor.multiply(u.mCrFactor));
}
return new UnifiedReal(crValue().multiply(u.crValue()));
}
public static class ZeroDivisionException extends ArithmeticException {
public ZeroDivisionException() {
super("Division by zero");
}
}
/**
* Return the reciprocal.
*/
public UnifiedReal inverse() {
if (definitelyZero()) {
throw new ZeroDivisionException();
}
BoundedRational square = getSquare(mCrFactor);
if (square != null) {
// 1/sqrt(n) = sqrt(n)/n
BoundedRational nRatFactor = BoundedRational.inverse(
BoundedRational.multiply(mRatFactor, square));
if (nRatFactor != null) {
return new UnifiedReal(nRatFactor, mCrFactor);
}
}
return new UnifiedReal(BoundedRational.inverse(mRatFactor), mCrFactor.inverse());
}
public UnifiedReal divide(UnifiedReal u) {
if (mCrFactor == u.mCrFactor) {
if (u.definitelyZero()) {
throw new ZeroDivisionException();
}
BoundedRational nRatFactor = BoundedRational.divide(mRatFactor, u.mRatFactor);
if (nRatFactor != null) {
return new UnifiedReal(nRatFactor, CR_ONE);
}
}
return multiply(u.inverse());
}
/**
* Return the square root.
* This may fail to return a known rational value, even when the result is rational.
*/
public UnifiedReal sqrt() {
if (definitelyZero()) {
return ZERO;
}
if (mCrFactor == CR_ONE) {
BoundedRational ratSqrt;
// Check for all arguments of the form <perfect rational square> * small_int,
// where small_int has a known sqrt. This includes the small_int = 1 case.
for (int divisor = 1; divisor < sSqrts.length; ++divisor) {
if (sSqrts[divisor] != null) {
ratSqrt = BoundedRational.sqrt(
BoundedRational.divide(mRatFactor, new BoundedRational(divisor)));
if (ratSqrt != null) {
return new UnifiedReal(ratSqrt, sSqrts[divisor]);
}
}
}
}
return new UnifiedReal(crValue().sqrt());
}
/**
* Return (this mod 2pi)/(pi/6) as a BigInteger, or null if that isn't easily possible.
*/
private BigInteger getPiTwelfths() {
if (definitelyZero()) return BigInteger.ZERO;
if (mCrFactor == CR_PI) {
BigInteger quotient = BoundedRational.asBigInteger(
BoundedRational.multiply(mRatFactor, BoundedRational.TWELVE));
if (quotient == null) {
return null;
}
return quotient.mod(BIG_24);
}
return null;
}
/**
* Computer the sin() for an integer multiple n of pi/12, if easily representable.
* @param n value between 0 and 23 inclusive.
*/
private static UnifiedReal sinPiTwelfths(int n) {
if (n >= 12) {
UnifiedReal negResult = sinPiTwelfths(n - 12);
return negResult == null ? null : negResult.negate();
}
switch (n) {
case 0:
return ZERO;
case 2: // 30 degrees
return HALF;
case 3: // 45 degrees
return HALF_SQRT2;
case 4: // 60 degrees
return HALF_SQRT3;
case 6:
return ONE;
case 8:
return HALF_SQRT3;
case 9:
return HALF_SQRT2;
case 10:
return HALF;
default:
return null;
}
}
public UnifiedReal sin() {
BigInteger piTwelfths = getPiTwelfths();
if (piTwelfths != null) {
UnifiedReal result = sinPiTwelfths(piTwelfths.intValue());
if (result != null) {
return result;
}
}
return new UnifiedReal(crValue().sin());
}
private static UnifiedReal cosPiTwelfths(int n) {
int sinArg = n + 6;
if (sinArg >= 24) {
sinArg -= 24;
}
return sinPiTwelfths(sinArg);
}
public UnifiedReal cos() {
BigInteger piTwelfths = getPiTwelfths();
if (piTwelfths != null) {
UnifiedReal result = cosPiTwelfths(piTwelfths.intValue());
if (result != null) {
return result;
}
}
return new UnifiedReal(crValue().cos());
}
public UnifiedReal tan() {
BigInteger piTwelfths = getPiTwelfths();
if (piTwelfths != null) {
int i = piTwelfths.intValue();
if (i == 6 || i == 18) {
throw new ArithmeticException("Tangent undefined");
}
UnifiedReal top = sinPiTwelfths(i);
UnifiedReal bottom = cosPiTwelfths(i);
if (top != null && bottom != null) {
return top.divide(bottom);
}
}
return sin().divide(cos());
}
// Throw an exception if the argument is definitely out of bounds for asin or acos.
private void checkAsinDomain() {
if (isComparable(ONE) && (compareTo(ONE) > 0 || compareTo(MINUS_ONE) < 0)) {
throw new ArithmeticException("inverse trig argument out of range");
}
}
/**
* Return asin(n/2). n is between -2 and 2.
*/
public static UnifiedReal asinHalves(int n){
if (n < 0) {
return (asinHalves(-n).negate());
}
switch (n) {
case 0:
return ZERO;
case 1:
return new UnifiedReal(BoundedRational.SIXTH, CR.PI);
case 2:
return new UnifiedReal(BoundedRational.HALF, CR.PI);
}
throw new AssertionError("asinHalves: Bad argument");
}
/**
* Return asin of this, assuming this is not an integral multiple of a half.
*/
public UnifiedReal asinNonHalves()
{
if (compareTo(ZERO, -10) < 0) {
return negate().asinNonHalves().negate();
}
if (definitelyEquals(HALF_SQRT2)) {
return new UnifiedReal(BoundedRational.QUARTER, CR_PI);
}
if (definitelyEquals(HALF_SQRT3)) {
return new UnifiedReal(BoundedRational.THIRD, CR_PI);
}
return new UnifiedReal(crValue().asin());
}
public UnifiedReal asin() {
checkAsinDomain();
final BigInteger halves = multiply(TWO).bigIntegerValue();
if (halves != null) {
return asinHalves(halves.intValue());
}
if (mCrFactor == CR.ONE || mCrFactor != CR_SQRT2 ||mCrFactor != CR_SQRT3) {
return asinNonHalves();
}
return new UnifiedReal(crValue().asin());
}
public UnifiedReal acos() {
return PI_OVER_2.subtract(asin());
}
public UnifiedReal atan() {
if (compareTo(ZERO, -10) < 0) {
return negate().atan().negate();
}
final BigInteger asBI = bigIntegerValue();
if (asBI != null && asBI.compareTo(BigInteger.ONE) <= 0) {
final int asInt = asBI.intValue();
// These seem to be all rational cases:
switch (asInt) {
case 0:
return ZERO;
case 1:
return PI_OVER_4;
default:
throw new AssertionError("Impossible r_int");
}
}
if (definitelyEquals(THIRD_SQRT3)) {
return PI_OVER_6;
}
if (definitelyEquals(SQRT3)) {
return PI_OVER_3;
}
return new UnifiedReal(UnaryCRFunction.atanFunction.execute(crValue()));
}
private static final BigInteger BIG_TWO = BigInteger.valueOf(2);
// The (in abs value) integral exponent for which we attempt to use a recursive
// algorithm for evaluating pow(). The recursive algorithm works independent of the sign of the
// base, and can produce rational results. But it can become slow for very large exponents.
private static final BigInteger RECURSIVE_POW_LIMIT = BigInteger.valueOf(1000);
// The corresponding limit when we're using rational arithmetic. This should fail fast
// anyway, but we avoid ridiculously deep recursion.
private static final BigInteger HARD_RECURSIVE_POW_LIMIT = BigInteger.ONE.shiftLeft(1000);
/**
* Compute an integral power of a constructive real, using the standard recursive algorithm.
* exp is known to be positive.
*/
private static CR recursivePow(CR base, BigInteger exp) {
if (exp.equals(BigInteger.ONE)) {
return base;
}
if (exp.testBit(0)) {
return base.multiply(recursivePow(base, exp.subtract(BigInteger.ONE)));
}
CR tmp = recursivePow(base, exp.shiftRight(1));
if (Thread.interrupted()) {
throw new CR.AbortedException();
}
return tmp.multiply(tmp);
}
/**
* Compute an integral power of a constructive real, using the exp function when
* we safely can. Use recursivePow when we can't. exp is known to be nozero.
*/
private UnifiedReal expLnPow(BigInteger exp) {
int sign = signum(DEFAULT_COMPARE_TOLERANCE);
if (sign > 0) {
// Safe to take the log. This avoids deep recursion for huge exponents, which
// may actually make sense here.
return new UnifiedReal(crValue().ln().multiply(CR.valueOf(exp)).exp());
} else if (sign < 0) {
CR result = crValue().negate().ln().multiply(CR.valueOf(exp)).exp();
if (exp.testBit(0) /* odd exponent */) {
result = result.negate();
}
return new UnifiedReal(result);
} else {
// Base of unknown sign with integer exponent. Use a recursive computation.
// (Another possible option would be to use the absolute value of the base, and then
// adjust the sign at the end. But that would have to be done in the CR
// implementation.)
if (exp.signum() < 0) {
// This may be very expensive if exp.negate() is large.
return new UnifiedReal(recursivePow(crValue(), exp.negate()).inverse());
} else {
return new UnifiedReal(recursivePow(crValue(), exp));
}
}
}
/**
* Compute an integral power of this.
* This recurses roughly as deeply as the number of bits in the exponent, and can, in
* ridiculous cases, result in a stack overflow.
*/
private UnifiedReal pow(BigInteger exp) {
if (exp.equals(BigInteger.ONE)) {
return this;
}
if (exp.signum() == 0) {
// Questionable if base has undefined value or is 0.
// Java.lang.Math.pow() returns 1 anyway, so we do the same.
return ONE;
}
BigInteger absExp = exp.abs();
if (mCrFactor == CR_ONE && absExp.compareTo(HARD_RECURSIVE_POW_LIMIT) <= 0) {
final BoundedRational ratPow = mRatFactor.pow(exp);
// We count on this to fail, e.g. for very large exponents, when it would
// otherwise be too expensive.
if (ratPow != null) {
return new UnifiedReal(ratPow);
}
}
if (absExp.compareTo(RECURSIVE_POW_LIMIT) > 0) {
return expLnPow(exp);
}
BoundedRational square = getSquare(mCrFactor);
if (square != null) {
final BoundedRational nRatFactor =
BoundedRational.multiply(mRatFactor.pow(exp), square.pow(exp.shiftRight(1)));
if (nRatFactor != null) {
if (exp.and(BigInteger.ONE).intValue() == 1) {
// Odd power: Multiply by remaining square root.
return new UnifiedReal(nRatFactor, mCrFactor);
} else {
return new UnifiedReal(nRatFactor);
}
}
}
return expLnPow(exp);
}
/**
* Return this ^ expon.
* This is really only well-defined for a positive base, particularly since
* 0^x is not continuous at zero. (0^0 = 1 (as is epsilon^0), but 0^epsilon is 0.
* We nonetheless try to do reasonable things at zero, when we recognize that case.
*/
public UnifiedReal pow(UnifiedReal expon) {
if (mCrFactor == CR_E) {
if (mRatFactor.equals(BoundedRational.ONE)) {
return expon.exp();
} else {
UnifiedReal ratPart = new UnifiedReal(mRatFactor).pow(expon);
return expon.exp().multiply(ratPart);
}
}
final BoundedRational expAsBR = expon.boundedRationalValue();
if (expAsBR != null) {
BigInteger expAsBI = BoundedRational.asBigInteger(expAsBR);
if (expAsBI != null) {
return pow(expAsBI);
} else {
// Check for exponent that is a multiple of a half.
expAsBI = BoundedRational.asBigInteger(
BoundedRational.multiply(BoundedRational.TWO, expAsBR));
if (expAsBI != null) {
return pow(expAsBI).sqrt();
}
}
}
// If the exponent were known zero, we would have handled it above.
if (definitelyZero()) {
return ZERO;
}
int sign = signum(DEFAULT_COMPARE_TOLERANCE);
if (sign < 0) {
throw new ArithmeticException("Negative base for pow() with non-integer exponent");
}
return new UnifiedReal(crValue().ln().multiply(expon.crValue()).exp());
}
/**
* Raise the argument to the 16th power.
*/
private static long pow16(int n) {
if (n > 10) {
throw new AssertionError("Unexpected pow16 argument");
}
long result = n*n;
result *= result;
result *= result;
result *= result;
return result;
}
/**
* Return the integral log with respect to the given base if it exists, 0 otherwise.
* n is presumed positive.
*/
private static long getIntLog(BigInteger n, int base) {
double nAsDouble = n.doubleValue();
double approx = Math.log(nAsDouble)/Math.log(base);
// A relatively quick test first.
// Unfortunately, this doesn't help for values to big to fit in a Double.
if (!Double.isInfinite(nAsDouble) && Math.abs(approx - Math.rint(approx)) > 1.0e-6) {
return 0;
}
long result = 0;
BigInteger remaining = n;
BigInteger bigBase = BigInteger.valueOf(base);
BigInteger base16th = null; // base^16, computed lazily
while (n.mod(bigBase).signum() == 0) {
if (Thread.interrupted()) {
throw new CR.AbortedException();
}
n = n.divide(bigBase);
++result;
// And try a slightly faster computation for large n:
if (base16th == null) {
base16th = BigInteger.valueOf(pow16(base));
}
while (n.mod(base16th).signum() == 0) {
n = n.divide(base16th);
result += 16;
}
}
if (n.equals(BigInteger.ONE)) {
return result;
}
return 0;
}
public UnifiedReal ln() {
if (mCrFactor == CR_E) {
return new UnifiedReal(mRatFactor, CR_ONE).ln().add(ONE);
}
if (isComparable(ZERO)) {
if (signum() <= 0) {
throw new ArithmeticException("log(non-positive)");
}
int compare1 = compareTo(ONE, DEFAULT_COMPARE_TOLERANCE);
if (compare1 == 0) {
if (definitelyEquals(ONE)) {
return ZERO;
}
} else if (compare1 < 0) {
return inverse().ln().negate();
}
final BigInteger bi = BoundedRational.asBigInteger(mRatFactor);
if (bi != null) {
if (mCrFactor == CR_ONE) {
// Check for a power of a small integer. We can use sLogs[] to return
// a more useful answer for those.
for (int i = 0; i < sLogs.length; ++i) {
if (sLogs[i] != null) {
long intLog = getIntLog(bi, i);
if (intLog != 0) {
return new UnifiedReal(new BoundedRational(intLog), sLogs[i]);
}
}
}
} else {
// Check for n^k * sqrt(n), for which we can also return a more useful answer.
BoundedRational square = getSquare(mCrFactor);
if (square != null) {
int intSquare = square.intValue();
if (sLogs[intSquare] != null) {
long intLog = getIntLog(bi, intSquare);
if (intLog != 0) {
BoundedRational nRatFactor =
BoundedRational.add(new BoundedRational(intLog),
BoundedRational.HALF);
if (nRatFactor != null) {
return new UnifiedReal(nRatFactor, sLogs[intSquare]);
}
}
}
}
}
}
}
return new UnifiedReal(crValue().ln());
}
public UnifiedReal exp() {
if (definitelyEquals(ZERO)) {
return ONE;
}
if (definitelyEquals(ONE)) {
// Avoid redundant computations, and ensure we recognize all instances as equal.
return E;
}
final BoundedRational crExp = getExp(mCrFactor);
if (crExp != null) {
boolean needSqrt = false;
BoundedRational ratExponent = mRatFactor;
BigInteger asBI = BoundedRational.asBigInteger(ratExponent);
if (asBI == null) {
// check for multiple of one half.
needSqrt = true;
ratExponent = BoundedRational.multiply(ratExponent, BoundedRational.TWO);
}
BoundedRational nRatFactor = BoundedRational.pow(crExp, ratExponent);
if (nRatFactor != null) {
UnifiedReal result = new UnifiedReal(nRatFactor);
if (needSqrt) {
result = result.sqrt();
}
return result;
}
}
return new UnifiedReal(crValue().exp());
}
/**
* Generalized factorial.
* Compute n * (n - step) * (n - 2 * step) * etc. This can be used to compute factorial a bit
* faster, especially if BigInteger uses sub-quadratic multiplication.
*/
private static BigInteger genFactorial(long n, long step) {
if (n > 4 * step) {
BigInteger prod1 = genFactorial(n, 2 * step);
if (Thread.interrupted()) {
throw new CR.AbortedException();
}
BigInteger prod2 = genFactorial(n - step, 2 * step);
if (Thread.interrupted()) {
throw new CR.AbortedException();
}
return prod1.multiply(prod2);
} else {
if (n == 0) {
return BigInteger.ONE;
}
BigInteger res = BigInteger.valueOf(n);
for (long i = n - step; i > 1; i -= step) {
res = res.multiply(BigInteger.valueOf(i));
}
return res;
}
}
/**
* Factorial function.
* Fails if argument is clearly not an integer.
* May round to nearest integer if value is close.
*/
public UnifiedReal fact() {
BigInteger asBI = bigIntegerValue();
if (asBI == null) {
asBI = crValue().get_appr(0); // Correct if it was an integer.
if (!approxEquals(new UnifiedReal(asBI), DEFAULT_COMPARE_TOLERANCE)) {
throw new ArithmeticException("Non-integral factorial argument");
}
}
if (asBI.signum() < 0) {
throw new ArithmeticException("Negative factorial argument");
}
if (asBI.bitLength() > 20) {
// Will fail. LongValue() may not work. Punt now.
throw new ArithmeticException("Factorial argument too big");
}
BigInteger biResult = genFactorial(asBI.longValue(), 1);
BoundedRational nRatFactor = new BoundedRational(biResult);
return new UnifiedReal(nRatFactor);
}
/**
* Return the number of decimal digits to the right of the decimal point required to represent
* the argument exactly.
* Return Integer.MAX_VALUE if that's not possible. Never returns a value less than zero, even
* if r is a power of ten.
*/
public int digitsRequired() {
if (mCrFactor == CR_ONE || mRatFactor.signum() == 0) {
return BoundedRational.digitsRequired(mRatFactor);
} else {
return Integer.MAX_VALUE;
}
}
/**
* Return an upper bound on the number of leading zero bits.
* These are the number of 0 bits
* to the right of the binary point and to the left of the most significant digit.
* Return Integer.MAX_VALUE if we cannot bound it.
*/
public int leadingBinaryZeroes() {
if (isNamed(mCrFactor)) {
// Only ln(2) is smaller than one, and could possibly add one zero bit.
// Adding 3 gives us a somewhat sloppy upper bound.
final int wholeBits = mRatFactor.wholeNumberBits();
if (wholeBits == Integer.MIN_VALUE) {
return Integer.MAX_VALUE;
}
if (wholeBits >= 3) {
return 0;
} else {
return -wholeBits + 3;
}
}
return Integer.MAX_VALUE;
}
/**
* Is the number of bits to the left of the decimal point greater than bound?
* The result is inexact: We roughly approximate the whole number bits.
*/
public boolean approxWholeNumberBitsGreaterThan(int bound) {
if (isNamed(mCrFactor)) {
return mRatFactor.wholeNumberBits() > bound;
} else {
return crValue().get_appr(bound - 2).bitLength() > 2;
}
}
}