blob: 8362131c0cf3834cee17fb80272cf810ee3207a6 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "CpuExecutor"
#include "CpuExecutor.h"
#include <android/hardware_buffer.h>
#include <sys/mman.h>
#include <vndk/hardware_buffer.h>
#include <Eigen/Core>
#include <memory>
#include <utility>
#include <vector>
// b/109953668, disable OpenMP
#ifdef NNAPI_OPENMP
#include <omp.h>
#endif // NNAPI_OPENMP
#include "ControlFlow.h"
#include "NeuralNetworks.h"
#include "OperationResolver.h"
#include "Operations.h"
#include "OperationsUtils.h"
#include "Tracing.h"
namespace android {
namespace nn {
namespace {
using namespace hal;
class OperationExecutionContext : public IOperationExecutionContext {
DISALLOW_IMPLICIT_CONSTRUCTORS(OperationExecutionContext);
public:
OperationExecutionContext(const Operation* operation, RunTimeOperandInfo* operands)
: operation(operation), operands(operands) {}
uint32_t getNumInputs() const override;
OperandType getInputType(uint32_t index) const override;
Shape getInputShape(uint32_t index) const override;
const void* getInputBuffer(uint32_t index) const override;
const OperandExtraParams getInputExtraParams(uint32_t index) const override;
uint32_t getNumOutputs() const override;
OperandType getOutputType(uint32_t index) const override;
Shape getOutputShape(uint32_t index) const override;
void* getOutputBuffer(uint32_t index) override;
// Return false on failure and store the result code.
// Use getResultCode() to retrieve it at the end of the operation execution.
bool setOutputShape(uint32_t index, const Shape& shape) override;
int getResultCode() const;
bool isOmittedInput(uint32_t index) const override;
bool isOmittedOutput(uint32_t index) const override;
// Return false if any of inputs or outputs is omitted, i.e. has lifetime of NO_VALUE.
bool checkNoOmittedOperand() const;
// Return false if any of inputs has dimension 0.
bool checkNoZeroSizedInput() const;
private:
const RunTimeOperandInfo* getInputInfo(uint32_t index) const;
const RunTimeOperandInfo* getOutputInfo(uint32_t index) const;
RunTimeOperandInfo* getOutputInfo(uint32_t index);
const Operation* operation;
RunTimeOperandInfo* operands;
int result = ANEURALNETWORKS_NO_ERROR;
};
const RunTimeOperandInfo* OperationExecutionContext::getInputInfo(uint32_t index) const {
CHECK(index < operation->inputs.size());
return &operands[operation->inputs[index]];
}
const RunTimeOperandInfo* OperationExecutionContext::getOutputInfo(uint32_t index) const {
CHECK(index < operation->outputs.size());
return &operands[operation->outputs[index]];
}
RunTimeOperandInfo* OperationExecutionContext::getOutputInfo(uint32_t index) {
CHECK(index < operation->outputs.size());
return &operands[operation->outputs[index]];
}
OperandType OperationExecutionContext::getInputType(uint32_t index) const {
return getInputInfo(index)->type;
}
Shape OperationExecutionContext::getInputShape(uint32_t index) const {
return getInputInfo(index)->shape();
}
const void* OperationExecutionContext::getInputBuffer(uint32_t index) const {
return getInputInfo(index)->buffer;
}
const OperandExtraParams OperationExecutionContext::getInputExtraParams(uint32_t index) const {
return getInputInfo(index)->extraParams;
}
OperandType OperationExecutionContext::getOutputType(uint32_t index) const {
return getOutputInfo(index)->type;
}
Shape OperationExecutionContext::getOutputShape(uint32_t index) const {
return getOutputInfo(index)->shape();
}
void* OperationExecutionContext::getOutputBuffer(uint32_t index) {
return getOutputInfo(index)->buffer;
}
uint32_t OperationExecutionContext::getNumInputs() const {
return operation->inputs.size();
}
uint32_t OperationExecutionContext::getNumOutputs() const {
return operation->outputs.size();
}
int OperationExecutionContext::getResultCode() const {
return result;
}
// TODO: Return error code directly once we've fully integrated OperationResolver with all ops.
// Updates the RunTimeOperandInfo with the newly calculated shape.
// Allocate the buffer if we need to.
bool setInfoAndAllocateIfNeeded(RunTimeOperandInfo* info, const Shape& shape, int* result) {
// For user-provided model output operands, the parameters must match the Shape
// calculated from the preparation step.
if (info->lifetime == OperandLifeTime::SUBGRAPH_OUTPUT) {
if (info->type != shape.type) {
LOG(ERROR) << "Invalid type for model output";
*result = ANEURALNETWORKS_OP_FAILED;
return false;
}
if (info->type == OperandType::TENSOR_QUANT8_ASYMM) {
if (info->scale != shape.scale) {
LOG(ERROR) << "Invalid scale for model output";
*result = ANEURALNETWORKS_OP_FAILED;
return false;
}
if (info->zeroPoint != shape.offset) {
LOG(ERROR) << "Invalid zeroPoint for model output";
*result = ANEURALNETWORKS_OP_FAILED;
return false;
}
}
if (info->extraParams != shape.extraParams) {
LOG(ERROR) << "Invalid extraParams for model output";
*result = ANEURALNETWORKS_OP_FAILED;
return false;
}
}
auto combined = combineDimensions(shape.dimensions, info->dimensions);
if (!combined.has_value()) {
LOG(ERROR) << "Invalid dimensions for model operand";
*result = ANEURALNETWORKS_OP_FAILED;
return false;
}
info->dimensions = std::move(combined.value());
info->type = shape.type;
info->scale = shape.scale;
info->zeroPoint = shape.offset;
info->extraParams = shape.extraParams;
// Allocate the buffer only if the combined dimension is fully specified
if (info->buffer == nullptr && (info->lifetime == OperandLifeTime::TEMPORARY_VARIABLE ||
info->lifetime == OperandLifeTime::SUBGRAPH_OUTPUT)) {
if (isExtensionOperandType(info->type)) {
LOG(ERROR) << "Cannot allocate a variable of an extension type";
*result = ANEURALNETWORKS_OP_FAILED;
return false;
}
uint32_t length = nonExtensionOperandSizeOfData(info->type, info->dimensions);
if (length > 0) {
info->buffer = new uint8_t[length];
if (info->buffer == nullptr) {
*result = ANEURALNETWORKS_OUT_OF_MEMORY;
return false;
}
info->length = length;
}
}
if (!info->isSufficient()) {
uint32_t length = nonExtensionOperandSizeOfData(info->type, info->dimensions);
LOG(ERROR) << "Insufficient size for model operand: require = " << length
<< ", provided = " << info->length;
*result = ANEURALNETWORKS_OUTPUT_INSUFFICIENT_SIZE;
return false;
}
*result = ANEURALNETWORKS_NO_ERROR;
return true;
}
bool OperationExecutionContext::setOutputShape(uint32_t index, const Shape& shape) {
return setInfoAndAllocateIfNeeded(getOutputInfo(index), shape, &result);
}
bool OperationExecutionContext::isOmittedInput(uint32_t index) const {
return getInputInfo(index)->lifetime == OperandLifeTime::NO_VALUE;
}
bool OperationExecutionContext::isOmittedOutput(uint32_t index) const {
return getOutputInfo(index)->lifetime == OperandLifeTime::NO_VALUE;
}
bool OperationExecutionContext::checkNoOmittedOperand() const {
for (uint32_t i = 0; i < operation->inputs.size(); i++) {
NN_RET_CHECK(!isOmittedInput(i)) << getOperationName(operation->type) << " input operand "
<< i << " is required but missing.";
}
for (uint32_t i = 0; i < operation->outputs.size(); i++) {
NN_RET_CHECK(!isOmittedOutput(i)) << getOperationName(operation->type) << " output operand "
<< i << " is required but missing.";
}
return true;
}
bool OperationExecutionContext::checkNoZeroSizedInput() const {
for (uint32_t i = 0; i < operation->inputs.size(); i++) {
if (isOmittedInput(i)) continue;
for (uint32_t j = 0; j < getInputInfo(i)->dimensions.size(); j++) {
NN_RET_CHECK_NE(getInputInfo(i)->dimensions[j], 0)
<< getOperationName(operation->type)
<< " does not support zero-sized tensor, but input " << i << " dimension " << j
<< " is 0.";
}
}
return true;
}
} // namespace
// Used to keep a pointer to a memory pool.
//
// In the case of an "mmap_fd" pool, owns the mmap region
// returned by getBuffer() -- i.e., that region goes away
// when the RunTimePoolInfo is destroyed or is assigned to.
class RunTimePoolInfo::RunTimePoolInfoImpl {
public:
RunTimePoolInfoImpl(const hidl_memory& hidlMemory, uint8_t* buffer, const sp<IMemory>& memory,
AHardwareBuffer* hardwareBuffer, uint32_t size);
// rule of five...
~RunTimePoolInfoImpl();
RunTimePoolInfoImpl(const RunTimePoolInfoImpl&) = delete;
RunTimePoolInfoImpl(RunTimePoolInfoImpl&&) noexcept = delete;
RunTimePoolInfoImpl& operator=(const RunTimePoolInfoImpl&) = delete;
RunTimePoolInfoImpl& operator=(RunTimePoolInfoImpl&&) noexcept = delete;
uint8_t* getBuffer() const { return mBuffer; }
uint32_t getSize() const { return mSize; }
bool flush() const;
const hidl_memory& getHidlMemory() const { return mHidlMemory; }
private:
const hidl_memory mHidlMemory; // always used
uint8_t* const mBuffer = nullptr; // always used
const sp<IMemory> mMemory; // only used when hidlMemory.name() == "ashmem"
AHardwareBuffer*
mAHardwareBuffer; // only used when hidlMemory.name() == "hardware_buffer_blob"
const uint32_t mSize;
};
RunTimePoolInfo::RunTimePoolInfoImpl::RunTimePoolInfoImpl(const hidl_memory& hidlMemory,
uint8_t* buffer,
const sp<IMemory>& memory,
AHardwareBuffer* hardwareBuffer,
uint32_t size)
: mHidlMemory(hidlMemory),
mBuffer(buffer),
mMemory(memory),
mAHardwareBuffer(hardwareBuffer),
mSize(size) {}
RunTimePoolInfo::RunTimePoolInfoImpl::~RunTimePoolInfoImpl() {
if (mBuffer == nullptr) {
return;
}
const auto& memType = mHidlMemory.name();
if (memType == "ashmem") {
// nothing to do
} else if (memType == "mmap_fd") {
const size_t size = mHidlMemory.size();
if (munmap(mBuffer, size)) {
LOG(ERROR) << "RunTimePoolInfoImpl::~RunTimePoolInfo(): Can't munmap";
}
} else if (memType == "hardware_buffer_blob") {
AHardwareBuffer_unlock(mAHardwareBuffer, nullptr);
} else if (memType == "") {
// Represents a POINTER argument; nothing to do
} else {
LOG(ERROR) << "RunTimePoolInfoImpl::~RunTimePoolInfoImpl(): unsupported hidl_memory type";
}
if (mAHardwareBuffer != nullptr) {
AHardwareBuffer_release(mAHardwareBuffer);
}
}
// Making sure the output data are correctly updated after execution.
bool RunTimePoolInfo::RunTimePoolInfoImpl::flush() const {
const auto& memType = mHidlMemory.name();
if (memType == "mmap_fd") {
const int prot = mHidlMemory.handle()->data[1];
if (prot & PROT_WRITE) {
const size_t size = mHidlMemory.size();
return msync(mBuffer, size, MS_SYNC) == 0;
}
}
// No-op for other types of memory.
return true;
}
// TODO: short term, make share memory mapping and updating a utility function.
// TODO: long term, implement mmap_fd as a hidl IMemory service.
std::optional<RunTimePoolInfo> RunTimePoolInfo::createFromHidlMemory(
const hidl_memory& hidlMemory) {
uint8_t* buffer = nullptr;
sp<IMemory> memory;
AHardwareBuffer* hardwareBuffer = nullptr;
const auto& memType = hidlMemory.name();
if (memType == "ashmem") {
memory = mapMemory(hidlMemory);
if (memory == nullptr) {
LOG(ERROR) << "Can't map shared memory.";
return std::nullopt;
}
buffer = static_cast<uint8_t*>(static_cast<void*>(memory->getPointer()));
if (buffer == nullptr) {
LOG(ERROR) << "Can't access shared memory.";
return std::nullopt;
}
} else if (memType == "mmap_fd") {
size_t size = hidlMemory.size();
int fd = hidlMemory.handle()->data[0];
int prot = hidlMemory.handle()->data[1];
size_t offset = getSizeFromInts(hidlMemory.handle()->data[2], hidlMemory.handle()->data[3]);
buffer = static_cast<uint8_t*>(mmap(nullptr, size, prot, MAP_SHARED, fd, offset));
if (buffer == MAP_FAILED) {
LOG(ERROR) << "RunTimePoolInfo::set(): Can't mmap the file descriptor.";
return std::nullopt;
}
} else if (memType == "hardware_buffer_blob") {
auto handle = hidlMemory.handle();
auto format = AHARDWAREBUFFER_FORMAT_BLOB;
auto usage = AHARDWAREBUFFER_USAGE_CPU_READ_OFTEN | AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN;
const uint32_t width = hidlMemory.size();
const uint32_t height = 1; // height is always 1 for BLOB mode AHardwareBuffer.
const uint32_t layers = 1; // layers is always 1 for BLOB mode AHardwareBuffer.
const uint32_t stride = hidlMemory.size();
AHardwareBuffer_Desc desc{
.width = width,
.format = format,
.height = height,
.layers = layers,
.usage = usage,
.stride = stride,
};
status_t status = AHardwareBuffer_createFromHandle(
&desc, handle, AHARDWAREBUFFER_CREATE_FROM_HANDLE_METHOD_CLONE, &hardwareBuffer);
if (status != NO_ERROR) {
LOG(ERROR) << "RunTimePoolInfo Can't create AHardwareBuffer from handle. Error: "
<< status;
return std::nullopt;
}
void* gBuffer = nullptr;
status = AHardwareBuffer_lock(hardwareBuffer, usage, -1, nullptr, &gBuffer);
if (status != NO_ERROR) {
LOG(ERROR) << "RunTimePoolInfo Can't lock the AHardwareBuffer. Error: " << status;
return std::nullopt;
}
buffer = static_cast<uint8_t*>(gBuffer);
} else {
LOG(ERROR) << "RunTimePoolInfo::set(): unsupported hidl_memory type";
return std::nullopt;
}
const auto impl = std::make_shared<const RunTimePoolInfoImpl>(
hidlMemory, buffer, memory, hardwareBuffer, hidlMemory.size());
return {RunTimePoolInfo(impl)};
}
RunTimePoolInfo RunTimePoolInfo::createFromExistingBuffer(uint8_t* buffer, uint32_t size) {
const auto impl = std::make_shared<const RunTimePoolInfoImpl>(hidl_memory{}, buffer, nullptr,
nullptr, size);
return {impl};
}
RunTimePoolInfo::RunTimePoolInfo(const std::shared_ptr<const RunTimePoolInfoImpl>& impl)
: mImpl(impl) {}
uint8_t* RunTimePoolInfo::getBuffer() const {
return mImpl->getBuffer();
}
uint32_t RunTimePoolInfo::getSize() const {
return mImpl->getSize();
}
bool RunTimePoolInfo::flush() const {
return mImpl->flush();
}
const hidl_memory& RunTimePoolInfo::getHidlMemory() const {
return mImpl->getHidlMemory();
}
bool setRunTimePoolInfosFromHidlMemories(std::vector<RunTimePoolInfo>* poolInfos,
const hidl_vec<hidl_memory>& pools) {
CHECK(poolInfos != nullptr);
poolInfos->clear();
poolInfos->reserve(pools.size());
for (const auto& pool : pools) {
if (std::optional<RunTimePoolInfo> poolInfo = RunTimePoolInfo::createFromHidlMemory(pool)) {
poolInfos->push_back(*poolInfo);
} else {
LOG(ERROR) << "Could not map pools";
poolInfos->clear();
return false;
}
}
return true;
}
bool setRunTimePoolInfosFromMemoryPools(std::vector<RunTimePoolInfo>* poolInfos,
const hidl_vec<Request::MemoryPool>& pools) {
CHECK(poolInfos != nullptr);
poolInfos->clear();
poolInfos->reserve(pools.size());
for (const auto& pool : pools) {
if (pool.getDiscriminator() != Request::MemoryPool::hidl_discriminator::hidlMemory) {
LOG(ERROR) << "Unknown memory token";
poolInfos->clear();
return false;
}
if (std::optional<RunTimePoolInfo> poolInfo =
RunTimePoolInfo::createFromHidlMemory(pool.hidlMemory())) {
poolInfos->push_back(*poolInfo);
} else {
LOG(ERROR) << "Could not map pools";
poolInfos->clear();
return false;
}
}
return true;
}
template <typename T>
inline bool convertToNhwcImpl(T* to, const T* from, const std::vector<uint32_t>& fromDim) {
uint32_t spatialSize = fromDim[2] * fromDim[3];
for (uint32_t n = 0; n < fromDim[0]; n++) {
for (uint32_t hw = 0; hw < spatialSize; hw++) {
for (uint32_t c = 0; c < fromDim[1]; c++) {
uint32_t fromIndex = n * fromDim[1] * spatialSize + c * spatialSize + hw;
*to++ = from[fromIndex];
}
}
}
return true;
}
template <typename T>
inline bool convertFromNhwcImpl(T* to, const T* from, const std::vector<uint32_t>& fromDim) {
uint32_t spatialSize = fromDim[1] * fromDim[2];
for (uint32_t n = 0; n < fromDim[0]; n++) {
for (uint32_t c = 0; c < fromDim[3]; c++) {
for (uint32_t hw = 0; hw < spatialSize; hw++) {
uint32_t fromIndex = n * spatialSize * fromDim[3] + hw * fromDim[3] + c;
*to++ = from[fromIndex];
}
}
}
return true;
}
static bool convertToNhwc(RunTimeOperandInfo& to, const RunTimeOperandInfo& from,
std::unique_ptr<uint8_t[]>& ptr_guard, bool data_layout) {
int result;
if (from.dimensions.size() != 4) {
LOG(ERROR) << "Error converting a non-4-D tensor to NHWC layout";
return false;
}
to.lifetime = OperandLifeTime::TEMPORARY_VARIABLE;
if (data_layout) {
// convert dimensions
Shape inShape = from.shape();
auto& fromDim = from.dimensions;
inShape.dimensions = {fromDim[0], fromDim[2], fromDim[3], fromDim[1]};
// allocate buffer
to.buffer = nullptr;
if (!setInfoAndAllocateIfNeeded(&to, inShape, &result)) {
return false;
}
ptr_guard.reset(to.buffer);
// convert value
if (from.type == OperandType::TENSOR_FLOAT32) {
return convertToNhwcImpl<float>(reinterpret_cast<float*>(to.buffer),
reinterpret_cast<const float*>(from.buffer), fromDim);
} else if (from.type == OperandType::TENSOR_FLOAT16) {
return convertToNhwcImpl<_Float16>(reinterpret_cast<_Float16*>(to.buffer),
reinterpret_cast<const _Float16*>(from.buffer),
fromDim);
} else if (from.type == OperandType::TENSOR_QUANT8_ASYMM) {
return convertToNhwcImpl<uint8_t>(reinterpret_cast<uint8_t*>(to.buffer),
reinterpret_cast<const uint8_t*>(from.buffer),
fromDim);
} else if (from.type == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
return convertToNhwcImpl<int8_t>(reinterpret_cast<int8_t*>(to.buffer),
reinterpret_cast<const int8_t*>(from.buffer), fromDim);
} else {
LOG(ERROR) << "Unsupported data type";
return false;
}
} else {
to = from;
}
return true;
}
static bool convertFromNhwc(RunTimeOperandInfo& to, const RunTimeOperandInfo& from,
bool data_layout, int* result) {
if (from.dimensions.size() != 4) {
LOG(ERROR) << "Error converting a non-4-D tensor from NHWC layout";
return false;
}
if (data_layout) {
// convert dimensions
Shape outShape = from.shape();
auto& fromDim = from.dimensions;
outShape.dimensions = {fromDim[0], fromDim[3], fromDim[1], fromDim[2]};
// allocate buffer
if (!setInfoAndAllocateIfNeeded(&to, outShape, result)) {
return false;
}
// convert value
if (from.type == OperandType::TENSOR_FLOAT32) {
return convertFromNhwcImpl<float>(reinterpret_cast<float*>(to.buffer),
reinterpret_cast<const float*>(from.buffer), fromDim);
} else if (from.type == OperandType::TENSOR_FLOAT16) {
return convertFromNhwcImpl<_Float16>(reinterpret_cast<_Float16*>(to.buffer),
reinterpret_cast<const _Float16*>(from.buffer),
fromDim);
} else if (from.type == OperandType::TENSOR_QUANT8_ASYMM) {
return convertFromNhwcImpl<uint8_t>(reinterpret_cast<uint8_t*>(to.buffer),
reinterpret_cast<const uint8_t*>(from.buffer),
fromDim);
} else if (from.type == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
return convertFromNhwcImpl<int8_t>(reinterpret_cast<int8_t*>(to.buffer),
reinterpret_cast<const int8_t*>(from.buffer),
fromDim);
} else {
LOG(ERROR) << "Unsupported data type";
return false;
}
} else {
Shape outShape = from.shape();
to.buffer = from.buffer;
to.length = from.length;
if (!setInfoAndAllocateIfNeeded(&to, outShape, result)) {
return false;
}
}
return true;
}
// Decrements the usage count for the operands listed. Frees the memory
// allocated for any temporary variable with a count of zero.
static void consumeOperationInputs(const std::vector<uint32_t>& inputs,
RunTimeOperandInfo* operands) {
for (uint32_t i : inputs) {
auto& info = operands[i];
// Check if it's a static or model input/output.
if (info.numberOfUsesLeft == 0) {
continue;
}
info.numberOfUsesLeft--;
if (info.numberOfUsesLeft == 0 && info.buffer != nullptr) {
delete[] info.buffer;
info.buffer = nullptr;
}
}
}
// This function only frees TEMPORARY_VARIABLE operands that are unused
// outputs because consumeOperationInputs takes care of any operands
// that are inputs to an operation.
static void freeUnusedSubgraphOperands(std::vector<RunTimeOperandInfo>* operands) {
for (auto& info : *operands) {
if (info.lifetime == OperandLifeTime::TEMPORARY_VARIABLE && info.numberOfUsesLeft == 0 &&
info.buffer != nullptr) {
delete[] info.buffer;
info.buffer = nullptr;
}
}
}
// Ignore the .pools entry in model and request. This will have been taken care of
// by the caller.
int CpuExecutor::run(const Model& model, const Request& request,
const std::vector<RunTimePoolInfo>& modelPoolInfos,
const std::vector<RunTimePoolInfo>& requestPoolInfos) {
NNTRACE_CPU(NNTRACE_PHASE_EXECUTION, "run");
VLOG(CPUEXE) << "CpuExecutor::run() with request(" << SHOW_IF_DEBUG(toString(request)) << ")";
mModelOperandValues = &model.operandValues;
mModelPoolInfos = &modelPoolInfos;
mReferencedSubgraphs = &model.referenced;
// b/109953668, disable OpenMP
#ifdef NNAPI_OPENMP
ScopedOpenmpSettings openMpSettings;
#endif // NNAPI_OPENMP
std::vector<RunTimeOperandInfo> operands = initializeRunTimeInfo(model.main);
updateForArguments(model.main.inputIndexes, request.inputs, requestPoolInfos, operands.data());
updateForArguments(model.main.outputIndexes, request.outputs, requestPoolInfos,
operands.data());
int result = executeSubgraph(model.main, operands.data());
freeUnusedSubgraphOperands(&operands);
if (result == ANEURALNETWORKS_NO_ERROR) {
VLOG(CPUEXE) << "Completed run normally";
for (auto& runtimeInfo : requestPoolInfos) {
runtimeInfo.flush();
}
}
// Only report the output shapes when the result code is NO_ERROR or OUTPUT_INSUFFICIENT_SIZE.
if (result == ANEURALNETWORKS_NO_ERROR || result == ANEURALNETWORKS_OUTPUT_INSUFFICIENT_SIZE) {
setOutputShapes(model.main.outputIndexes, operands);
} else {
mOutputShapes.clear();
}
mFinished = true;
mModelOperandValues = nullptr;
mModelPoolInfos = nullptr;
mReferencedSubgraphs = nullptr;
return result;
}
int CpuExecutor::executeSubgraph(const Subgraph& subgraph, RunTimeOperandInfo* operands) {
VLOG(CPUEXE) << "CpuExecutor::executeSubgraph " << toString(subgraph);
// The graph has serialized the operation in execution order.
for (const auto& operation : subgraph.operations) {
NN_RETURN_IF_ERROR(executeOperation(operation, operands));
}
return ANEURALNETWORKS_NO_ERROR;
}
std::vector<RunTimeOperandInfo> CpuExecutor::initializeRunTimeInfo(const Subgraph& subgraph) {
VLOG(CPUEXE) << "CpuExecutor::initializeRunTimeInfo";
const size_t count = subgraph.operands.size();
std::vector<RunTimeOperandInfo> operands(count);
for (size_t i = 0; i < count; i++) {
const Operand& from = subgraph.operands[i];
RunTimeOperandInfo& to = operands[i];
to.type = from.type;
to.dimensions = from.dimensions;
to.scale = from.scale;
to.zeroPoint = from.zeroPoint;
to.length = from.location.length;
to.lifetime = from.lifetime;
to.extraParams = from.extraParams;
switch (from.lifetime) {
case OperandLifeTime::TEMPORARY_VARIABLE:
to.buffer = nullptr;
to.numberOfUsesLeft = from.numberOfConsumers;
break;
case OperandLifeTime::CONSTANT_COPY:
to.buffer = const_cast<uint8_t*>(&(*mModelOperandValues)[from.location.offset]);
to.numberOfUsesLeft = 0;
break;
case OperandLifeTime::CONSTANT_REFERENCE: {
auto poolIndex = from.location.poolIndex;
CHECK_LT(poolIndex, mModelPoolInfos->size());
auto& r = (*mModelPoolInfos)[poolIndex];
to.buffer = r.getBuffer() + from.location.offset;
to.numberOfUsesLeft = 0;
break;
}
case OperandLifeTime::SUBGRAPH: {
auto subgraphIndex = from.location.offset;
CHECK_LT(subgraphIndex, mReferencedSubgraphs->size());
to.buffer = reinterpret_cast<uint8_t*>(
const_cast<Subgraph*>(&(*mReferencedSubgraphs)[subgraphIndex]));
to.numberOfUsesLeft = 0;
} break;
case OperandLifeTime::SUBGRAPH_INPUT:
case OperandLifeTime::SUBGRAPH_OUTPUT:
case OperandLifeTime::NO_VALUE:
to.buffer = nullptr;
to.numberOfUsesLeft = 0;
break;
}
}
return operands;
}
void CpuExecutor::updateForArguments(const std::vector<uint32_t>& indexes,
const hal::hidl_vec<hal::RequestArgument>& arguments,
const std::vector<RunTimePoolInfo>& requestPoolInfos,
RunTimeOperandInfo* operands) {
CHECK_EQ(indexes.size(), arguments.size());
for (size_t i = 0; i < indexes.size(); i++) {
const uint32_t operandIndex = indexes[i];
const RequestArgument& from = arguments[i];
RunTimeOperandInfo& to = operands[operandIndex];
if (from.dimensions.size() > 0) {
// It's the responsibility of the caller to validate that
// from.dimensions only modifies the dimensions that were
// unspecified in the model. That's the case in SampleDriver.cpp
// with the call to validateRequest().
// TODO make sure that's the case for the default CPU path.
to.dimensions = from.dimensions;
}
if (from.hasNoValue) {
to.lifetime = OperandLifeTime::NO_VALUE;
CHECK(to.buffer == nullptr);
to.length = 0;
} else {
auto poolIndex = from.location.poolIndex;
CHECK_LT(poolIndex, requestPoolInfos.size());
auto& r = requestPoolInfos[poolIndex];
to.buffer = r.getBuffer() + from.location.offset;
if (from.location.offset == 0 && from.location.length == 0) {
// Use the entire memory region.
to.length = r.getSize();
} else {
to.length = from.location.length;
}
}
}
}
int CpuExecutor::executeOperation(const Operation& operation, RunTimeOperandInfo* operands) {
if (hasDeadlinePassed(mDeadline)) {
return ANEURALNETWORKS_MISSED_DEADLINE_TRANSIENT;
}
if (operation.type == OperationType::IF) {
int result = executeIfOperation(operation, operands);
if (result != ANEURALNETWORKS_NO_ERROR) {
LOG(ERROR) << "IF failed.";
}
return result;
}
if (operation.type == OperationType::WHILE) {
int result = executeWhileOperation(operation, operands);
if (result != ANEURALNETWORKS_NO_ERROR) {
LOG(ERROR) << "WHILE failed.";
}
return result;
}
// VLOG(CPUEXE) << "CpuExecutor::executeOperation(" << toString(operation) << ")";
const hidl_vec<uint32_t>& ins = operation.inputs;
const hidl_vec<uint32_t>& outs = operation.outputs;
bool success = false;
int result = ANEURALNETWORKS_NO_ERROR;
// Function to verify that the number of input and output parameters
// matches what is expected. Also checks that all the parameters have
// values. This function is to be used only for operations that do not
// accept optional arguments.
// TODO Have a version that works for optional arguments.
auto allParametersPresent = [&operation, &operands, &ins, &outs](size_t requiredIns,
size_t requiredOuts) -> bool {
auto verify = [&operation, &operands](size_t requiredCount,
const hidl_vec<uint32_t>& indexes,
const char* type) -> bool {
size_t actualCount = indexes.size();
if (actualCount != requiredCount) {
LOG(ERROR) << getOperationName(operation.type) << ": Invalid number of " << type
<< " operands. Got " << actualCount << " of " << requiredCount;
return false;
}
for (size_t i = 0; i < actualCount; i++) {
if (operands[indexes[i]].lifetime == OperandLifeTime::NO_VALUE) {
LOG(ERROR) << getOperationName(operation.type) << " " << type << " operand "
<< i << " is required but missing.";
return false;
}
}
return true;
};
auto verifyNoZeroSizedInputs = [&operation, &operands](const hidl_vec<uint32_t>& indexes) {
for (size_t i = 0; i < indexes.size(); i++) {
for (size_t j = 0; j < operands[indexes[i]].dimensions.size(); j++) {
if (operands[indexes[i]].dimensions[j] == 0) {
LOG(ERROR) << getOperationName(operation.type)
<< " does not support zero-sized tensor, but input " << i
<< " dimension " << j << " is zero.";
return false;
}
}
}
return true;
};
return verify(requiredIns, ins, "in") && verify(requiredOuts, outs, "out") &&
verifyNoZeroSizedInputs(ins);
};
switch (operation.type) {
case OperationType::OEM_OPERATION: {
LOG(ERROR) << "OEM operation not supported for CPU execution";
success = false;
} break;
case OperationType::FLOOR: {
if (!allParametersPresent(1, 1)) {
return ANEURALNETWORKS_BAD_DATA;
}
const RunTimeOperandInfo& input = operands[ins[0]];
RunTimeOperandInfo& output = operands[outs[0]];
Shape outShape = output.shape();
if (!floorPrepare(input.shape(), &outShape) ||
!setInfoAndAllocateIfNeeded(&output, outShape, &result)) {
break;
}
if (input.type == OperandType::TENSOR_FLOAT32) {
success = floorFloat32(reinterpret_cast<const float*>(input.buffer),
reinterpret_cast<float*>(output.buffer), outShape);
} else if (input.type == OperandType::TENSOR_FLOAT16) {
success = floorFloat16(reinterpret_cast<const _Float16*>(input.buffer),
reinterpret_cast<_Float16*>(output.buffer), outShape);
}
} break;
case OperationType::LOCAL_RESPONSE_NORMALIZATION: {
const size_t inCount = ins.size();
if ((inCount != 6 && inCount != 5) || !allParametersPresent(inCount, 1)) {
return ANEURALNETWORKS_BAD_DATA;
}
const RunTimeOperandInfo& input = operands[ins[0]];
int32_t radius = getScalarData<int32_t>(operands[ins[1]]);
float bias = (input.type == OperandType::TENSOR_FLOAT16)
? getScalarData<_Float16>(operands[ins[2]])
: getScalarData<float>(operands[ins[2]]);
float alpha = (input.type == OperandType::TENSOR_FLOAT16)
? getScalarData<_Float16>(operands[ins[3]])
: getScalarData<float>(operands[ins[3]]);
float beta = (input.type == OperandType::TENSOR_FLOAT16)
? getScalarData<_Float16>(operands[ins[4]])
: getScalarData<float>(operands[ins[4]]);
const int32_t axis = inCount == 6 ? getScalarData<int32_t>(operands[ins[5]]) : -1;
RunTimeOperandInfo& output = operands[outs[0]];
Shape outShape = output.shape();
if (!genericNormalizationPrepare(input.shape(), &outShape) ||
!setInfoAndAllocateIfNeeded(&output, outShape, &result)) {
success = false;
break;
}
if (input.type == OperandType::TENSOR_FLOAT32) {
success = localResponseNormFloat32(
reinterpret_cast<const float*>(input.buffer), input.shape(), radius, bias,
alpha, beta, axis, reinterpret_cast<float*>(output.buffer), outShape);
} else if (input.type == OperandType::TENSOR_FLOAT16) {
success = localResponseNormFloat16(reinterpret_cast<const _Float16*>(input.buffer),
input.shape(), radius, bias, alpha, beta, axis,
reinterpret_cast<_Float16*>(output.buffer),
outShape);
}
} break;
case OperationType::RESHAPE: {
if (!allParametersPresent(2, 1)) {
return ANEURALNETWORKS_BAD_DATA;
}
const RunTimeOperandInfo& input = operands[ins[0]];
const RunTimeOperandInfo& targetShape = operands[ins[1]];
RunTimeOperandInfo& output = operands[outs[0]];
Shape outShape = output.shape();
success = reshapePrepare(input.shape(),
reinterpret_cast<const int32_t*>(targetShape.buffer),
getNumberOfElements(targetShape.shape()), &outShape) &&
setInfoAndAllocateIfNeeded(&output, outShape, &result) &&
copyData(input.buffer, input.shape(), output.buffer, outShape);
} break;
case OperationType::DEPTH_TO_SPACE: {
const size_t inCount = ins.size();
if ((inCount != 3 && inCount != 2) || !allParametersPresent(inCount, 1)) {
return ANEURALNETWORKS_BAD_DATA;
}
const RunTimeOperandInfo& input = operands[ins[0]];
int32_t blockSize = getScalarData<int32_t>(operands[ins[1]]);
bool data_layout = inCount == 3 ? getScalarData<bool>(operands[ins[2]]) : false;
RunTimeOperandInfo& output = operands[outs[0]];
Shape outShape = output.shape();
RunTimeOperandInfo input_tmp, output_tmp;
std::unique_ptr<uint8_t[]> input_tmp_guard, output_tmp_guard;
if (!convertToNhwc(input_tmp, input, input_tmp_guard, data_layout)) {
success = false;
break;
}
output_tmp.lifetime = OperandLifeTime::TEMPORARY_VARIABLE;
output_tmp.buffer = data_layout ? nullptr : output.buffer;
output_tmp.length = data_layout ? 0 : output.length;
if (!depthToSpacePrepare(input_tmp.shape(), blockSize, &outShape) ||
!setInfoAndAllocateIfNeeded(&output_tmp, outShape, &result)) {
if (!data_layout) output.dimensions = output_tmp.dimensions;
break;
}
switch (input_tmp.type) {
case OperandType::TENSOR_FLOAT32: {
success = depthToSpaceGeneric(
reinterpret_cast<const float*>(input_tmp.buffer), input_tmp.shape(),
blockSize, reinterpret_cast<float*>(output_tmp.buffer), outShape);
break;
}
case OperandType::TENSOR_FLOAT16: {
success = depthToSpaceGeneric(
reinterpret_cast<const _Float16*>(input_tmp.buffer), input_tmp.shape(),
blockSize, reinterpret_cast<_Float16*>(output_tmp.buffer), outShape);
break;
}
case OperandType::TENSOR_QUANT8_ASYMM: {
success = depthToSpaceGeneric(
reinterpret_cast<const uint8_t*>(input_tmp.buffer), input_tmp.shape(),
blockSize, reinterpret_cast<uint8_t*>(output_tmp.buffer), outShape);
break;
}
case OperandType::TENSOR_QUANT8_ASYMM_SIGNED: {
success = depthToSpaceGeneric(
reinterpret_cast<const int8_t*>(input_tmp.buffer), input_tmp.shape(),
blockSize, reinterpret_cast<int8_t*>(output_tmp.buffer), outShape);
break;
}
default: {
LOG(ERROR) << "Unsupported data type";
success = false;
}
}
if (data_layout) {
output_tmp_guard.reset(output_tmp.buffer);
}
if (!success || !convertFromNhwc(output, output_tmp, data_layout, &result)) {
success = false;
break;
}
} break;
case OperationType::SPACE_TO_DEPTH: {
const size_t inCount = ins.size();
if ((inCount != 3 && inCount != 2) || !allParametersPresent(inCount, 1)) {
return ANEURALNETWORKS_BAD_DATA;
}
const RunTimeOperandInfo& input = operands[ins[0]];
int32_t blockSize = getScalarData<int32_t>(operands[ins[1]]);
bool data_layout = inCount == 3 ? getScalarData<bool>(operands[ins[2]]) : false;
RunTimeOperandInfo& output = operands[outs[0]];
Shape outShape = output.shape();
RunTimeOperandInfo input_tmp, output_tmp;
std::unique_ptr<uint8_t[]> input_tmp_guard, output_tmp_guard;
if (!convertToNhwc(input_tmp, input, input_tmp_guard, data_layout)) {
success = false;
break;
}
output_tmp.lifetime = OperandLifeTime::TEMPORARY_VARIABLE;
output_tmp.buffer = data_layout ? nullptr : output.buffer;
output_tmp.length = data_layout ? 0 : output.length;
if (!spaceToDepthPrepare(input_tmp.shape(), blockSize, &outShape) ||
!setInfoAndAllocateIfNeeded(&output_tmp, outShape, &result)) {
if (!data_layout) output.dimensions = output_tmp.dimensions;
break;
}
switch (input_tmp.type) {
case OperandType::TENSOR_FLOAT32: {
success = spaceToDepthGeneric(
reinterpret_cast<const float*>(input_tmp.buffer), input_tmp.shape(),
blockSize, reinterpret_cast<float*>(output_tmp.buffer), outShape);
break;
}
case OperandType::TENSOR_FLOAT16: {
success = spaceToDepthGeneric(
reinterpret_cast<const _Float16*>(input_tmp.buffer), input_tmp.shape(),
blockSize, reinterpret_cast<_Float16*>(output_tmp.buffer), outShape);
break;
}
case OperandType::TENSOR_QUANT8_ASYMM: {
success = spaceToDepthGeneric(
reinterpret_cast<const uint8_t*>(input_tmp.buffer), input_tmp.shape(),
blockSize, reinterpret_cast<uint8_t*>(output_tmp.buffer), outShape);
break;
}
case OperandType::TENSOR_QUANT8_ASYMM_SIGNED: {
success = spaceToDepthGeneric(
reinterpret_cast<const int8_t*>(input_tmp.buffer), input_tmp.shape(),
blockSize, reinterpret_cast<int8_t*>(output_tmp.buffer), outShape);
break;
}
default: {
LOG(ERROR) << "Unsupported data type";
success = false;
}
}
if (data_layout) {
output_tmp_guard.reset(output_tmp.buffer);
}
if (!success || !convertFromNhwc(output, output_tmp, data_layout, &result)) {
success = false;
break;
}
} break;
case OperationType::EMBEDDING_LOOKUP: {
const RunTimeOperandInfo& values = operands[ins[EmbeddingLookup::kValueTensor]];
const RunTimeOperandInfo& lookups = operands[ins[EmbeddingLookup::kLookupTensor]];
RunTimeOperandInfo& output = operands[outs[EmbeddingLookup::kOutputTensor]];
Shape outputShape;
EmbeddingLookup lookup(operation, operands);
success = embeddingLookupPrepare(values.shape(), lookups.shape(), &outputShape) &&
setInfoAndAllocateIfNeeded(&output, outputShape, &result) && lookup.Eval();
} break;
case OperationType::HASHTABLE_LOOKUP: {
const RunTimeOperandInfo& lookups = operands[ins[HashtableLookup::kLookupTensor]];
const RunTimeOperandInfo& keys = operands[ins[HashtableLookup::kKeyTensor]];
const RunTimeOperandInfo& values = operands[ins[HashtableLookup::kValueTensor]];
RunTimeOperandInfo& output = operands[outs[HashtableLookup::kOutputTensor]];
RunTimeOperandInfo& hits = operands[outs[HashtableLookup::kHitsTensor]];
Shape outputShape, hitShape;
HashtableLookup lookup(operation, operands);
success = hashtableLookupPrepare(lookups.shape(), keys.shape(), values.shape(),
&outputShape, &hitShape) &&
setInfoAndAllocateIfNeeded(&output, outputShape, &result) &&
setInfoAndAllocateIfNeeded(&hits, hitShape, &result) && lookup.Eval();
} break;
case OperationType::LSH_PROJECTION: {
RunTimeOperandInfo& output = operands[outs[LSHProjection::kOutputTensor]];
Shape outputShape;
if (!LSHProjection::Prepare(operation, operands, &outputShape) ||
!setInfoAndAllocateIfNeeded(&output, outputShape, &result)) {
break;
}
LSHProjection lsh(operation, operands);
const RunTimeOperandInfo& hash = operands[ins[LSHProjection::kHashTensor]];
switch (hash.type) {
case OperandType::TENSOR_FLOAT32: {
success = lsh.Eval<float>();
break;
}
case OperandType::TENSOR_FLOAT16: {
success = lsh.Eval<_Float16>();
break;
}
default: {
success = false;
LOG(ERROR) << "Unsupported data type";
}
}
} break;
case OperationType::BIDIRECTIONAL_SEQUENCE_LSTM: {
const auto merge_outputs = getScalarData<bool>(
operands[ins[BidirectionalSequenceLSTM::kMergeOutputsParam]]);
const bool output_state = (outs.size() == 5 || outs.size() == 6);
RunTimeOperandInfo& fwOutput =
operands[outs[BidirectionalSequenceLSTM::kFwOutputTensor]];
Shape fwOutputShape, bwOutputShape, fwOutputActivationStateShape,
fwOutputCellStateShape, bwOutputActivationStateShape, bwOutputCellStateShape;
BidirectionalSequenceLSTM lstm(operation, operands);
success = lstm.Prepare(operation, operands, &fwOutputShape, &bwOutputShape,
&fwOutputActivationStateShape, &fwOutputCellStateShape,
&bwOutputActivationStateShape, &bwOutputCellStateShape) &&
setInfoAndAllocateIfNeeded(&fwOutput, fwOutputShape, &result);
if (!merge_outputs) {
RunTimeOperandInfo& bwOutput =
operands[outs[BidirectionalSequenceLSTM::kBwOutputTensor]];
success = success && setInfoAndAllocateIfNeeded(&bwOutput, bwOutputShape, &result);
}
if (output_state) {
uint32_t delta = merge_outputs ? 1 : 0;
RunTimeOperandInfo& fwOutputActivationState =
operands[outs[BidirectionalSequenceLSTM::kFwOutputActivationStateTensor -
delta]];
RunTimeOperandInfo& fwOutputCellState =
operands[outs[BidirectionalSequenceLSTM::kFwOutputCellStateTensor - delta]];
RunTimeOperandInfo& bwOutputActivationState =
operands[outs[BidirectionalSequenceLSTM::kBwOutputActivationStateTensor -
delta]];
RunTimeOperandInfo& bwOutputCellState =
operands[outs[BidirectionalSequenceLSTM::kBwOutputCellStateTensor - delta]];
success = success &&
setInfoAndAllocateIfNeeded(&fwOutputActivationState,
fwOutputActivationStateShape, &result) &&
setInfoAndAllocateIfNeeded(&fwOutputCellState, fwOutputCellStateShape,
&result) &&
setInfoAndAllocateIfNeeded(&bwOutputActivationState,
bwOutputActivationStateShape, &result) &&
setInfoAndAllocateIfNeeded(&bwOutputCellState, bwOutputCellStateShape,
&result);
}
success = success && lstm.Eval();
} break;
case OperationType::LSTM: {
RunTimeOperandInfo& scratch = operands[outs[LSTMCell::kScratchBufferTensor]];
RunTimeOperandInfo& outputStateOut = operands[outs[LSTMCell::kOutputStateOutTensor]];
RunTimeOperandInfo& cellStateOut = operands[outs[LSTMCell::kCellStateOutTensor]];
RunTimeOperandInfo& output = operands[outs[LSTMCell::kOutputTensor]];
Shape scratchShape, outputStateShape, cellStateShape, outputShape;
LSTMCell lstm_cell(operation, operands);
success = lstm_cell.Prepare(operation, operands, &scratchShape, &outputStateShape,
&cellStateShape, &outputShape) &&
setInfoAndAllocateIfNeeded(&scratch, scratchShape, &result) &&
setInfoAndAllocateIfNeeded(&outputStateOut, outputStateShape, &result) &&
setInfoAndAllocateIfNeeded(&cellStateOut, cellStateShape, &result) &&
setInfoAndAllocateIfNeeded(&output, outputShape, &result) && lstm_cell.Eval();
} break;
case OperationType::RANDOM_MULTINOMIAL: {
const RunTimeOperandInfo& lookups = operands[ins[HashtableLookup::kLookupTensor]];
const RunTimeOperandInfo& keys = operands[ins[HashtableLookup::kKeyTensor]];
const RunTimeOperandInfo& values = operands[ins[HashtableLookup::kValueTensor]];
RunTimeOperandInfo& output = operands[outs[Multinomial::kOutputTensor]];
Shape outputShape;
Multinomial multinomial(operation, operands);
success = Multinomial::Prepare(operation, operands, &outputShape) &&
setInfoAndAllocateIfNeeded(&output, outputShape, &result) &&
multinomial.Eval();
} break;
case OperationType::RNN: {
RunTimeOperandInfo& hiddenStateOut = operands[outs[RNN::kHiddenStateOutTensor]];
RunTimeOperandInfo& output = operands[outs[RNN::kOutputTensor]];
Shape hiddenStateShape, outputShape;
RNN rnn_cell(operation, operands);
success = RNN::Prepare(operation, operands, &hiddenStateShape, &outputShape) &&
setInfoAndAllocateIfNeeded(&hiddenStateOut, hiddenStateShape, &result) &&
setInfoAndAllocateIfNeeded(&output, outputShape, &result) && rnn_cell.Eval();
} break;
case OperationType::SVDF: {
RunTimeOperandInfo& stateOut = operands[outs[SVDF::kStateOutTensor]];
RunTimeOperandInfo& output = operands[outs[SVDF::kOutputTensor]];
Shape stateShape, outputShape;
SVDF svdf(operation, operands);
success = SVDF::Prepare(operation, operands, &stateShape, &outputShape) &&
setInfoAndAllocateIfNeeded(&stateOut, stateShape, &result) &&
setInfoAndAllocateIfNeeded(&output, outputShape, &result) && svdf.Eval();
} break;
case OperationType::BATCH_TO_SPACE_ND: {
const size_t inCount = ins.size();
if ((inCount != 3 && inCount != 2) || !allParametersPresent(inCount, 1)) {
return ANEURALNETWORKS_BAD_DATA;
}
const RunTimeOperandInfo& input = operands[ins[0]];
const RunTimeOperandInfo& blockSize = operands[ins[1]];
bool data_layout = inCount == 3 ? getScalarData<bool>(operands[ins[2]]) : false;
RunTimeOperandInfo& output = operands[outs[0]];
Shape outShape = output.shape();
RunTimeOperandInfo input_tmp, output_tmp;
std::unique_ptr<uint8_t[]> input_tmp_guard, output_tmp_guard;
if (!convertToNhwc(input_tmp, input, input_tmp_guard, data_layout)) {
success = false;
break;
}
output_tmp.lifetime = OperandLifeTime::TEMPORARY_VARIABLE;
output_tmp.buffer = data_layout ? nullptr : output.buffer;
output_tmp.length = data_layout ? 0 : output.length;
if (!batchToSpacePrepare(input_tmp.shape(),
reinterpret_cast<const int32_t*>(blockSize.buffer),
blockSize.shape(), &outShape) ||
!setInfoAndAllocateIfNeeded(&output_tmp, outShape, &result)) {
if (!data_layout) output.dimensions = output_tmp.dimensions;
break;
}
switch (input_tmp.type) {
case OperandType::TENSOR_FLOAT32: {
success = batchToSpaceGeneric(
reinterpret_cast<const float*>(input_tmp.buffer), input_tmp.shape(),
reinterpret_cast<const int32_t*>(blockSize.buffer),
reinterpret_cast<float*>(output_tmp.buffer), outShape);
break;
}
case OperandType::TENSOR_FLOAT16: {
success = batchToSpaceGeneric(
reinterpret_cast<const _Float16*>(input_tmp.buffer), input_tmp.shape(),
reinterpret_cast<const int32_t*>(blockSize.buffer),
reinterpret_cast<_Float16*>(output_tmp.buffer), outShape);
break;
}
case OperandType::TENSOR_QUANT8_ASYMM: {
success = batchToSpaceGeneric(
reinterpret_cast<const uint8_t*>(input_tmp.buffer), input_tmp.shape(),
reinterpret_cast<const int32_t*>(blockSize.buffer),
reinterpret_cast<uint8_t*>(output_tmp.buffer), outShape);
break;
}
case OperandType::TENSOR_QUANT8_ASYMM_SIGNED: {
success = batchToSpaceGeneric(
reinterpret_cast<const int8_t*>(input_tmp.buffer), input_tmp.shape(),
reinterpret_cast<const int32_t*>(blockSize.buffer),
reinterpret_cast<int8_t*>(output_tmp.buffer), outShape);
break;
}
default: {
LOG(ERROR) << "Unsupported data type";
success = false;
}
}
if (data_layout) {
output_tmp_guard.reset(output_tmp.buffer);
}
if (!success || !convertFromNhwc(output, output_tmp, data_layout, &result)) {
success = false;
break;
}
} break;
case OperationType::SPACE_TO_BATCH_ND: {
const size_t inCount = ins.size();
if ((inCount != 4 && inCount != 3) || !allParametersPresent(inCount, 1)) {
return ANEURALNETWORKS_BAD_DATA;
}
const RunTimeOperandInfo& input = operands[ins[0]];
const RunTimeOperandInfo& blockSize = operands[ins[1]];
const RunTimeOperandInfo& paddings = operands[ins[2]];
bool data_layout = inCount == 4 ? getScalarData<bool>(operands[ins[3]]) : false;
RunTimeOperandInfo& output = operands[outs[0]];
Shape outShape = output.shape();
RunTimeOperandInfo input_tmp, output_tmp;
std::unique_ptr<uint8_t[]> input_tmp_guard, output_tmp_guard;
if (!convertToNhwc(input_tmp, input, input_tmp_guard, data_layout)) {
success = false;
break;
}
output_tmp.lifetime = OperandLifeTime::TEMPORARY_VARIABLE;
output_tmp.buffer = data_layout ? nullptr : output.buffer;
output_tmp.length = data_layout ? 0 : output.length;
if (!spaceToBatchPrepare(
input_tmp.shape(), reinterpret_cast<const int32_t*>(blockSize.buffer),
blockSize.shape(), reinterpret_cast<const int32_t*>(paddings.buffer),
paddings.shape(), &outShape) ||
!setInfoAndAllocateIfNeeded(&output_tmp, outShape, &result)) {
if (!data_layout) output.dimensions = output_tmp.dimensions;
break;
}
switch (input_tmp.type) {
case OperandType::TENSOR_FLOAT32: {
success = spaceToBatchGeneric(
reinterpret_cast<const float*>(input_tmp.buffer), input_tmp.shape(),
reinterpret_cast<const int32_t*>(blockSize.buffer),
reinterpret_cast<const int32_t*>(paddings.buffer), paddings.shape(),
reinterpret_cast<float*>(output_tmp.buffer), outShape);
break;
}
case OperandType::TENSOR_FLOAT16: {
success = spaceToBatchGeneric(
reinterpret_cast<const _Float16*>(input_tmp.buffer), input_tmp.shape(),
reinterpret_cast<const int32_t*>(blockSize.buffer),
reinterpret_cast<const int32_t*>(paddings.buffer), paddings.shape(),
reinterpret_cast<_Float16*>(output_tmp.buffer), outShape);
break;
}
case OperandType::TENSOR_QUANT8_ASYMM: {
success = spaceToBatchGeneric(
reinterpret_cast<const uint8_t*>(input_tmp.buffer), input_tmp.shape(),
reinterpret_cast<const int32_t*>(blockSize.buffer),
reinterpret_cast<const int32_t*>(paddings.buffer), paddings.shape(),
reinterpret_cast<uint8_t*>(output_tmp.buffer), outShape);
break;
}
case OperandType::TENSOR_QUANT8_ASYMM_SIGNED: {
success = spaceToBatchGeneric(
reinterpret_cast<const int8_t*>(input_tmp.buffer), input_tmp.shape(),
reinterpret_cast<const int32_t*>(blockSize.buffer),
reinterpret_cast<const int32_t*>(paddings.buffer), paddings.shape(),
reinterpret_cast<int8_t*>(output_tmp.buffer), outShape);
break;
}
default: {
LOG(ERROR) << "Unsupported data type";
success = false;
}
}
if (data_layout) {
output_tmp_guard.reset(output_tmp.buffer);
}
if (!success || !convertFromNhwc(output, output_tmp, data_layout, &result)) {
success = false;
break;
}
} break;
case OperationType::PAD:
case OperationType::PAD_V2: {
const bool isV2 = operation.type == OperationType::PAD_V2;
if (!allParametersPresent(isV2 ? 3 : 2, 1)) {
return ANEURALNETWORKS_BAD_DATA;
}
const RunTimeOperandInfo& input = operands[ins[0]];
const RunTimeOperandInfo& paddings = operands[ins[1]];
RunTimeOperandInfo& output = operands[outs[0]];
Shape outShape = output.shape();
if (!padPrepare(input.shape(), reinterpret_cast<const int32_t*>(paddings.buffer),
paddings.shape(), &outShape) ||
!setInfoAndAllocateIfNeeded(&output, outShape, &result)) {
break;
}
if (input.type == OperandType::TENSOR_FLOAT32) {
float pad_value = isV2 ? getScalarData<float>(operands[ins[2]]) : 0;
success = padGeneric(reinterpret_cast<const float*>(input.buffer), input.shape(),
reinterpret_cast<const int32_t*>(paddings.buffer), pad_value,
reinterpret_cast<float*>(output.buffer), outShape);
} else if (input.type == OperandType::TENSOR_FLOAT16) {
_Float16 pad_value = isV2 ? getScalarData<_Float16>(operands[ins[2]]) : 0;
success = padGeneric(reinterpret_cast<const _Float16*>(input.buffer), input.shape(),
reinterpret_cast<const int32_t*>(paddings.buffer),
static_cast<_Float16>(pad_value),
reinterpret_cast<_Float16*>(output.buffer), outShape);
} else if (input.type == OperandType::TENSOR_QUANT8_ASYMM) {
uint8_t pad_value =
isV2 ? getScalarData<uint8_t>(operands[ins[2]]) : outShape.offset;
success = padGeneric(input.buffer, input.shape(),
reinterpret_cast<const int32_t*>(paddings.buffer), pad_value,
output.buffer, outShape);
} else if (input.type == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
uint8_t pad_value =
isV2 ? getScalarData<int8_t>(operands[ins[2]]) : outShape.offset;
success = padGeneric(input.buffer, input.shape(),
reinterpret_cast<const int32_t*>(paddings.buffer), pad_value,
output.buffer, outShape);
}
} break;
case OperationType::CAST: {
if (!allParametersPresent(1, 1)) {
return ANEURALNETWORKS_BAD_DATA;
}
const RunTimeOperandInfo& input = operands[ins[0]];
RunTimeOperandInfo& output = operands[outs[0]];
Shape outShape = output.shape();
success = cast::prepare(input.shape(), &outShape) &&
setInfoAndAllocateIfNeeded(&output, outShape, &result) &&
cast::eval(input.buffer, input.shape(), output.buffer, outShape);
} break;
case OperationType::MEAN: {
if (!allParametersPresent(3, 1)) {
return ANEURALNETWORKS_BAD_DATA;
}
const RunTimeOperandInfo& input = operands[ins[0]];
const RunTimeOperandInfo& axis = operands[ins[1]];
int32_t keepDims = getScalarData<int32_t>(operands[ins[2]]);
RunTimeOperandInfo& output = operands[outs[0]];
Shape outShape = output.shape();
if (!meanPrepare(input.shape(), reinterpret_cast<const int32_t*>(axis.buffer),
axis.shape(), keepDims > 0, &outShape) ||
!setInfoAndAllocateIfNeeded(&output, outShape, &result)) {
break;
}
if (input.type == OperandType::TENSOR_FLOAT16) {
success = meanFloat16(reinterpret_cast<_Float16*>(input.buffer), input.shape(),
reinterpret_cast<const int32_t*>(axis.buffer), axis.shape(),
keepDims > 0, reinterpret_cast<_Float16*>(output.buffer),
outShape);
} else if (input.type == OperandType::TENSOR_FLOAT32) {
success = meanGeneric<float, float>(
reinterpret_cast<float*>(input.buffer), input.shape(),
reinterpret_cast<const int32_t*>(axis.buffer), axis.shape(), keepDims > 0,
reinterpret_cast<float*>(output.buffer), outShape);
} else if (input.type == OperandType::TENSOR_QUANT8_ASYMM) {
success = meanGeneric<uint8_t, int32_t>(
reinterpret_cast<uint8_t*>(input.buffer), input.shape(),
reinterpret_cast<const int32_t*>(axis.buffer), axis.shape(), keepDims > 0,
reinterpret_cast<uint8_t*>(output.buffer), outShape);
} else if (input.type == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
success = meanGeneric<int8_t, int32_t>(
reinterpret_cast<int8_t*>(input.buffer), input.shape(),
reinterpret_cast<const int32_t*>(axis.buffer), axis.shape(), keepDims > 0,
reinterpret_cast<int8_t*>(output.buffer), outShape);
}
} break;
case OperationType::ARGMAX:
case OperationType::ARGMIN: {
if (!allParametersPresent(2, 1)) {
return ANEURALNETWORKS_BAD_DATA;
}
const RunTimeOperandInfo& input = operands[ins[0]];
int32_t axis = getScalarData<int32_t>(operands[ins[1]]);
RunTimeOperandInfo& output = operands[outs[0]];
Shape outShape = output.shape();
const bool isArgMin = operation.type == OperationType::ARGMIN;
success = argMinMaxPrepare(input.shape(), axis, &outShape) &&
setInfoAndAllocateIfNeeded(&output, outShape, &result) &&
argMinMaxGeneric(input.buffer, input.shape(), axis, isArgMin, output.buffer,
outShape);
} break;
case OperationType::EXPAND_DIMS: {
if (!allParametersPresent(2, 1)) {
return ANEURALNETWORKS_BAD_DATA;
}
const RunTimeOperandInfo& input = operands[ins[0]];
int32_t axis = getScalarData<int32_t>(operands[ins[1]]);
RunTimeOperandInfo& output = operands[outs[0]];
Shape outShape = output.shape();
success = expand_dims::prepare(input.shape(), axis, &outShape) &&
setInfoAndAllocateIfNeeded(&output, outShape, &result) &&
expand_dims::eval(input.buffer, input.shape(), axis, output.buffer, outShape);
} break;
case OperationType::SPLIT: {
if (ins.size() != 3) {
LOG(ERROR) << "Wrong input count";
return ANEURALNETWORKS_BAD_DATA;
}
const RunTimeOperandInfo& input = operands[ins[0]];
const int32_t axis = getScalarData<int32_t>(operands[ins[1]]);
const int32_t numOutputs = getScalarData<int32_t>(operands[ins[2]]);
if (numOutputs != outs.size()) {
return ANEURALNETWORKS_BAD_DATA;
}
std::vector<Shape> outputShapes(numOutputs);
for (int i = 0; i < numOutputs; ++i) {
outputShapes[i] = operands[outs[i]].shape();
}
success = splitPrepare(input.shape(), axis, numOutputs, &outputShapes);
for (int i = 0; i < numOutputs; ++i) {
success = success && setInfoAndAllocateIfNeeded(&(operands[outs[i]]),
outputShapes[i], &result);
}
switch (input.type) {
case OperandType::TENSOR_FLOAT16: {
std::vector<_Float16*> outputDataPtrs(numOutputs);
for (int i = 0; i < numOutputs; ++i) {
outputDataPtrs[i] = reinterpret_cast<_Float16*>(operands[outs[i]].buffer);
}
success = success &&
splitFloat16(reinterpret_cast<const _Float16*>(input.buffer),
input.shape(), axis, &outputDataPtrs, outputShapes);
} break;
case OperandType::TENSOR_FLOAT32: {
std::vector<float*> outputDataPtrs(numOutputs);
for (int i = 0; i < numOutputs; ++i) {
outputDataPtrs[i] = reinterpret_cast<float*>(operands[outs[i]].buffer);
}
success = success &&
splitFloat32(reinterpret_cast<const float*>(input.buffer),
input.shape(), axis, &outputDataPtrs, outputShapes);
} break;
case OperandType::TENSOR_INT32: {
std::vector<int32_t*> outputDataPtrs(numOutputs);
for (int i = 0; i < numOutputs; ++i) {
outputDataPtrs[i] = reinterpret_cast<int32_t*>(operands[outs[i]].buffer);
}
success = success &&
splitInt32(reinterpret_cast<const int32_t*>(input.buffer),
input.shape(), axis, &outputDataPtrs, outputShapes);
} break;
case OperandType::TENSOR_QUANT8_ASYMM: {
std::vector<uint8_t*> outputDataPtrs(numOutputs);
for (int i = 0; i < numOutputs; ++i) {
outputDataPtrs[i] = reinterpret_cast<uint8_t*>(operands[outs[i]].buffer);
}
success = success &&
splitQuant8(reinterpret_cast<const uint8_t*>(input.buffer),
input.shape(), axis, &outputDataPtrs, outputShapes);
} break;
case OperandType::TENSOR_QUANT8_ASYMM_SIGNED: {
std::vector<int8_t*> outputDataPtrs(numOutputs);
for (int i = 0; i < numOutputs; ++i) {
outputDataPtrs[i] = reinterpret_cast<int8_t*>(operands[outs[i]].buffer);
}
success = success &&
splitQuant8Signed(reinterpret_cast<const int8_t*>(input.buffer),
input.shape(), axis, &outputDataPtrs, outputShapes);
} break;
default: {
return ANEURALNETWORKS_BAD_DATA;
}
}
} break;
case OperationType::MAXIMUM:
case OperationType::MINIMUM: {
if (!allParametersPresent(2, 1)) {
return ANEURALNETWORKS_BAD_DATA;
}
const RunTimeOperandInfo& in1 = operands[ins[0]];
const RunTimeOperandInfo& in2 = operands[ins[1]];
RunTimeOperandInfo& output = operands[outs[0]];
Shape outputShape = output.shape();
const bool isMinimum = operation.type == OperationType::MINIMUM;
success = maximum_minimum::prepare(in1.shape(), in2.shape(), &outputShape) &&
setInfoAndAllocateIfNeeded(&output, outputShape, &result) &&
maximum_minimum::eval(in1.buffer, in1.shape(), in2.buffer, in2.shape(),
isMinimum, output.buffer, outputShape);
} break;
case OperationType::GROUPED_CONV_2D: {
const size_t inCount = ins.size();
if ((inCount != 12 && inCount != 9) || !allParametersPresent(inCount, 1)) {
return ANEURALNETWORKS_BAD_DATA;
}
const RunTimeOperandInfo& input = operands[ins[0]];
const RunTimeOperandInfo& filter = operands[ins[1]];
const RunTimeOperandInfo& bias = operands[ins[2]];
int32_t padding_left, padding_right;
int32_t padding_top, padding_bottom;
int32_t padding_implicit = 0;
int32_t stride_width, stride_height;
int32_t numGroups;
int32_t activation;
bool data_layout = false;
if (inCount == 12) {
padding_left = getScalarData<int32_t>(operands[ins[3]]);
padding_right = getScalarData<int32_t>(operands[ins[4]]);
padding_top = getScalarData<int32_t>(operands[ins[5]]);
padding_bottom = getScalarData<int32_t>(operands[ins[6]]);
stride_width = getScalarData<int32_t>(operands[ins[7]]);
stride_height = getScalarData<int32_t>(operands[ins[8]]);
numGroups = getScalarData<int32_t>(operands[ins[9]]);
activation = getScalarData<int32_t>(operands[ins[10]]);
data_layout = getScalarData<bool>(operands[ins[11]]);
} else {
padding_implicit = getScalarData<int32_t>(operands[ins[3]]);
stride_width = getScalarData<int32_t>(operands[ins[4]]);
stride_height = getScalarData<int32_t>(operands[ins[5]]);
numGroups = getScalarData<int32_t>(operands[ins[6]]);
activation = getScalarData<int32_t>(operands[ins[7]]);
data_layout = getScalarData<bool>(operands[ins[8]]);
}
RunTimeOperandInfo& output = operands[outs[0]];
Shape outShape = output.shape();
RunTimeOperandInfo input_tmp, output_tmp;
std::unique_ptr<uint8_t[]> input_tmp_guard, output_tmp_guard;
if (!convertToNhwc(input_tmp, input, input_tmp_guard, data_layout)) {
success = false;
break;
}
output_tmp.lifetime = OperandLifeTime::TEMPORARY_VARIABLE;
output_tmp.buffer = data_layout ? nullptr : output.buffer;
output_tmp.length = data_layout ? 0 : output.length;
if (inCount == 9) {
Shape inputShape = input_tmp.shape();
Shape filterShape = filter.shape();
int32_t input_width = getSizeOfDimension(inputShape, 2);
int32_t input_height = getSizeOfDimension(inputShape, 1);
int32_t filter_width = getSizeOfDimension(filterShape, 2);
int32_t filter_height = getSizeOfDimension(filterShape, 1);
calculateExplicitPadding(input_width, stride_width, filter_width, padding_implicit,
&padding_left, &padding_right);
calculateExplicitPadding(input_height, stride_height, filter_height,
padding_implicit, &padding_top, &padding_bottom);
}
if (!groupedConvPrepare(input_tmp.shape(), filter.shape(), bias.shape(), padding_left,
padding_right, padding_top, padding_bottom, stride_width,
stride_height, numGroups, &outShape) ||
!setInfoAndAllocateIfNeeded(&output_tmp, outShape, &result)) {
if (!data_layout) output.dimensions = output_tmp.dimensions;
success = false;
break;
}
if (input_tmp.type == OperandType::TENSOR_FLOAT32) {
success = groupedConvFloat32(
reinterpret_cast<const float*>(input_tmp.buffer), input_tmp.shape(),
reinterpret_cast<const float*>(filter.buffer), filter.shape(),
reinterpret_cast<const float*>(bias.buffer), bias.shape(), padding_left,
padding_right, padding_top, padding_bottom, stride_width, stride_height,
numGroups, activation, reinterpret_cast<float*>(output_tmp.buffer),
outShape);
} else if (input_tmp.type == OperandType::TENSOR_FLOAT16) {
success = groupedConvFloat16(
reinterpret_cast<const _Float16*>(input_tmp.buffer), input_tmp.shape(),
reinterpret_cast<const _Float16*>(filter.buffer), filter.shape(),
reinterpret_cast<const _Float16*>(bias.buffer), bias.shape(), padding_left,
padding_right, padding_top, padding_bottom, stride_width, stride_height,
numGroups, activation, reinterpret_cast<_Float16*>(output_tmp.buffer),
outShape);
} else if (input_tmp.type == OperandType::TENSOR_QUANT8_ASYMM) {
if (filter.type == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) {
success = groupedConvQuant8PerChannel(
reinterpret_cast<const uint8_t*>(input_tmp.buffer), input_tmp.shape(),
reinterpret_cast<const int8_t*>(filter.buffer), filter.shape(),
filter.extraParams.channelQuant().scales.data(),
reinterpret_cast<const int32_t*>(bias.buffer), bias.shape(),
padding_left, padding_right, padding_top, padding_bottom, stride_width,
stride_height, numGroups, activation,
reinterpret_cast<uint8_t*>(output_tmp.buffer), outShape);
} else if (filter.type == OperandType::TENSOR_QUANT8_ASYMM) {
success = groupedConvQuant8(
reinterpret_cast<const uint8_t*>(input_tmp.buffer), input_tmp.shape(),
reinterpret_cast<const uint8_t*>(filter.buffer), filter.shape(),
reinterpret_cast<const int32_t*>(bias.buffer), bias.shape(),
padding_left, padding_right, padding_top, padding_bottom, stride_width,
stride_height, numGroups, activation,
reinterpret_cast<uint8_t*>(output_tmp.buffer), outShape);
}
} else if (input_tmp.type == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
if (filter.type == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) {
success = groupedConvQuant8PerChannel(
reinterpret_cast<const int8_t*>(input_tmp.buffer), input_tmp.shape(),
reinterpret_cast<const int8_t*>(filter.buffer), filter.shape(),
filter.extraParams.channelQuant().scales.data(),
reinterpret_cast<const int32_t*>(bias.buffer), bias.shape(),
padding_left, padding_right, padding_top, padding_bottom, stride_width,
stride_height, numGroups, activation,
reinterpret_cast<int8_t*>(output_tmp.buffer), outShape);
} else if (filter.type == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
success = groupedConvQuant8(
reinterpret_cast<const int8_t*>(input_tmp.buffer), input_tmp.shape(),
reinterpret_cast<const int8_t*>(filter.buffer), filter.shape(),
reinterpret_cast<const int32_t*>(bias.buffer), bias.shape(),
padding_left, padding_right, padding_top, padding_bottom, stride_width,
stride_height, numGroups, activation,
reinterpret_cast<int8_t*>(output_tmp.buffer), outShape);
}
}
if (data_layout) {
output_tmp_guard.reset(output_tmp.buffer);
}
if (!success || !convertFromNhwc(output, output_tmp, data_layout, &result)) {
success = false;
break;
}
} break;
case OperationType::TILE: {
if (!allParametersPresent(2, 1)) {
return ANEURALNETWORKS_BAD_DATA;
}
const RunTimeOperandInfo& input = operands[ins[0]];
const RunTimeOperandInfo& multiples = operands[ins[1]];
RunTimeOperandInfo& output = operands[outs[0]];
Shape outShape = output.shape();
success =
tile::prepare(input.shape(), reinterpret_cast<const int32_t*>(multiples.buffer),
multiples.shape(), &outShape) &&
setInfoAndAllocateIfNeeded(&output, outShape, &result) &&
tile::eval(input.buffer, input.shape(),
reinterpret_cast<const int32_t*>(multiples.buffer), output.buffer,
outShape);
} break;
case OperationType::QUANTIZED_16BIT_LSTM: {
if (!allParametersPresent(15, 2)) {
return ANEURALNETWORKS_BAD_DATA;
}
RunTimeOperandInfo& cellStateOut =
operands[outs[QuantizedLSTMCell::kCellStateOutTensor]];
RunTimeOperandInfo& output = operands[outs[QuantizedLSTMCell::kOutputTensor]];
Shape cellStateOutShape, outputShape;
QuantizedLSTMCell quantizedLSTMCell(operation, operands);
success = QuantizedLSTMCell::prepare(operation, operands, &cellStateOutShape,
&outputShape) &&
setInfoAndAllocateIfNeeded(&cellStateOut, cellStateOutShape, &result) &&
setInfoAndAllocateIfNeeded(&output, outputShape, &result) &&
quantizedLSTMCell.eval();
} break;
case OperationType::POW: {
if (!allParametersPresent(2, 1)) {
return ANEURALNETWORKS_BAD_DATA;
}
const RunTimeOperandInfo& base = operands[ins[0]];
const RunTimeOperandInfo& exponent = operands[ins[1]];
RunTimeOperandInfo& output = operands[outs[0]];
Shape outShape = output.shape();
success = pow::prepare(base.shape(), exponent.shape(), &outShape) &&
setInfoAndAllocateIfNeeded(&output, outShape, &result) &&
pow::eval(base.buffer, base.shape(), exponent.buffer, exponent.shape(),
output.buffer, outShape);
} break;
case OperationType::TOPK_V2: {
if (!allParametersPresent(2, 2)) {
return ANEURALNETWORKS_BAD_DATA;
}
const RunTimeOperandInfo& input = operands[ins[0]];
int32_t k = getScalarData<int32_t>(operands[ins[1]]);
RunTimeOperandInfo& values = operands[outs[0]];
Shape valuesShape = values.shape();
RunTimeOperandInfo& indices = operands[outs[1]];
Shape indicesShape = indices.shape();
success = topk_v2::prepare(input.shape(), k, &valuesShape, &indicesShape) &&
setInfoAndAllocateIfNeeded(&values, valuesShape, &result) &&
setInfoAndAllocateIfNeeded(&indices, indicesShape, &result) &&
topk_v2::eval(input.buffer, input.shape(), k, values.buffer, valuesShape,
indices.buffer, indicesShape);
} break;
default: {
const OperationRegistration* operationRegistration =
mOperationResolver->findOperation(operation.type);
if (operationRegistration == nullptr) {
LOG(ERROR) << getOperationName(operation.type) << " not registered";
} else if (operationRegistration->prepare == nullptr ||
operationRegistration->execute == nullptr) {
LOG(ERROR) << "Incomplete operation registration: "
<< getOperationName(operation.type);
} else {
OperationExecutionContext context(&operation, operands);
success = operationRegistration->flags.allowOmittedOperand ||
context.checkNoOmittedOperand();
success = success && (operationRegistration->flags.allowZeroSizedInput ||
context.checkNoZeroSizedInput());
success = success && operationRegistration->prepare(&context) &&
operationRegistration->execute(&context);
result = context.getResultCode();
}
}
}
if (!success && result == ANEURALNETWORKS_NO_ERROR) {
result = ANEURALNETWORKS_OP_FAILED;
}
if (result != ANEURALNETWORKS_NO_ERROR) {
LOG(ERROR) << getOperationName(operation.type) << " failed.";
return result;
}
consumeOperationInputs(ins, operands);
return ANEURALNETWORKS_NO_ERROR;
}
// Copies RunTimeOperandInfo, preserving the original lifetime and numberOfUsesLeft
// to prevent deallocation of subgraph inputs and outputs.
static void setInfoExceptLifetime(RunTimeOperandInfo* to, const RunTimeOperandInfo& from) {
auto originalLifetime = to->lifetime;
auto originalNumberOfUsesLeft = to->numberOfUsesLeft;
*to = from;
to->lifetime = originalLifetime;
to->numberOfUsesLeft = originalNumberOfUsesLeft;
}
int CpuExecutor::executeIfOperation(const Operation& operation, RunTimeOperandInfo* operands) {
namespace op = operation_if;
const RunTimeOperandInfo& condOperand = operands[operation.inputs[op::kCondBoolOperand]];
const bool condValue = *reinterpret_cast<const bool8*>(condOperand.buffer);
VLOG(CPUEXE) << "CpuExecutor::executeIfOperation: condition value: " << condValue;
const uint32_t branchInputIndex = condValue ? op::kThenModelOperand : op::kElseModelOperand;
const RunTimeOperandInfo& branchOperand = operands[operation.inputs[branchInputIndex]];
const Subgraph& branchSubgraph = *reinterpret_cast<const Subgraph*>(branchOperand.buffer);
std::vector<RunTimeOperandInfo> branchOperands = initializeRunTimeInfo(branchSubgraph);
// Initialize inner input and output operands from outer operands.
for (uint32_t i = 0, n = branchSubgraph.inputIndexes.size(); i < n; ++i) {
setInfoExceptLifetime(&branchOperands[branchSubgraph.inputIndexes[i]],
operands[operation.inputs[op::kFirstInput + i]]);
}
for (uint32_t i = 0, n = branchSubgraph.outputIndexes.size(); i < n; ++i) {
setInfoExceptLifetime(&branchOperands[branchSubgraph.outputIndexes[i]],
operands[operation.outputs[i]]);
}
NN_RETURN_IF_ERROR(executeSubgraph(branchSubgraph, branchOperands.data()));
freeUnusedSubgraphOperands(&branchOperands);
// Update outer outputs.
for (uint32_t i = 0, n = operation.outputs.size(); i < n; ++i) {
setInfoExceptLifetime(&operands[operation.outputs[i]],
branchOperands[branchSubgraph.outputIndexes[i]]);
}
consumeOperationInputs(operation.inputs, operands);
return ANEURALNETWORKS_NO_ERROR;
}
int CpuExecutor::executeWhileOperation(const Operation& operation, RunTimeOperandInfo* operands) {
namespace op = operation_while;
const RunTimeOperandInfo& condModelOperand = operands[operation.inputs[op::kCondModelOperand]];
const RunTimeOperandInfo& bodyModelOperand = operands[operation.inputs[op::kBodyModelOperand]];
const Subgraph& condSubgraph = *reinterpret_cast<const Subgraph*>(condModelOperand.buffer);
const Subgraph& bodySubgraph = *reinterpret_cast<const Subgraph*>(bodyModelOperand.buffer);
std::vector<RunTimeOperandInfo> condOperands = initializeRunTimeInfo(condSubgraph);
std::vector<RunTimeOperandInfo> bodyOperands = initializeRunTimeInfo(bodySubgraph);
// The code below implements the following sequence of subgraph input and output buffer
// assignments:
// iteration = 0 cond inputs = body inputs = outer inputs body outputs = tmp1
// iteration = 1 cond inputs = body inputs = tmp1 body outputs = tmp2
// iteration = 2 cond inputs = body inputs = tmp2 body outputs = tmp1
// iteration = 3 cond inputs = body inputs = ... body outputs = ...
// For body output double buffering.
std::vector<uint8_t*> tmp1(bodySubgraph.outputIndexes.size());
std::vector<uint8_t*> tmp2(bodySubgraph.outputIndexes.size());
// Initialize condition inputs from outer operands.
for (uint32_t i = 0, n = condSubgraph.inputIndexes.size(); i < n; ++i) {
setInfoExceptLifetime(&condOperands[condSubgraph.inputIndexes[i]],
operands[operation.inputs[op::kFirstInput + i]]);
}
// Store condition output on the stack.
RunTimeOperandInfo& condOutput = condOperands[condSubgraph.outputIndexes[0]];
bool8 condValue = {/* initialized memory */};
condOutput.buffer = &condValue;
condOutput.length = sizeof(condValue);
std::chrono::nanoseconds timeoutDuration(mLoopTimeoutDuration);
const auto startTime = std::chrono::steady_clock::now();
for (uint32_t iteration = 0;; ++iteration) {
VLOG(CPUEXE) << "CpuExecutor::executeWhileOperation: iteration " << iteration;
if (iteration != 0) {
// Set condition inputs from previous iteration outputs.
for (uint32_t i = 0, n = bodySubgraph.outputIndexes.size(); i < n; ++i) {
setInfoExceptLifetime(&condOperands[condSubgraph.inputIndexes[i]],
bodyOperands[bodySubgraph.outputIndexes[i]]);
}
}
NN_RETURN_IF_ERROR(executeSubgraph(condSubgraph, condOperands.data()));
VLOG(CPUEXE) << "CpuExecutor::executeWhileOperation: condition value: "
<< static_cast<int>(condValue);
if (!condValue) {
break;
}
const auto duration = std::chrono::steady_clock::now() - startTime;
if (duration > timeoutDuration) {
LOG(ERROR) << "CpuExecutor::executeWhileOperation: timed out after "
<< std::chrono::duration_cast<std::chrono::milliseconds>(duration).count()
<< " ms";
return ANEURALNETWORKS_MISSED_DEADLINE_TRANSIENT;
}
// Set body inputs from condition inputs.
for (uint32_t i = 0, n = bodySubgraph.inputIndexes.size(); i < n; ++i) {
bodyOperands[bodySubgraph.inputIndexes[i]] = condOperands[condSubgraph.inputIndexes[i]];
}
// Switch body outputs.
auto& outputBuffer = iteration % 2 == 0 ? tmp1 : tmp2;
auto& otherBuffer = iteration % 2 == 0 ? tmp2 : tmp1;
for (uint32_t i = 0, n = bodySubgraph.outputIndexes.size(); i < n; ++i) {
RunTimeOperandInfo& info = bodyOperands[bodySubgraph.outputIndexes[i]];
otherBuffer[i] = info.buffer;
info.buffer = outputBuffer[i];
}
NN_RETURN_IF_ERROR(executeSubgraph(bodySubgraph, bodyOperands.data()));
}
// Copy body outputs to outer outputs.
for (uint32_t i = 0, n = operation.outputs.size(); i < n; ++i) {
RunTimeOperandInfo& outerOperand = operands[operation.outputs[i]];
RunTimeOperandInfo& innerOperand = condOperands[condSubgraph.inputIndexes[i]];
if (int error; !setInfoAndAllocateIfNeeded(&outerOperand, innerOperand.shape(), &error)) {
return error;
}
CHECK_EQ(outerOperand.length, innerOperand.length);
// TODO: Use the outer buffer as tmp1 to avoid copies.
memcpy(outerOperand.buffer, innerOperand.buffer, innerOperand.length);
}
auto freeLoopOutputs = [](const std::vector<uint8_t*>& tmp) {
for (auto buffer : tmp) {
if (buffer != nullptr) {
delete[] buffer;
}
}
};
freeLoopOutputs(tmp1);
freeLoopOutputs(tmp2);
freeUnusedSubgraphOperands(&condOperands);
freeUnusedSubgraphOperands(&bodyOperands);
consumeOperationInputs(operation.inputs, operands);
return ANEURALNETWORKS_NO_ERROR;
}
void CpuExecutor::setOutputShapes(const std::vector<uint32_t>& outputIndexes,
const std::vector<RunTimeOperandInfo>& operands) {
mOutputShapes.resize(outputIndexes.size());
for (uint32_t i = 0; i < outputIndexes.size(); i++) {
const uint32_t operandIndex = outputIndexes[i];
const RunTimeOperandInfo& from = operands[operandIndex];
mOutputShapes[i].dimensions = from.dimensions;
mOutputShapes[i].isSufficient = from.isSufficient();
}
}
// b/109953668, disable OpenMP
#ifdef NNAPI_OPENMP
ScopedOpenmpSettings::ScopedOpenmpSettings() {
mBlocktimeInitial = kmp_get_blocktime();
kmp_set_blocktime(20); // ms, see b/109645291
#if NNAPI_LIMIT_CPU_THREADS
// Code not yet enabled. Choosing the number of threads to be based on
// benchmarking. See longer comment by the class declaration.
mMaxThreadsInitial = Eigen::nbThreads();
const int nProcs = omp_get_num_procs();
int threads = nProcs;
if (nProcs >= 8) {
threads = nProcs - 4;
} else if (nProcs >= 4) {
threads = nProcs - 2;
}
Eigen::setNbThreads(threads);
#endif
}
ScopedOpenmpSettings::~ScopedOpenmpSettings() {
kmp_set_blocktime(mBlocktimeInitial);
#if NNAPI_LIMIT_CPU_THREADS
Eigen::setNbThreads(mMaxThreadsInitial);
#endif
}
#endif // NNAPI_OPENMP
} // namespace nn
} // namespace android