| /* |
| * Copyright (C) 2015 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define TRACE_TAG SYSDEPS |
| |
| #include "sysdeps.h" |
| |
| #include <winsock2.h> /* winsock.h *must* be included before windows.h. */ |
| #include <windows.h> |
| |
| #include <errno.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| |
| #include <algorithm> |
| #include <memory> |
| #include <mutex> |
| #include <string> |
| #include <unordered_map> |
| #include <vector> |
| |
| #include <cutils/sockets.h> |
| |
| #include <android-base/errors.h> |
| #include <android-base/file.h> |
| #include <android-base/logging.h> |
| #include <android-base/macros.h> |
| #include <android-base/stringprintf.h> |
| #include <android-base/strings.h> |
| #include <android-base/utf8.h> |
| |
| #include "adb.h" |
| #include "adb_utils.h" |
| |
| #include "sysdeps/uio.h" |
| |
| /* forward declarations */ |
| |
| typedef const struct FHClassRec_* FHClass; |
| typedef struct FHRec_* FH; |
| |
| typedef struct FHClassRec_ { |
| void (*_fh_init)(FH); |
| int (*_fh_close)(FH); |
| int64_t (*_fh_lseek)(FH, int64_t, int); |
| int (*_fh_read)(FH, void*, int); |
| int (*_fh_write)(FH, const void*, int); |
| int (*_fh_writev)(FH, const adb_iovec*, int); |
| } FHClassRec; |
| |
| static void _fh_file_init(FH); |
| static int _fh_file_close(FH); |
| static int64_t _fh_file_lseek(FH, int64_t, int); |
| static int _fh_file_read(FH, void*, int); |
| static int _fh_file_write(FH, const void*, int); |
| static int _fh_file_writev(FH, const adb_iovec*, int); |
| |
| static const FHClassRec _fh_file_class = { |
| _fh_file_init, |
| _fh_file_close, |
| _fh_file_lseek, |
| _fh_file_read, |
| _fh_file_write, |
| _fh_file_writev, |
| }; |
| |
| static void _fh_socket_init(FH); |
| static int _fh_socket_close(FH); |
| static int64_t _fh_socket_lseek(FH, int64_t, int); |
| static int _fh_socket_read(FH, void*, int); |
| static int _fh_socket_write(FH, const void*, int); |
| static int _fh_socket_writev(FH, const adb_iovec*, int); |
| |
| static const FHClassRec _fh_socket_class = { |
| _fh_socket_init, |
| _fh_socket_close, |
| _fh_socket_lseek, |
| _fh_socket_read, |
| _fh_socket_write, |
| _fh_socket_writev, |
| }; |
| |
| #if defined(assert) |
| #undef assert |
| #endif |
| |
| void handle_deleter::operator()(HANDLE h) { |
| // CreateFile() is documented to return INVALID_HANDLE_FILE on error, |
| // implying that NULL is a valid handle, but this is probably impossible. |
| // Other APIs like CreateEvent() are documented to return NULL on error, |
| // implying that INVALID_HANDLE_VALUE is a valid handle, but this is also |
| // probably impossible. Thus, consider both NULL and INVALID_HANDLE_VALUE |
| // as invalid handles. std::unique_ptr won't call a deleter with NULL, so we |
| // only need to check for INVALID_HANDLE_VALUE. |
| if (h != INVALID_HANDLE_VALUE) { |
| if (!CloseHandle(h)) { |
| D("CloseHandle(%p) failed: %s", h, |
| android::base::SystemErrorCodeToString(GetLastError()).c_str()); |
| } |
| } |
| } |
| |
| /**************************************************************************/ |
| /**************************************************************************/ |
| /***** *****/ |
| /***** common file descriptor handling *****/ |
| /***** *****/ |
| /**************************************************************************/ |
| /**************************************************************************/ |
| |
| typedef struct FHRec_ |
| { |
| FHClass clazz; |
| int used; |
| int eof; |
| union { |
| HANDLE handle; |
| SOCKET socket; |
| } u; |
| |
| char name[32]; |
| } FHRec; |
| |
| #define fh_handle u.handle |
| #define fh_socket u.socket |
| |
| #define WIN32_FH_BASE 2048 |
| #define WIN32_MAX_FHS 2048 |
| |
| static std::mutex& _win32_lock = *new std::mutex(); |
| static FHRec _win32_fhs[ WIN32_MAX_FHS ]; |
| static int _win32_fh_next; // where to start search for free FHRec |
| |
| static FH |
| _fh_from_int( int fd, const char* func ) |
| { |
| FH f; |
| |
| fd -= WIN32_FH_BASE; |
| |
| if (fd < 0 || fd >= WIN32_MAX_FHS) { |
| D( "_fh_from_int: invalid fd %d passed to %s", fd + WIN32_FH_BASE, |
| func ); |
| errno = EBADF; |
| return nullptr; |
| } |
| |
| f = &_win32_fhs[fd]; |
| |
| if (f->used == 0) { |
| D( "_fh_from_int: invalid fd %d passed to %s", fd + WIN32_FH_BASE, |
| func ); |
| errno = EBADF; |
| return nullptr; |
| } |
| |
| return f; |
| } |
| |
| |
| static int |
| _fh_to_int( FH f ) |
| { |
| if (f && f->used && f >= _win32_fhs && f < _win32_fhs + WIN32_MAX_FHS) |
| return (int)(f - _win32_fhs) + WIN32_FH_BASE; |
| |
| return -1; |
| } |
| |
| static FH |
| _fh_alloc( FHClass clazz ) |
| { |
| FH f = nullptr; |
| |
| std::lock_guard<std::mutex> lock(_win32_lock); |
| |
| for (int i = _win32_fh_next; i < WIN32_MAX_FHS; ++i) { |
| if (_win32_fhs[i].clazz == nullptr) { |
| f = &_win32_fhs[i]; |
| _win32_fh_next = i + 1; |
| f->clazz = clazz; |
| f->used = 1; |
| f->eof = 0; |
| f->name[0] = '\0'; |
| clazz->_fh_init(f); |
| return f; |
| } |
| } |
| |
| D("_fh_alloc: no more free file descriptors"); |
| errno = EMFILE; // Too many open files |
| return nullptr; |
| } |
| |
| |
| static int |
| _fh_close( FH f ) |
| { |
| // Use lock so that closing only happens once and so that _fh_alloc can't |
| // allocate a FH that we're in the middle of closing. |
| std::lock_guard<std::mutex> lock(_win32_lock); |
| |
| int offset = f - _win32_fhs; |
| if (_win32_fh_next > offset) { |
| _win32_fh_next = offset; |
| } |
| |
| if (f->used) { |
| f->clazz->_fh_close( f ); |
| f->name[0] = '\0'; |
| f->eof = 0; |
| f->used = 0; |
| f->clazz = nullptr; |
| } |
| return 0; |
| } |
| |
| // Deleter for unique_fh. |
| class fh_deleter { |
| public: |
| void operator()(struct FHRec_* fh) { |
| // We're called from a destructor and destructors should not overwrite |
| // errno because callers may do: |
| // errno = EBLAH; |
| // return -1; // calls destructor, which should not overwrite errno |
| const int saved_errno = errno; |
| _fh_close(fh); |
| errno = saved_errno; |
| } |
| }; |
| |
| // Like std::unique_ptr, but calls _fh_close() instead of operator delete(). |
| typedef std::unique_ptr<struct FHRec_, fh_deleter> unique_fh; |
| |
| /**************************************************************************/ |
| /**************************************************************************/ |
| /***** *****/ |
| /***** file-based descriptor handling *****/ |
| /***** *****/ |
| /**************************************************************************/ |
| /**************************************************************************/ |
| |
| static void _fh_file_init(FH f) { |
| f->fh_handle = INVALID_HANDLE_VALUE; |
| } |
| |
| static int _fh_file_close(FH f) { |
| CloseHandle(f->fh_handle); |
| f->fh_handle = INVALID_HANDLE_VALUE; |
| return 0; |
| } |
| |
| static int _fh_file_read(FH f, void* buf, int len) { |
| DWORD read_bytes; |
| |
| if (!ReadFile(f->fh_handle, buf, (DWORD)len, &read_bytes, nullptr)) { |
| D("adb_read: could not read %d bytes from %s", len, f->name); |
| errno = EIO; |
| return -1; |
| } else if (read_bytes < (DWORD)len) { |
| f->eof = 1; |
| } |
| return read_bytes; |
| } |
| |
| static int _fh_file_write(FH f, const void* buf, int len) { |
| DWORD wrote_bytes; |
| |
| if (!WriteFile(f->fh_handle, buf, (DWORD)len, &wrote_bytes, nullptr)) { |
| D("adb_file_write: could not write %d bytes from %s", len, f->name); |
| errno = EIO; |
| return -1; |
| } else if (wrote_bytes < (DWORD)len) { |
| f->eof = 1; |
| } |
| return wrote_bytes; |
| } |
| |
| static int _fh_file_writev(FH f, const adb_iovec* iov, int iovcnt) { |
| if (iovcnt <= 0) { |
| errno = EINVAL; |
| return -1; |
| } |
| |
| DWORD wrote_bytes = 0; |
| |
| for (int i = 0; i < iovcnt; ++i) { |
| ssize_t rc = _fh_file_write(f, iov[i].iov_base, iov[i].iov_len); |
| if (rc == -1) { |
| return wrote_bytes > 0 ? wrote_bytes : -1; |
| } else if (rc == 0) { |
| return wrote_bytes; |
| } |
| |
| wrote_bytes += rc; |
| |
| if (static_cast<size_t>(rc) < iov[i].iov_len) { |
| return wrote_bytes; |
| } |
| } |
| |
| return wrote_bytes; |
| } |
| |
| static int64_t _fh_file_lseek(FH f, int64_t pos, int origin) { |
| DWORD method; |
| switch (origin) { |
| case SEEK_SET: |
| method = FILE_BEGIN; |
| break; |
| case SEEK_CUR: |
| method = FILE_CURRENT; |
| break; |
| case SEEK_END: |
| method = FILE_END; |
| break; |
| default: |
| errno = EINVAL; |
| return -1; |
| } |
| |
| LARGE_INTEGER li = {.QuadPart = pos}; |
| if (!SetFilePointerEx(f->fh_handle, li, &li, method)) { |
| errno = EIO; |
| return -1; |
| } |
| f->eof = 0; |
| return li.QuadPart; |
| } |
| |
| /**************************************************************************/ |
| /**************************************************************************/ |
| /***** *****/ |
| /***** file-based descriptor handling *****/ |
| /***** *****/ |
| /**************************************************************************/ |
| /**************************************************************************/ |
| |
| int adb_open(const char* path, int options) { |
| FH f; |
| |
| DWORD desiredAccess = 0; |
| DWORD shareMode = FILE_SHARE_READ | FILE_SHARE_WRITE; |
| |
| switch (options) { |
| case O_RDONLY: |
| desiredAccess = GENERIC_READ; |
| break; |
| case O_WRONLY: |
| desiredAccess = GENERIC_WRITE; |
| break; |
| case O_RDWR: |
| desiredAccess = GENERIC_READ | GENERIC_WRITE; |
| break; |
| default: |
| D("adb_open: invalid options (0x%0x)", options); |
| errno = EINVAL; |
| return -1; |
| } |
| |
| f = _fh_alloc(&_fh_file_class); |
| if (!f) { |
| return -1; |
| } |
| |
| std::wstring path_wide; |
| if (!android::base::UTF8ToWide(path, &path_wide)) { |
| return -1; |
| } |
| f->fh_handle = |
| CreateFileW(path_wide.c_str(), desiredAccess, shareMode, nullptr, OPEN_EXISTING, 0, nullptr); |
| |
| if (f->fh_handle == INVALID_HANDLE_VALUE) { |
| const DWORD err = GetLastError(); |
| _fh_close(f); |
| D("adb_open: could not open '%s': ", path); |
| switch (err) { |
| case ERROR_FILE_NOT_FOUND: |
| D("file not found"); |
| errno = ENOENT; |
| return -1; |
| |
| case ERROR_PATH_NOT_FOUND: |
| D("path not found"); |
| errno = ENOTDIR; |
| return -1; |
| |
| default: |
| D("unknown error: %s", android::base::SystemErrorCodeToString(err).c_str()); |
| errno = ENOENT; |
| return -1; |
| } |
| } |
| |
| snprintf(f->name, sizeof(f->name), "%d(%s)", _fh_to_int(f), path); |
| D("adb_open: '%s' => fd %d", path, _fh_to_int(f)); |
| return _fh_to_int(f); |
| } |
| |
| /* ignore mode on Win32 */ |
| int adb_creat(const char* path, int mode) { |
| FH f; |
| |
| f = _fh_alloc(&_fh_file_class); |
| if (!f) { |
| return -1; |
| } |
| |
| std::wstring path_wide; |
| if (!android::base::UTF8ToWide(path, &path_wide)) { |
| return -1; |
| } |
| f->fh_handle = CreateFileW(path_wide.c_str(), GENERIC_WRITE, FILE_SHARE_READ | FILE_SHARE_WRITE, |
| nullptr, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, nullptr); |
| |
| if (f->fh_handle == INVALID_HANDLE_VALUE) { |
| const DWORD err = GetLastError(); |
| _fh_close(f); |
| D("adb_creat: could not open '%s': ", path); |
| switch (err) { |
| case ERROR_FILE_NOT_FOUND: |
| D("file not found"); |
| errno = ENOENT; |
| return -1; |
| |
| case ERROR_PATH_NOT_FOUND: |
| D("path not found"); |
| errno = ENOTDIR; |
| return -1; |
| |
| default: |
| D("unknown error: %s", android::base::SystemErrorCodeToString(err).c_str()); |
| errno = ENOENT; |
| return -1; |
| } |
| } |
| snprintf(f->name, sizeof(f->name), "%d(%s)", _fh_to_int(f), path); |
| D("adb_creat: '%s' => fd %d", path, _fh_to_int(f)); |
| return _fh_to_int(f); |
| } |
| |
| int adb_read(int fd, void* buf, int len) { |
| FH f = _fh_from_int(fd, __func__); |
| |
| if (f == nullptr) { |
| errno = EBADF; |
| return -1; |
| } |
| |
| return f->clazz->_fh_read(f, buf, len); |
| } |
| |
| int adb_write(int fd, const void* buf, int len) { |
| FH f = _fh_from_int(fd, __func__); |
| |
| if (f == nullptr) { |
| errno = EBADF; |
| return -1; |
| } |
| |
| return f->clazz->_fh_write(f, buf, len); |
| } |
| |
| ssize_t adb_writev(int fd, const adb_iovec* iov, int iovcnt) { |
| FH f = _fh_from_int(fd, __func__); |
| |
| if (f == nullptr) { |
| errno = EBADF; |
| return -1; |
| } |
| |
| return f->clazz->_fh_writev(f, iov, iovcnt); |
| } |
| |
| int64_t adb_lseek(int fd, int64_t pos, int where) { |
| FH f = _fh_from_int(fd, __func__); |
| if (!f) { |
| errno = EBADF; |
| return -1; |
| } |
| return f->clazz->_fh_lseek(f, pos, where); |
| } |
| |
| int adb_close(int fd) { |
| FH f = _fh_from_int(fd, __func__); |
| |
| if (!f) { |
| errno = EBADF; |
| return -1; |
| } |
| |
| D("adb_close: %s", f->name); |
| _fh_close(f); |
| return 0; |
| } |
| |
| /**************************************************************************/ |
| /**************************************************************************/ |
| /***** *****/ |
| /***** socket-based file descriptors *****/ |
| /***** *****/ |
| /**************************************************************************/ |
| /**************************************************************************/ |
| |
| #undef setsockopt |
| |
| static void _socket_set_errno( const DWORD err ) { |
| // Because the Windows C Runtime (MSVCRT.DLL) strerror() does not support a |
| // lot of POSIX and socket error codes, some of the resulting error codes |
| // are mapped to strings by adb_strerror(). |
| switch ( err ) { |
| case 0: errno = 0; break; |
| // Don't map WSAEINTR since that is only for Winsock 1.1 which we don't use. |
| // case WSAEINTR: errno = EINTR; break; |
| case WSAEFAULT: errno = EFAULT; break; |
| case WSAEINVAL: errno = EINVAL; break; |
| case WSAEMFILE: errno = EMFILE; break; |
| // Mapping WSAEWOULDBLOCK to EAGAIN is absolutely critical because |
| // non-blocking sockets can cause an error code of WSAEWOULDBLOCK and |
| // callers check specifically for EAGAIN. |
| case WSAEWOULDBLOCK: errno = EAGAIN; break; |
| case WSAENOTSOCK: errno = ENOTSOCK; break; |
| case WSAENOPROTOOPT: errno = ENOPROTOOPT; break; |
| case WSAEOPNOTSUPP: errno = EOPNOTSUPP; break; |
| case WSAENETDOWN: errno = ENETDOWN; break; |
| case WSAENETRESET: errno = ENETRESET; break; |
| // Map WSAECONNABORTED to EPIPE instead of ECONNABORTED because POSIX seems |
| // to use EPIPE for these situations and there are some callers that look |
| // for EPIPE. |
| case WSAECONNABORTED: errno = EPIPE; break; |
| case WSAECONNRESET: errno = ECONNRESET; break; |
| case WSAENOBUFS: errno = ENOBUFS; break; |
| case WSAENOTCONN: errno = ENOTCONN; break; |
| // Don't map WSAETIMEDOUT because we don't currently use SO_RCVTIMEO or |
| // SO_SNDTIMEO which would cause WSAETIMEDOUT to be returned. Future |
| // considerations: Reportedly send() can return zero on timeout, and POSIX |
| // code may expect EAGAIN instead of ETIMEDOUT on timeout. |
| // case WSAETIMEDOUT: errno = ETIMEDOUT; break; |
| case WSAEHOSTUNREACH: errno = EHOSTUNREACH; break; |
| default: |
| errno = EINVAL; |
| D( "_socket_set_errno: mapping Windows error code %lu to errno %d", |
| err, errno ); |
| } |
| } |
| |
| extern int adb_poll(adb_pollfd* fds, size_t nfds, int timeout) { |
| // WSAPoll doesn't handle invalid/non-socket handles, so we need to handle them ourselves. |
| int skipped = 0; |
| std::vector<WSAPOLLFD> sockets; |
| std::vector<adb_pollfd*> original; |
| |
| for (size_t i = 0; i < nfds; ++i) { |
| FH fh = _fh_from_int(fds[i].fd, __func__); |
| if (!fh || !fh->used || fh->clazz != &_fh_socket_class) { |
| D("adb_poll received bad FD %d", fds[i].fd); |
| fds[i].revents = POLLNVAL; |
| ++skipped; |
| } else { |
| WSAPOLLFD wsapollfd = { |
| .fd = fh->u.socket, |
| .events = static_cast<short>(fds[i].events) |
| }; |
| sockets.push_back(wsapollfd); |
| original.push_back(&fds[i]); |
| } |
| } |
| |
| if (sockets.empty()) { |
| return skipped; |
| } |
| |
| // If we have any invalid FDs in our FD set, make sure to return immediately. |
| if (skipped > 0) { |
| timeout = 0; |
| } |
| |
| int result = WSAPoll(sockets.data(), sockets.size(), timeout); |
| if (result == SOCKET_ERROR) { |
| _socket_set_errno(WSAGetLastError()); |
| return -1; |
| } |
| |
| // Map the results back onto the original set. |
| for (size_t i = 0; i < sockets.size(); ++i) { |
| original[i]->revents = sockets[i].revents; |
| } |
| |
| // WSAPoll appears to return the number of unique FDs with available events, instead of how many |
| // of the pollfd elements have a non-zero revents field, which is what it and poll are specified |
| // to do. Ignore its result and calculate the proper return value. |
| result = 0; |
| for (size_t i = 0; i < nfds; ++i) { |
| if (fds[i].revents != 0) { |
| ++result; |
| } |
| } |
| return result; |
| } |
| |
| static void _fh_socket_init(FH f) { |
| f->fh_socket = INVALID_SOCKET; |
| } |
| |
| static int _fh_socket_close(FH f) { |
| if (f->fh_socket != INVALID_SOCKET) { |
| /* gently tell any peer that we're closing the socket */ |
| if (shutdown(f->fh_socket, SD_BOTH) == SOCKET_ERROR) { |
| // If the socket is not connected, this returns an error. We want to |
| // minimize logging spam, so don't log these errors for now. |
| #if 0 |
| D("socket shutdown failed: %s", |
| android::base::SystemErrorCodeToString(WSAGetLastError()).c_str()); |
| #endif |
| } |
| if (closesocket(f->fh_socket) == SOCKET_ERROR) { |
| // Don't set errno here, since adb_close will ignore it. |
| const DWORD err = WSAGetLastError(); |
| D("closesocket failed: %s", android::base::SystemErrorCodeToString(err).c_str()); |
| } |
| f->fh_socket = INVALID_SOCKET; |
| } |
| return 0; |
| } |
| |
| static int64_t _fh_socket_lseek(FH f, int64_t pos, int origin) { |
| errno = EPIPE; |
| return -1; |
| } |
| |
| static int _fh_socket_read(FH f, void* buf, int len) { |
| int result = recv(f->fh_socket, reinterpret_cast<char*>(buf), len, 0); |
| if (result == SOCKET_ERROR) { |
| const DWORD err = WSAGetLastError(); |
| // WSAEWOULDBLOCK is normal with a non-blocking socket, so don't trace |
| // that to reduce spam and confusion. |
| if (err != WSAEWOULDBLOCK) { |
| D("recv fd %d failed: %s", _fh_to_int(f), |
| android::base::SystemErrorCodeToString(err).c_str()); |
| } |
| _socket_set_errno(err); |
| result = -1; |
| } |
| return result; |
| } |
| |
| static int _fh_socket_write(FH f, const void* buf, int len) { |
| int result = send(f->fh_socket, reinterpret_cast<const char*>(buf), len, 0); |
| if (result == SOCKET_ERROR) { |
| const DWORD err = WSAGetLastError(); |
| // WSAEWOULDBLOCK is normal with a non-blocking socket, so don't trace |
| // that to reduce spam and confusion. |
| if (err != WSAEWOULDBLOCK) { |
| D("send fd %d failed: %s", _fh_to_int(f), |
| android::base::SystemErrorCodeToString(err).c_str()); |
| } |
| _socket_set_errno(err); |
| result = -1; |
| } else { |
| // According to https://code.google.com/p/chromium/issues/detail?id=27870 |
| // Winsock Layered Service Providers may cause this. |
| CHECK_LE(result, len) << "Tried to write " << len << " bytes to " << f->name << ", but " |
| << result << " bytes reportedly written"; |
| } |
| return result; |
| } |
| |
| // Make sure that adb_iovec is compatible with WSABUF. |
| static_assert(sizeof(adb_iovec) == sizeof(WSABUF), ""); |
| static_assert(SIZEOF_MEMBER(adb_iovec, iov_len) == SIZEOF_MEMBER(WSABUF, len), ""); |
| static_assert(offsetof(adb_iovec, iov_len) == offsetof(WSABUF, len), ""); |
| |
| static_assert(SIZEOF_MEMBER(adb_iovec, iov_base) == SIZEOF_MEMBER(WSABUF, buf), ""); |
| static_assert(offsetof(adb_iovec, iov_base) == offsetof(WSABUF, buf), ""); |
| |
| static int _fh_socket_writev(FH f, const adb_iovec* iov, int iovcnt) { |
| if (iovcnt <= 0) { |
| errno = EINVAL; |
| return -1; |
| } |
| |
| WSABUF* wsabuf = reinterpret_cast<WSABUF*>(const_cast<adb_iovec*>(iov)); |
| DWORD bytes_written = 0; |
| int result = WSASend(f->fh_socket, wsabuf, iovcnt, &bytes_written, 0, nullptr, nullptr); |
| if (result == SOCKET_ERROR) { |
| const DWORD err = WSAGetLastError(); |
| // WSAEWOULDBLOCK is normal with a non-blocking socket, so don't trace |
| // that to reduce spam and confusion. |
| if (err != WSAEWOULDBLOCK) { |
| D("send fd %d failed: %s", _fh_to_int(f), |
| android::base::SystemErrorCodeToString(err).c_str()); |
| } |
| _socket_set_errno(err); |
| result = -1; |
| } |
| CHECK_GE(static_cast<DWORD>(std::numeric_limits<int>::max()), bytes_written); |
| return static_cast<int>(bytes_written); |
| } |
| |
| /**************************************************************************/ |
| /**************************************************************************/ |
| /***** *****/ |
| /***** replacement for libs/cutils/socket_xxxx.c *****/ |
| /***** *****/ |
| /**************************************************************************/ |
| /**************************************************************************/ |
| |
| static int _init_winsock(void) { |
| static std::once_flag once; |
| std::call_once(once, []() { |
| WSADATA wsaData; |
| int rc = WSAStartup(MAKEWORD(2, 2), &wsaData); |
| if (rc != 0) { |
| LOG(FATAL) << "could not initialize Winsock: " |
| << android::base::SystemErrorCodeToString(rc); |
| } |
| |
| // Note that we do not call atexit() to register WSACleanup to be called |
| // at normal process termination because: |
| // 1) When exit() is called, there are still threads actively using |
| // Winsock because we don't cleanly shutdown all threads, so it |
| // doesn't make sense to call WSACleanup() and may cause problems |
| // with those threads. |
| // 2) A deadlock can occur when exit() holds a C Runtime lock, then it |
| // calls WSACleanup() which tries to unload a DLL, which tries to |
| // grab the LoaderLock. This conflicts with the device_poll_thread |
| // which holds the LoaderLock because AdbWinApi.dll calls |
| // setupapi.dll which tries to load wintrust.dll which tries to load |
| // crypt32.dll which calls atexit() which tries to acquire the C |
| // Runtime lock that the other thread holds. |
| }); |
| return 0; |
| } |
| |
| static int _winsock_init = _init_winsock(); |
| |
| // Map a socket type to an explicit socket protocol instead of using the socket |
| // protocol of 0. Explicit socket protocols are used by most apps and we should |
| // do the same to reduce the chance of exercising uncommon code-paths that might |
| // have problems or that might load different Winsock service providers that |
| // have problems. |
| static int GetSocketProtocolFromSocketType(int type) { |
| switch (type) { |
| case SOCK_STREAM: |
| return IPPROTO_TCP; |
| case SOCK_DGRAM: |
| return IPPROTO_UDP; |
| default: |
| LOG(FATAL) << "Unknown socket type: " << type; |
| return 0; |
| } |
| } |
| |
| int network_loopback_client(int port, int type, std::string* error) { |
| struct sockaddr_in addr; |
| SOCKET s; |
| |
| unique_fh f(_fh_alloc(&_fh_socket_class)); |
| if (!f) { |
| *error = strerror(errno); |
| return -1; |
| } |
| |
| memset(&addr, 0, sizeof(addr)); |
| addr.sin_family = AF_INET; |
| addr.sin_port = htons(port); |
| addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK); |
| |
| s = socket(AF_INET, type, GetSocketProtocolFromSocketType(type)); |
| if (s == INVALID_SOCKET) { |
| const DWORD err = WSAGetLastError(); |
| *error = android::base::StringPrintf("cannot create socket: %s", |
| android::base::SystemErrorCodeToString(err).c_str()); |
| D("%s", error->c_str()); |
| _socket_set_errno(err); |
| return -1; |
| } |
| f->fh_socket = s; |
| |
| if (connect(s, (struct sockaddr*)&addr, sizeof(addr)) == SOCKET_ERROR) { |
| // Save err just in case inet_ntoa() or ntohs() changes the last error. |
| const DWORD err = WSAGetLastError(); |
| *error = android::base::StringPrintf("cannot connect to %s:%u: %s", |
| inet_ntoa(addr.sin_addr), ntohs(addr.sin_port), |
| android::base::SystemErrorCodeToString(err).c_str()); |
| D("could not connect to %s:%d: %s", type != SOCK_STREAM ? "udp" : "tcp", port, |
| error->c_str()); |
| _socket_set_errno(err); |
| return -1; |
| } |
| |
| const int fd = _fh_to_int(f.get()); |
| snprintf(f->name, sizeof(f->name), "%d(lo-client:%s%d)", fd, type != SOCK_STREAM ? "udp:" : "", |
| port); |
| D("port %d type %s => fd %d", port, type != SOCK_STREAM ? "udp" : "tcp", fd); |
| f.release(); |
| return fd; |
| } |
| |
| // interface_address is INADDR_LOOPBACK or INADDR_ANY. |
| static int _network_server(int port, int type, u_long interface_address, std::string* error) { |
| struct sockaddr_in addr; |
| SOCKET s; |
| int n; |
| |
| unique_fh f(_fh_alloc(&_fh_socket_class)); |
| if (!f) { |
| *error = strerror(errno); |
| return -1; |
| } |
| |
| memset(&addr, 0, sizeof(addr)); |
| addr.sin_family = AF_INET; |
| addr.sin_port = htons(port); |
| addr.sin_addr.s_addr = htonl(interface_address); |
| |
| // TODO: Consider using dual-stack socket that can simultaneously listen on |
| // IPv4 and IPv6. |
| s = socket(AF_INET, type, GetSocketProtocolFromSocketType(type)); |
| if (s == INVALID_SOCKET) { |
| const DWORD err = WSAGetLastError(); |
| *error = android::base::StringPrintf("cannot create socket: %s", |
| android::base::SystemErrorCodeToString(err).c_str()); |
| D("%s", error->c_str()); |
| _socket_set_errno(err); |
| return -1; |
| } |
| |
| f->fh_socket = s; |
| |
| // Note: SO_REUSEADDR on Windows allows multiple processes to bind to the |
| // same port, so instead use SO_EXCLUSIVEADDRUSE. |
| n = 1; |
| if (setsockopt(s, SOL_SOCKET, SO_EXCLUSIVEADDRUSE, (const char*)&n, sizeof(n)) == SOCKET_ERROR) { |
| const DWORD err = WSAGetLastError(); |
| *error = android::base::StringPrintf("cannot set socket option SO_EXCLUSIVEADDRUSE: %s", |
| android::base::SystemErrorCodeToString(err).c_str()); |
| D("%s", error->c_str()); |
| _socket_set_errno(err); |
| return -1; |
| } |
| |
| if (bind(s, (struct sockaddr*)&addr, sizeof(addr)) == SOCKET_ERROR) { |
| // Save err just in case inet_ntoa() or ntohs() changes the last error. |
| const DWORD err = WSAGetLastError(); |
| *error = android::base::StringPrintf("cannot bind to %s:%u: %s", inet_ntoa(addr.sin_addr), |
| ntohs(addr.sin_port), |
| android::base::SystemErrorCodeToString(err).c_str()); |
| D("could not bind to %s:%d: %s", type != SOCK_STREAM ? "udp" : "tcp", port, error->c_str()); |
| _socket_set_errno(err); |
| return -1; |
| } |
| if (type == SOCK_STREAM) { |
| if (listen(s, SOMAXCONN) == SOCKET_ERROR) { |
| const DWORD err = WSAGetLastError(); |
| *error = android::base::StringPrintf( |
| "cannot listen on socket: %s", android::base::SystemErrorCodeToString(err).c_str()); |
| D("could not listen on %s:%d: %s", type != SOCK_STREAM ? "udp" : "tcp", port, |
| error->c_str()); |
| _socket_set_errno(err); |
| return -1; |
| } |
| } |
| const int fd = _fh_to_int(f.get()); |
| snprintf(f->name, sizeof(f->name), "%d(%s-server:%s%d)", fd, |
| interface_address == INADDR_LOOPBACK ? "lo" : "any", type != SOCK_STREAM ? "udp:" : "", |
| port); |
| D("port %d type %s => fd %d", port, type != SOCK_STREAM ? "udp" : "tcp", fd); |
| f.release(); |
| return fd; |
| } |
| |
| int network_loopback_server(int port, int type, std::string* error) { |
| return _network_server(port, type, INADDR_LOOPBACK, error); |
| } |
| |
| int network_inaddr_any_server(int port, int type, std::string* error) { |
| return _network_server(port, type, INADDR_ANY, error); |
| } |
| |
| int network_connect(const std::string& host, int port, int type, int timeout, std::string* error) { |
| unique_fh f(_fh_alloc(&_fh_socket_class)); |
| if (!f) { |
| *error = strerror(errno); |
| return -1; |
| } |
| |
| struct addrinfo hints; |
| memset(&hints, 0, sizeof(hints)); |
| hints.ai_family = AF_UNSPEC; |
| hints.ai_socktype = type; |
| hints.ai_protocol = GetSocketProtocolFromSocketType(type); |
| |
| char port_str[16]; |
| snprintf(port_str, sizeof(port_str), "%d", port); |
| |
| struct addrinfo* addrinfo_ptr = nullptr; |
| |
| #if (NTDDI_VERSION >= NTDDI_WINXPSP2) || (_WIN32_WINNT >= _WIN32_WINNT_WS03) |
| // TODO: When the Android SDK tools increases the Windows system |
| // requirements >= WinXP SP2, switch to android::base::UTF8ToWide() + GetAddrInfoW(). |
| #else |
| // Otherwise, keep using getaddrinfo(), or do runtime API detection |
| // with GetProcAddress("GetAddrInfoW"). |
| #endif |
| if (getaddrinfo(host.c_str(), port_str, &hints, &addrinfo_ptr) != 0) { |
| const DWORD err = WSAGetLastError(); |
| *error = android::base::StringPrintf("cannot resolve host '%s' and port %s: %s", |
| host.c_str(), port_str, |
| android::base::SystemErrorCodeToString(err).c_str()); |
| |
| D("%s", error->c_str()); |
| _socket_set_errno(err); |
| return -1; |
| } |
| std::unique_ptr<struct addrinfo, decltype(&freeaddrinfo)> addrinfo(addrinfo_ptr, freeaddrinfo); |
| addrinfo_ptr = nullptr; |
| |
| // TODO: Try all the addresses if there's more than one? This just uses |
| // the first. Or, could call WSAConnectByName() (Windows Vista and newer) |
| // which tries all addresses, takes a timeout and more. |
| SOCKET s = socket(addrinfo->ai_family, addrinfo->ai_socktype, addrinfo->ai_protocol); |
| if (s == INVALID_SOCKET) { |
| const DWORD err = WSAGetLastError(); |
| *error = android::base::StringPrintf("cannot create socket: %s", |
| android::base::SystemErrorCodeToString(err).c_str()); |
| D("%s", error->c_str()); |
| _socket_set_errno(err); |
| return -1; |
| } |
| f->fh_socket = s; |
| |
| // TODO: Implement timeouts for Windows. Seems like the default in theory |
| // (according to http://serverfault.com/a/671453) and in practice is 21 sec. |
| if (connect(s, addrinfo->ai_addr, addrinfo->ai_addrlen) == SOCKET_ERROR) { |
| // TODO: Use WSAAddressToString or inet_ntop on address. |
| const DWORD err = WSAGetLastError(); |
| *error = android::base::StringPrintf("cannot connect to %s:%s: %s", host.c_str(), port_str, |
| android::base::SystemErrorCodeToString(err).c_str()); |
| D("could not connect to %s:%s:%s: %s", type != SOCK_STREAM ? "udp" : "tcp", host.c_str(), |
| port_str, error->c_str()); |
| _socket_set_errno(err); |
| return -1; |
| } |
| |
| const int fd = _fh_to_int(f.get()); |
| snprintf(f->name, sizeof(f->name), "%d(net-client:%s%d)", fd, type != SOCK_STREAM ? "udp:" : "", |
| port); |
| D("host '%s' port %d type %s => fd %d", host.c_str(), port, type != SOCK_STREAM ? "udp" : "tcp", |
| fd); |
| f.release(); |
| return fd; |
| } |
| |
| int adb_register_socket(SOCKET s) { |
| FH f = _fh_alloc(&_fh_socket_class); |
| f->fh_socket = s; |
| return _fh_to_int(f); |
| } |
| |
| #undef accept |
| int adb_socket_accept(int serverfd, struct sockaddr* addr, socklen_t* addrlen) { |
| FH serverfh = _fh_from_int(serverfd, __func__); |
| |
| if (!serverfh || serverfh->clazz != &_fh_socket_class) { |
| D("adb_socket_accept: invalid fd %d", serverfd); |
| errno = EBADF; |
| return -1; |
| } |
| |
| unique_fh fh(_fh_alloc(&_fh_socket_class)); |
| if (!fh) { |
| PLOG(ERROR) << "adb_socket_accept: failed to allocate accepted socket " |
| "descriptor"; |
| return -1; |
| } |
| |
| fh->fh_socket = accept(serverfh->fh_socket, addr, addrlen); |
| if (fh->fh_socket == INVALID_SOCKET) { |
| const DWORD err = WSAGetLastError(); |
| LOG(ERROR) << "adb_socket_accept: accept on fd " << serverfd |
| << " failed: " + android::base::SystemErrorCodeToString(err); |
| _socket_set_errno(err); |
| return -1; |
| } |
| |
| const int fd = _fh_to_int(fh.get()); |
| snprintf(fh->name, sizeof(fh->name), "%d(accept:%s)", fd, serverfh->name); |
| D("adb_socket_accept on fd %d returns fd %d", serverfd, fd); |
| fh.release(); |
| return fd; |
| } |
| |
| int adb_setsockopt(int fd, int level, int optname, const void* optval, socklen_t optlen) { |
| FH fh = _fh_from_int(fd, __func__); |
| |
| if (!fh || fh->clazz != &_fh_socket_class) { |
| D("adb_setsockopt: invalid fd %d", fd); |
| errno = EBADF; |
| return -1; |
| } |
| |
| // TODO: Once we can assume Windows Vista or later, if the caller is trying |
| // to set SOL_SOCKET, SO_SNDBUF/SO_RCVBUF, ignore it since the OS has |
| // auto-tuning. |
| |
| int result = |
| setsockopt(fh->fh_socket, level, optname, reinterpret_cast<const char*>(optval), optlen); |
| if (result == SOCKET_ERROR) { |
| const DWORD err = WSAGetLastError(); |
| D("adb_setsockopt: setsockopt on fd %d level %d optname %d failed: %s\n", fd, level, |
| optname, android::base::SystemErrorCodeToString(err).c_str()); |
| _socket_set_errno(err); |
| result = -1; |
| } |
| return result; |
| } |
| |
| int adb_getsockname(int fd, struct sockaddr* sockaddr, socklen_t* optlen) { |
| FH fh = _fh_from_int(fd, __func__); |
| |
| if (!fh || fh->clazz != &_fh_socket_class) { |
| D("adb_getsockname: invalid fd %d", fd); |
| errno = EBADF; |
| return -1; |
| } |
| |
| int result = getsockname(fh->fh_socket, sockaddr, optlen); |
| if (result == SOCKET_ERROR) { |
| const DWORD err = WSAGetLastError(); |
| D("adb_getsockname: setsockopt on fd %d failed: %s\n", fd, |
| android::base::SystemErrorCodeToString(err).c_str()); |
| _socket_set_errno(err); |
| result = -1; |
| } |
| return result; |
| } |
| |
| int adb_socket_get_local_port(int fd) { |
| sockaddr_storage addr_storage; |
| socklen_t addr_len = sizeof(addr_storage); |
| |
| if (adb_getsockname(fd, reinterpret_cast<sockaddr*>(&addr_storage), &addr_len) < 0) { |
| D("adb_socket_get_local_port: adb_getsockname failed: %s", strerror(errno)); |
| return -1; |
| } |
| |
| if (!(addr_storage.ss_family == AF_INET || addr_storage.ss_family == AF_INET6)) { |
| D("adb_socket_get_local_port: unknown address family received: %d", addr_storage.ss_family); |
| errno = ECONNABORTED; |
| return -1; |
| } |
| |
| return ntohs(reinterpret_cast<sockaddr_in*>(&addr_storage)->sin_port); |
| } |
| |
| int adb_shutdown(int fd, int direction) { |
| FH f = _fh_from_int(fd, __func__); |
| |
| if (!f || f->clazz != &_fh_socket_class) { |
| D("adb_shutdown: invalid fd %d", fd); |
| errno = EBADF; |
| return -1; |
| } |
| |
| D("adb_shutdown: %s", f->name); |
| if (shutdown(f->fh_socket, direction) == SOCKET_ERROR) { |
| const DWORD err = WSAGetLastError(); |
| D("socket shutdown fd %d failed: %s", fd, |
| android::base::SystemErrorCodeToString(err).c_str()); |
| _socket_set_errno(err); |
| return -1; |
| } |
| return 0; |
| } |
| |
| // Emulate socketpair(2) by binding and connecting to a socket. |
| int adb_socketpair(int sv[2]) { |
| int server = -1; |
| int client = -1; |
| int accepted = -1; |
| int local_port = -1; |
| std::string error; |
| |
| server = network_loopback_server(0, SOCK_STREAM, &error); |
| if (server < 0) { |
| D("adb_socketpair: failed to create server: %s", error.c_str()); |
| goto fail; |
| } |
| |
| local_port = adb_socket_get_local_port(server); |
| if (local_port < 0) { |
| D("adb_socketpair: failed to get server port number: %s", error.c_str()); |
| goto fail; |
| } |
| D("adb_socketpair: bound on port %d", local_port); |
| |
| client = network_loopback_client(local_port, SOCK_STREAM, &error); |
| if (client < 0) { |
| D("adb_socketpair: failed to connect client: %s", error.c_str()); |
| goto fail; |
| } |
| |
| accepted = adb_socket_accept(server, nullptr, nullptr); |
| if (accepted < 0) { |
| D("adb_socketpair: failed to accept: %s", strerror(errno)); |
| goto fail; |
| } |
| adb_close(server); |
| sv[0] = client; |
| sv[1] = accepted; |
| return 0; |
| |
| fail: |
| if (server >= 0) { |
| adb_close(server); |
| } |
| if (client >= 0) { |
| adb_close(client); |
| } |
| if (accepted >= 0) { |
| adb_close(accepted); |
| } |
| return -1; |
| } |
| |
| bool set_file_block_mode(int fd, bool block) { |
| FH fh = _fh_from_int(fd, __func__); |
| |
| if (!fh || !fh->used) { |
| errno = EBADF; |
| D("Setting nonblocking on bad file descriptor %d", fd); |
| return false; |
| } |
| |
| if (fh->clazz == &_fh_socket_class) { |
| u_long x = !block; |
| if (ioctlsocket(fh->u.socket, FIONBIO, &x) != 0) { |
| int error = WSAGetLastError(); |
| _socket_set_errno(error); |
| D("Setting %d nonblocking failed (%d)", fd, error); |
| return false; |
| } |
| return true; |
| } else { |
| errno = ENOTSOCK; |
| D("Setting nonblocking on non-socket %d", fd); |
| return false; |
| } |
| } |
| |
| bool set_tcp_keepalive(int fd, int interval_sec) { |
| FH fh = _fh_from_int(fd, __func__); |
| |
| if (!fh || fh->clazz != &_fh_socket_class) { |
| D("set_tcp_keepalive(%d) failed: invalid fd", fd); |
| errno = EBADF; |
| return false; |
| } |
| |
| tcp_keepalive keepalive; |
| keepalive.onoff = (interval_sec > 0); |
| keepalive.keepalivetime = interval_sec * 1000; |
| keepalive.keepaliveinterval = interval_sec * 1000; |
| |
| DWORD bytes_returned = 0; |
| if (WSAIoctl(fh->fh_socket, SIO_KEEPALIVE_VALS, &keepalive, sizeof(keepalive), nullptr, 0, |
| &bytes_returned, nullptr, nullptr) != 0) { |
| const DWORD err = WSAGetLastError(); |
| D("set_tcp_keepalive(%d) failed: %s", fd, |
| android::base::SystemErrorCodeToString(err).c_str()); |
| _socket_set_errno(err); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /**************************************************************************/ |
| /**************************************************************************/ |
| /***** *****/ |
| /***** Console Window Terminal Emulation *****/ |
| /***** *****/ |
| /**************************************************************************/ |
| /**************************************************************************/ |
| |
| // This reads input from a Win32 console window and translates it into Unix |
| // terminal-style sequences. This emulates mostly Gnome Terminal (in Normal |
| // mode, not Application mode), which itself emulates xterm. Gnome Terminal |
| // is emulated instead of xterm because it is probably more popular than xterm: |
| // Ubuntu's default Ctrl-Alt-T shortcut opens Gnome Terminal, Gnome Terminal |
| // supports modern fonts, etc. It seems best to emulate the terminal that most |
| // Android developers use because they'll fix apps (the shell, etc.) to keep |
| // working with that terminal's emulation. |
| // |
| // The point of this emulation is not to be perfect or to solve all issues with |
| // console windows on Windows, but to be better than the original code which |
| // just called read() (which called ReadFile(), which called ReadConsoleA()) |
| // which did not support Ctrl-C, tab completion, shell input line editing |
| // keys, server echo, and more. |
| // |
| // This implementation reconfigures the console with SetConsoleMode(), then |
| // calls ReadConsoleInput() to get raw input which it remaps to Unix |
| // terminal-style sequences which is returned via unix_read() which is used |
| // by the 'adb shell' command. |
| // |
| // Code organization: |
| // |
| // * _get_console_handle() and unix_isatty() provide console information. |
| // * stdin_raw_init() and stdin_raw_restore() reconfigure the console. |
| // * unix_read() detects console windows (as opposed to pipes, files, etc.). |
| // * _console_read() is the main code of the emulation. |
| |
| // Returns a console HANDLE if |fd| is a console, otherwise returns nullptr. |
| // If a valid HANDLE is returned and |mode| is not null, |mode| is also filled |
| // with the console mode. Requires GENERIC_READ access to the underlying HANDLE. |
| static HANDLE _get_console_handle(int fd, DWORD* mode=nullptr) { |
| // First check isatty(); this is very fast and eliminates most non-console |
| // FDs, but returns 1 for both consoles and character devices like NUL. |
| #pragma push_macro("isatty") |
| #undef isatty |
| if (!isatty(fd)) { |
| return nullptr; |
| } |
| #pragma pop_macro("isatty") |
| |
| // To differentiate between character devices and consoles we need to get |
| // the underlying HANDLE and use GetConsoleMode(), which is what requires |
| // GENERIC_READ permissions. |
| const intptr_t intptr_handle = _get_osfhandle(fd); |
| if (intptr_handle == -1) { |
| return nullptr; |
| } |
| const HANDLE handle = reinterpret_cast<const HANDLE>(intptr_handle); |
| DWORD temp_mode = 0; |
| if (!GetConsoleMode(handle, mode ? mode : &temp_mode)) { |
| return nullptr; |
| } |
| |
| return handle; |
| } |
| |
| // Returns a console handle if |stream| is a console, otherwise returns nullptr. |
| static HANDLE _get_console_handle(FILE* const stream) { |
| // Save and restore errno to make it easier for callers to prevent from overwriting errno. |
| android::base::ErrnoRestorer er; |
| const int fd = fileno(stream); |
| if (fd < 0) { |
| return nullptr; |
| } |
| return _get_console_handle(fd); |
| } |
| |
| int unix_isatty(int fd) { |
| return _get_console_handle(fd) ? 1 : 0; |
| } |
| |
| // Get the next KEY_EVENT_RECORD that should be processed. |
| static bool _get_key_event_record(const HANDLE console, INPUT_RECORD* const input_record) { |
| for (;;) { |
| DWORD read_count = 0; |
| memset(input_record, 0, sizeof(*input_record)); |
| if (!ReadConsoleInputA(console, input_record, 1, &read_count)) { |
| D("_get_key_event_record: ReadConsoleInputA() failed: %s\n", |
| android::base::SystemErrorCodeToString(GetLastError()).c_str()); |
| errno = EIO; |
| return false; |
| } |
| |
| if (read_count == 0) { // should be impossible |
| LOG(FATAL) << "ReadConsoleInputA returned 0"; |
| } |
| |
| if (read_count != 1) { // should be impossible |
| LOG(FATAL) << "ReadConsoleInputA did not return one input record"; |
| } |
| |
| // If the console window is resized, emulate SIGWINCH by breaking out |
| // of read() with errno == EINTR. Note that there is no event on |
| // vertical resize because we don't give the console our own custom |
| // screen buffer (with CreateConsoleScreenBuffer() + |
| // SetConsoleActiveScreenBuffer()). Instead, we use the default which |
| // supports scrollback, but doesn't seem to raise an event for vertical |
| // window resize. |
| if (input_record->EventType == WINDOW_BUFFER_SIZE_EVENT) { |
| errno = EINTR; |
| return false; |
| } |
| |
| if ((input_record->EventType == KEY_EVENT) && |
| (input_record->Event.KeyEvent.bKeyDown)) { |
| if (input_record->Event.KeyEvent.wRepeatCount == 0) { |
| LOG(FATAL) << "ReadConsoleInputA returned a key event with zero repeat count"; |
| } |
| |
| // Got an interesting INPUT_RECORD, so return |
| return true; |
| } |
| } |
| } |
| |
| static __inline__ bool _is_shift_pressed(const DWORD control_key_state) { |
| return (control_key_state & SHIFT_PRESSED) != 0; |
| } |
| |
| static __inline__ bool _is_ctrl_pressed(const DWORD control_key_state) { |
| return (control_key_state & (LEFT_CTRL_PRESSED | RIGHT_CTRL_PRESSED)) != 0; |
| } |
| |
| static __inline__ bool _is_alt_pressed(const DWORD control_key_state) { |
| return (control_key_state & (LEFT_ALT_PRESSED | RIGHT_ALT_PRESSED)) != 0; |
| } |
| |
| static __inline__ bool _is_numlock_on(const DWORD control_key_state) { |
| return (control_key_state & NUMLOCK_ON) != 0; |
| } |
| |
| static __inline__ bool _is_capslock_on(const DWORD control_key_state) { |
| return (control_key_state & CAPSLOCK_ON) != 0; |
| } |
| |
| static __inline__ bool _is_enhanced_key(const DWORD control_key_state) { |
| return (control_key_state & ENHANCED_KEY) != 0; |
| } |
| |
| // Constants from MSDN for ToAscii(). |
| static const BYTE TOASCII_KEY_OFF = 0x00; |
| static const BYTE TOASCII_KEY_DOWN = 0x80; |
| static const BYTE TOASCII_KEY_TOGGLED_ON = 0x01; // for CapsLock |
| |
| // Given a key event, ignore a modifier key and return the character that was |
| // entered without the modifier. Writes to *ch and returns the number of bytes |
| // written. |
| static size_t _get_char_ignoring_modifier(char* const ch, |
| const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state, |
| const WORD modifier) { |
| // If there is no character from Windows, try ignoring the specified |
| // modifier and look for a character. Note that if AltGr is being used, |
| // there will be a character from Windows. |
| if (key_event->uChar.AsciiChar == '\0') { |
| // Note that we read the control key state from the passed in argument |
| // instead of from key_event since the argument has been normalized. |
| if (((modifier == VK_SHIFT) && |
| _is_shift_pressed(control_key_state)) || |
| ((modifier == VK_CONTROL) && |
| _is_ctrl_pressed(control_key_state)) || |
| ((modifier == VK_MENU) && _is_alt_pressed(control_key_state))) { |
| |
| BYTE key_state[256] = {0}; |
| key_state[VK_SHIFT] = _is_shift_pressed(control_key_state) ? |
| TOASCII_KEY_DOWN : TOASCII_KEY_OFF; |
| key_state[VK_CONTROL] = _is_ctrl_pressed(control_key_state) ? |
| TOASCII_KEY_DOWN : TOASCII_KEY_OFF; |
| key_state[VK_MENU] = _is_alt_pressed(control_key_state) ? |
| TOASCII_KEY_DOWN : TOASCII_KEY_OFF; |
| key_state[VK_CAPITAL] = _is_capslock_on(control_key_state) ? |
| TOASCII_KEY_TOGGLED_ON : TOASCII_KEY_OFF; |
| |
| // cause this modifier to be ignored |
| key_state[modifier] = TOASCII_KEY_OFF; |
| |
| WORD translated = 0; |
| if (ToAscii(key_event->wVirtualKeyCode, |
| key_event->wVirtualScanCode, key_state, &translated, 0) == 1) { |
| // Ignoring the modifier, we found a character. |
| *ch = (CHAR)translated; |
| return 1; |
| } |
| } |
| } |
| |
| // Just use whatever Windows told us originally. |
| *ch = key_event->uChar.AsciiChar; |
| |
| // If the character from Windows is NULL, return a size of zero. |
| return (*ch == '\0') ? 0 : 1; |
| } |
| |
| // If a Ctrl key is pressed, lookup the character, ignoring the Ctrl key, |
| // but taking into account the shift key. This is because for a sequence like |
| // Ctrl-Alt-0, we want to find the character '0' and for Ctrl-Alt-Shift-0, |
| // we want to find the character ')'. |
| // |
| // Note that Windows doesn't seem to pass bKeyDown for Ctrl-Shift-NoAlt-0 |
| // because it is the default key-sequence to switch the input language. |
| // This is configurable in the Region and Language control panel. |
| static __inline__ size_t _get_non_control_char(char* const ch, |
| const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) { |
| return _get_char_ignoring_modifier(ch, key_event, control_key_state, |
| VK_CONTROL); |
| } |
| |
| // Get without Alt. |
| static __inline__ size_t _get_non_alt_char(char* const ch, |
| const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) { |
| return _get_char_ignoring_modifier(ch, key_event, control_key_state, |
| VK_MENU); |
| } |
| |
| // Ignore the control key, find the character from Windows, and apply any |
| // Control key mappings (for example, Ctrl-2 is a NULL character). Writes to |
| // *pch and returns number of bytes written. |
| static size_t _get_control_character(char* const pch, |
| const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) { |
| const size_t len = _get_non_control_char(pch, key_event, |
| control_key_state); |
| |
| if ((len == 1) && _is_ctrl_pressed(control_key_state)) { |
| char ch = *pch; |
| switch (ch) { |
| case '2': |
| case '@': |
| case '`': |
| ch = '\0'; |
| break; |
| case '3': |
| case '[': |
| case '{': |
| ch = '\x1b'; |
| break; |
| case '4': |
| case '\\': |
| case '|': |
| ch = '\x1c'; |
| break; |
| case '5': |
| case ']': |
| case '}': |
| ch = '\x1d'; |
| break; |
| case '6': |
| case '^': |
| case '~': |
| ch = '\x1e'; |
| break; |
| case '7': |
| case '-': |
| case '_': |
| ch = '\x1f'; |
| break; |
| case '8': |
| ch = '\x7f'; |
| break; |
| case '/': |
| if (!_is_alt_pressed(control_key_state)) { |
| ch = '\x1f'; |
| } |
| break; |
| case '?': |
| if (!_is_alt_pressed(control_key_state)) { |
| ch = '\x7f'; |
| } |
| break; |
| } |
| *pch = ch; |
| } |
| |
| return len; |
| } |
| |
| static DWORD _normalize_altgr_control_key_state( |
| const KEY_EVENT_RECORD* const key_event) { |
| DWORD control_key_state = key_event->dwControlKeyState; |
| |
| // If we're in an AltGr situation where the AltGr key is down (depending on |
| // the keyboard layout, that might be the physical right alt key which |
| // produces a control_key_state where Right-Alt and Left-Ctrl are down) or |
| // AltGr-equivalent keys are down (any Ctrl key + any Alt key), and we have |
| // a character (which indicates that there was an AltGr mapping), then act |
| // as if alt and control are not really down for the purposes of modifiers. |
| // This makes it so that if the user with, say, a German keyboard layout |
| // presses AltGr-] (which we see as Right-Alt + Left-Ctrl + key), we just |
| // output the key and we don't see the Alt and Ctrl keys. |
| if (_is_ctrl_pressed(control_key_state) && |
| _is_alt_pressed(control_key_state) |
| && (key_event->uChar.AsciiChar != '\0')) { |
| // Try to remove as few bits as possible to improve our chances of |
| // detecting combinations like Left-Alt + AltGr, Right-Ctrl + AltGr, or |
| // Left-Alt + Right-Ctrl + AltGr. |
| if ((control_key_state & RIGHT_ALT_PRESSED) != 0) { |
| // Remove Right-Alt. |
| control_key_state &= ~RIGHT_ALT_PRESSED; |
| // If uChar is set, a Ctrl key is pressed, and Right-Alt is |
| // pressed, Left-Ctrl is almost always set, except if the user |
| // presses Right-Ctrl, then AltGr (in that specific order) for |
| // whatever reason. At any rate, make sure the bit is not set. |
| control_key_state &= ~LEFT_CTRL_PRESSED; |
| } else if ((control_key_state & LEFT_ALT_PRESSED) != 0) { |
| // Remove Left-Alt. |
| control_key_state &= ~LEFT_ALT_PRESSED; |
| // Whichever Ctrl key is down, remove it from the state. We only |
| // remove one key, to improve our chances of detecting the |
| // corner-case of Left-Ctrl + Left-Alt + Right-Ctrl. |
| if ((control_key_state & LEFT_CTRL_PRESSED) != 0) { |
| // Remove Left-Ctrl. |
| control_key_state &= ~LEFT_CTRL_PRESSED; |
| } else if ((control_key_state & RIGHT_CTRL_PRESSED) != 0) { |
| // Remove Right-Ctrl. |
| control_key_state &= ~RIGHT_CTRL_PRESSED; |
| } |
| } |
| |
| // Note that this logic isn't 100% perfect because Windows doesn't |
| // allow us to detect all combinations because a physical AltGr key |
| // press shows up as two bits, plus some combinations are ambiguous |
| // about what is actually physically pressed. |
| } |
| |
| return control_key_state; |
| } |
| |
| // If NumLock is on and Shift is pressed, SHIFT_PRESSED is not set in |
| // dwControlKeyState for the following keypad keys: period, 0-9. If we detect |
| // this scenario, set the SHIFT_PRESSED bit so we can add modifiers |
| // appropriately. |
| static DWORD _normalize_keypad_control_key_state(const WORD vk, |
| const DWORD control_key_state) { |
| if (!_is_numlock_on(control_key_state)) { |
| return control_key_state; |
| } |
| if (!_is_enhanced_key(control_key_state)) { |
| switch (vk) { |
| case VK_INSERT: // 0 |
| case VK_DELETE: // . |
| case VK_END: // 1 |
| case VK_DOWN: // 2 |
| case VK_NEXT: // 3 |
| case VK_LEFT: // 4 |
| case VK_CLEAR: // 5 |
| case VK_RIGHT: // 6 |
| case VK_HOME: // 7 |
| case VK_UP: // 8 |
| case VK_PRIOR: // 9 |
| return control_key_state | SHIFT_PRESSED; |
| } |
| } |
| |
| return control_key_state; |
| } |
| |
| static const char* _get_keypad_sequence(const DWORD control_key_state, |
| const char* const normal, const char* const shifted) { |
| if (_is_shift_pressed(control_key_state)) { |
| // Shift is pressed and NumLock is off |
| return shifted; |
| } else { |
| // Shift is not pressed and NumLock is off, or, |
| // Shift is pressed and NumLock is on, in which case we want the |
| // NumLock and Shift to neutralize each other, thus, we want the normal |
| // sequence. |
| return normal; |
| } |
| // If Shift is not pressed and NumLock is on, a different virtual key code |
| // is returned by Windows, which can be taken care of by a different case |
| // statement in _console_read(). |
| } |
| |
| // Write sequence to buf and return the number of bytes written. |
| static size_t _get_modifier_sequence(char* const buf, const WORD vk, |
| DWORD control_key_state, const char* const normal) { |
| // Copy the base sequence into buf. |
| const size_t len = strlen(normal); |
| memcpy(buf, normal, len); |
| |
| int code = 0; |
| |
| control_key_state = _normalize_keypad_control_key_state(vk, |
| control_key_state); |
| |
| if (_is_shift_pressed(control_key_state)) { |
| code |= 0x1; |
| } |
| if (_is_alt_pressed(control_key_state)) { // any alt key pressed |
| code |= 0x2; |
| } |
| if (_is_ctrl_pressed(control_key_state)) { // any control key pressed |
| code |= 0x4; |
| } |
| // If some modifier was held down, then we need to insert the modifier code |
| if (code != 0) { |
| if (len == 0) { |
| // Should be impossible because caller should pass a string of |
| // non-zero length. |
| return 0; |
| } |
| size_t index = len - 1; |
| const char lastChar = buf[index]; |
| if (lastChar != '~') { |
| buf[index++] = '1'; |
| } |
| buf[index++] = ';'; // modifier separator |
| // 2 = shift, 3 = alt, 4 = shift & alt, 5 = control, |
| // 6 = shift & control, 7 = alt & control, 8 = shift & alt & control |
| buf[index++] = '1' + code; |
| buf[index++] = lastChar; // move ~ (or other last char) to the end |
| return index; |
| } |
| return len; |
| } |
| |
| // Write sequence to buf and return the number of bytes written. |
| static size_t _get_modifier_keypad_sequence(char* const buf, const WORD vk, |
| const DWORD control_key_state, const char* const normal, |
| const char shifted) { |
| if (_is_shift_pressed(control_key_state)) { |
| // Shift is pressed and NumLock is off |
| if (shifted != '\0') { |
| buf[0] = shifted; |
| return sizeof(buf[0]); |
| } else { |
| return 0; |
| } |
| } else { |
| // Shift is not pressed and NumLock is off, or, |
| // Shift is pressed and NumLock is on, in which case we want the |
| // NumLock and Shift to neutralize each other, thus, we want the normal |
| // sequence. |
| return _get_modifier_sequence(buf, vk, control_key_state, normal); |
| } |
| // If Shift is not pressed and NumLock is on, a different virtual key code |
| // is returned by Windows, which can be taken care of by a different case |
| // statement in _console_read(). |
| } |
| |
| // The decimal key on the keypad produces a '.' for U.S. English and a ',' for |
| // Standard German. Figure this out at runtime so we know what to output for |
| // Shift-VK_DELETE. |
| static char _get_decimal_char() { |
| return (char)MapVirtualKeyA(VK_DECIMAL, MAPVK_VK_TO_CHAR); |
| } |
| |
| // Prefix the len bytes in buf with the escape character, and then return the |
| // new buffer length. |
| size_t _escape_prefix(char* const buf, const size_t len) { |
| // If nothing to prefix, don't do anything. We might be called with |
| // len == 0, if alt was held down with a dead key which produced nothing. |
| if (len == 0) { |
| return 0; |
| } |
| |
| memmove(&buf[1], buf, len); |
| buf[0] = '\x1b'; |
| return len + 1; |
| } |
| |
| // Internal buffer to satisfy future _console_read() calls. |
| static auto& g_console_input_buffer = *new std::vector<char>(); |
| |
| // Writes to buffer buf (of length len), returning number of bytes written or -1 on error. Never |
| // returns zero on console closure because Win32 consoles are never 'closed' (as far as I can tell). |
| static int _console_read(const HANDLE console, void* buf, size_t len) { |
| for (;;) { |
| // Read of zero bytes should not block waiting for something from the console. |
| if (len == 0) { |
| return 0; |
| } |
| |
| // Flush as much as possible from input buffer. |
| if (!g_console_input_buffer.empty()) { |
| const int bytes_read = std::min(len, g_console_input_buffer.size()); |
| memcpy(buf, g_console_input_buffer.data(), bytes_read); |
| const auto begin = g_console_input_buffer.begin(); |
| g_console_input_buffer.erase(begin, begin + bytes_read); |
| return bytes_read; |
| } |
| |
| // Read from the actual console. This may block until input. |
| INPUT_RECORD input_record; |
| if (!_get_key_event_record(console, &input_record)) { |
| return -1; |
| } |
| |
| KEY_EVENT_RECORD* const key_event = &input_record.Event.KeyEvent; |
| const WORD vk = key_event->wVirtualKeyCode; |
| const CHAR ch = key_event->uChar.AsciiChar; |
| const DWORD control_key_state = _normalize_altgr_control_key_state( |
| key_event); |
| |
| // The following emulation code should write the output sequence to |
| // either seqstr or to seqbuf and seqbuflen. |
| const char* seqstr = nullptr; // NULL terminated C-string |
| // Enough space for max sequence string below, plus modifiers and/or |
| // escape prefix. |
| char seqbuf[16]; |
| size_t seqbuflen = 0; // Space used in seqbuf. |
| |
| #define MATCH(vk, normal) \ |
| case (vk): \ |
| { \ |
| seqstr = (normal); \ |
| } \ |
| break; |
| |
| // Modifier keys should affect the output sequence. |
| #define MATCH_MODIFIER(vk, normal) \ |
| case (vk): \ |
| { \ |
| seqbuflen = _get_modifier_sequence(seqbuf, (vk), \ |
| control_key_state, (normal)); \ |
| } \ |
| break; |
| |
| // The shift key should affect the output sequence. |
| #define MATCH_KEYPAD(vk, normal, shifted) \ |
| case (vk): \ |
| { \ |
| seqstr = _get_keypad_sequence(control_key_state, (normal), \ |
| (shifted)); \ |
| } \ |
| break; |
| |
| // The shift key and other modifier keys should affect the output |
| // sequence. |
| #define MATCH_MODIFIER_KEYPAD(vk, normal, shifted) \ |
| case (vk): \ |
| { \ |
| seqbuflen = _get_modifier_keypad_sequence(seqbuf, (vk), \ |
| control_key_state, (normal), (shifted)); \ |
| } \ |
| break; |
| |
| #define ESC "\x1b" |
| #define CSI ESC "[" |
| #define SS3 ESC "O" |
| |
| // Only support normal mode, not application mode. |
| |
| // Enhanced keys: |
| // * 6-pack: insert, delete, home, end, page up, page down |
| // * cursor keys: up, down, right, left |
| // * keypad: divide, enter |
| // * Undocumented: VK_PAUSE (Ctrl-NumLock), VK_SNAPSHOT, |
| // VK_CANCEL (Ctrl-Pause/Break), VK_NUMLOCK |
| if (_is_enhanced_key(control_key_state)) { |
| switch (vk) { |
| case VK_RETURN: // Enter key on keypad |
| if (_is_ctrl_pressed(control_key_state)) { |
| seqstr = "\n"; |
| } else { |
| seqstr = "\r"; |
| } |
| break; |
| |
| MATCH_MODIFIER(VK_PRIOR, CSI "5~"); // Page Up |
| MATCH_MODIFIER(VK_NEXT, CSI "6~"); // Page Down |
| |
| // gnome-terminal currently sends SS3 "F" and SS3 "H", but that |
| // will be fixed soon to match xterm which sends CSI "F" and |
| // CSI "H". https://bugzilla.redhat.com/show_bug.cgi?id=1119764 |
| MATCH(VK_END, CSI "F"); |
| MATCH(VK_HOME, CSI "H"); |
| |
| MATCH_MODIFIER(VK_LEFT, CSI "D"); |
| MATCH_MODIFIER(VK_UP, CSI "A"); |
| MATCH_MODIFIER(VK_RIGHT, CSI "C"); |
| MATCH_MODIFIER(VK_DOWN, CSI "B"); |
| |
| MATCH_MODIFIER(VK_INSERT, CSI "2~"); |
| MATCH_MODIFIER(VK_DELETE, CSI "3~"); |
| |
| MATCH(VK_DIVIDE, "/"); |
| } |
| } else { // Non-enhanced keys: |
| switch (vk) { |
| case VK_BACK: // backspace |
| if (_is_alt_pressed(control_key_state)) { |
| seqstr = ESC "\x7f"; |
| } else { |
| seqstr = "\x7f"; |
| } |
| break; |
| |
| case VK_TAB: |
| if (_is_shift_pressed(control_key_state)) { |
| seqstr = CSI "Z"; |
| } else { |
| seqstr = "\t"; |
| } |
| break; |
| |
| // Number 5 key in keypad when NumLock is off, or if NumLock is |
| // on and Shift is down. |
| MATCH_KEYPAD(VK_CLEAR, CSI "E", "5"); |
| |
| case VK_RETURN: // Enter key on main keyboard |
| if (_is_alt_pressed(control_key_state)) { |
| seqstr = ESC "\n"; |
| } else if (_is_ctrl_pressed(control_key_state)) { |
| seqstr = "\n"; |
| } else { |
| seqstr = "\r"; |
| } |
| break; |
| |
| // VK_ESCAPE: Don't do any special handling. The OS uses many |
| // of the sequences with Escape and many of the remaining |
| // sequences don't produce bKeyDown messages, only !bKeyDown |
| // for whatever reason. |
| |
| case VK_SPACE: |
| if (_is_alt_pressed(control_key_state)) { |
| seqstr = ESC " "; |
| } else if (_is_ctrl_pressed(control_key_state)) { |
| seqbuf[0] = '\0'; // NULL char |
| seqbuflen = 1; |
| } else { |
| seqstr = " "; |
| } |
| break; |
| |
| MATCH_MODIFIER_KEYPAD(VK_PRIOR, CSI "5~", '9'); // Page Up |
| MATCH_MODIFIER_KEYPAD(VK_NEXT, CSI "6~", '3'); // Page Down |
| |
| MATCH_KEYPAD(VK_END, CSI "4~", "1"); |
| MATCH_KEYPAD(VK_HOME, CSI "1~", "7"); |
| |
| MATCH_MODIFIER_KEYPAD(VK_LEFT, CSI "D", '4'); |
| MATCH_MODIFIER_KEYPAD(VK_UP, CSI "A", '8'); |
| MATCH_MODIFIER_KEYPAD(VK_RIGHT, CSI "C", '6'); |
| MATCH_MODIFIER_KEYPAD(VK_DOWN, CSI "B", '2'); |
| |
| MATCH_MODIFIER_KEYPAD(VK_INSERT, CSI "2~", '0'); |
| MATCH_MODIFIER_KEYPAD(VK_DELETE, CSI "3~", |
| _get_decimal_char()); |
| |
| case 0x30: // 0 |
| case 0x31: // 1 |
| case 0x39: // 9 |
| case VK_OEM_1: // ;: |
| case VK_OEM_PLUS: // =+ |
| case VK_OEM_COMMA: // ,< |
| case VK_OEM_PERIOD: // .> |
| case VK_OEM_7: // '" |
| case VK_OEM_102: // depends on keyboard, could be <> or \| |
| case VK_OEM_2: // /? |
| case VK_OEM_3: // `~ |
| case VK_OEM_4: // [{ |
| case VK_OEM_5: // \| |
| case VK_OEM_6: // ]} |
| { |
| seqbuflen = _get_control_character(seqbuf, key_event, |
| control_key_state); |
| |
| if (_is_alt_pressed(control_key_state)) { |
| seqbuflen = _escape_prefix(seqbuf, seqbuflen); |
| } |
| } |
| break; |
| |
| case 0x32: // 2 |
| case 0x33: // 3 |
| case 0x34: // 4 |
| case 0x35: // 5 |
| case 0x36: // 6 |
| case 0x37: // 7 |
| case 0x38: // 8 |
| case VK_OEM_MINUS: // -_ |
| { |
| seqbuflen = _get_control_character(seqbuf, key_event, |
| control_key_state); |
| |
| // If Alt is pressed and it isn't Ctrl-Alt-ShiftUp, then |
| // prefix with escape. |
| if (_is_alt_pressed(control_key_state) && |
| !(_is_ctrl_pressed(control_key_state) && |
| !_is_shift_pressed(control_key_state))) { |
| seqbuflen = _escape_prefix(seqbuf, seqbuflen); |
| } |
| } |
| break; |
| |
| case 0x41: // a |
| case 0x42: // b |
| case 0x43: // c |
| case 0x44: // d |
| case 0x45: // e |
| case 0x46: // f |
| case 0x47: // g |
| case 0x48: // h |
| case 0x49: // i |
| case 0x4a: // j |
| case 0x4b: // k |
| case 0x4c: // l |
| case 0x4d: // m |
| case 0x4e: // n |
| case 0x4f: // o |
| case 0x50: // p |
| case 0x51: // q |
| case 0x52: // r |
| case 0x53: // s |
| case 0x54: // t |
| case 0x55: // u |
| case 0x56: // v |
| case 0x57: // w |
| case 0x58: // x |
| case 0x59: // y |
| case 0x5a: // z |
| { |
| seqbuflen = _get_non_alt_char(seqbuf, key_event, |
| control_key_state); |
| |
| // If Alt is pressed, then prefix with escape. |
| if (_is_alt_pressed(control_key_state)) { |
| seqbuflen = _escape_prefix(seqbuf, seqbuflen); |
| } |
| } |
| break; |
| |
| // These virtual key codes are generated by the keys on the |
| // keypad *when NumLock is on* and *Shift is up*. |
| MATCH(VK_NUMPAD0, "0"); |
| MATCH(VK_NUMPAD1, "1"); |
| MATCH(VK_NUMPAD2, "2"); |
| MATCH(VK_NUMPAD3, "3"); |
| MATCH(VK_NUMPAD4, "4"); |
| MATCH(VK_NUMPAD5, "5"); |
| MATCH(VK_NUMPAD6, "6"); |
| MATCH(VK_NUMPAD7, "7"); |
| MATCH(VK_NUMPAD8, "8"); |
| MATCH(VK_NUMPAD9, "9"); |
| |
| MATCH(VK_MULTIPLY, "*"); |
| MATCH(VK_ADD, "+"); |
| MATCH(VK_SUBTRACT, "-"); |
| // VK_DECIMAL is generated by the . key on the keypad *when |
| // NumLock is on* and *Shift is up* and the sequence is not |
| // Ctrl-Alt-NoShift-. (which causes Ctrl-Alt-Del and the |
| // Windows Security screen to come up). |
| case VK_DECIMAL: |
| // U.S. English uses '.', Germany German uses ','. |
| seqbuflen = _get_non_control_char(seqbuf, key_event, |
| control_key_state); |
| break; |
| |
| MATCH_MODIFIER(VK_F1, SS3 "P"); |
| MATCH_MODIFIER(VK_F2, SS3 "Q"); |
| MATCH_MODIFIER(VK_F3, SS3 "R"); |
| MATCH_MODIFIER(VK_F4, SS3 "S"); |
| MATCH_MODIFIER(VK_F5, CSI "15~"); |
| MATCH_MODIFIER(VK_F6, CSI "17~"); |
| MATCH_MODIFIER(VK_F7, CSI "18~"); |
| MATCH_MODIFIER(VK_F8, CSI "19~"); |
| MATCH_MODIFIER(VK_F9, CSI "20~"); |
| MATCH_MODIFIER(VK_F10, CSI "21~"); |
| MATCH_MODIFIER(VK_F11, CSI "23~"); |
| MATCH_MODIFIER(VK_F12, CSI "24~"); |
| |
| MATCH_MODIFIER(VK_F13, CSI "25~"); |
| MATCH_MODIFIER(VK_F14, CSI "26~"); |
| MATCH_MODIFIER(VK_F15, CSI "28~"); |
| MATCH_MODIFIER(VK_F16, CSI "29~"); |
| MATCH_MODIFIER(VK_F17, CSI "31~"); |
| MATCH_MODIFIER(VK_F18, CSI "32~"); |
| MATCH_MODIFIER(VK_F19, CSI "33~"); |
| MATCH_MODIFIER(VK_F20, CSI "34~"); |
| |
| // MATCH_MODIFIER(VK_F21, ???); |
| // MATCH_MODIFIER(VK_F22, ???); |
| // MATCH_MODIFIER(VK_F23, ???); |
| // MATCH_MODIFIER(VK_F24, ???); |
| } |
| } |
| |
| #undef MATCH |
| #undef MATCH_MODIFIER |
| #undef MATCH_KEYPAD |
| #undef MATCH_MODIFIER_KEYPAD |
| #undef ESC |
| #undef CSI |
| #undef SS3 |
| |
| const char* out; |
| size_t outlen; |
| |
| // Check for output in any of: |
| // * seqstr is set (and strlen can be used to determine the length). |
| // * seqbuf and seqbuflen are set |
| // Fallback to ch from Windows. |
| if (seqstr != nullptr) { |
| out = seqstr; |
| outlen = strlen(seqstr); |
| } else if (seqbuflen > 0) { |
| out = seqbuf; |
| outlen = seqbuflen; |
| } else if (ch != '\0') { |
| // Use whatever Windows told us it is. |
| seqbuf[0] = ch; |
| seqbuflen = 1; |
| out = seqbuf; |
| outlen = seqbuflen; |
| } else { |
| // No special handling for the virtual key code and Windows isn't |
| // telling us a character code, then we don't know how to translate |
| // the key press. |
| // |
| // Consume the input and 'continue' to cause us to get a new key |
| // event. |
| D("_console_read: unknown virtual key code: %d, enhanced: %s", |
| vk, _is_enhanced_key(control_key_state) ? "true" : "false"); |
| continue; |
| } |
| |
| // put output wRepeatCount times into g_console_input_buffer |
| while (key_event->wRepeatCount-- > 0) { |
| g_console_input_buffer.insert(g_console_input_buffer.end(), out, out + outlen); |
| } |
| |
| // Loop around and try to flush g_console_input_buffer |
| } |
| } |
| |
| static DWORD _old_console_mode; // previous GetConsoleMode() result |
| static HANDLE _console_handle; // when set, console mode should be restored |
| |
| void stdin_raw_init() { |
| const HANDLE in = _get_console_handle(STDIN_FILENO, &_old_console_mode); |
| if (in == nullptr) { |
| return; |
| } |
| |
| // Disable ENABLE_PROCESSED_INPUT so that Ctrl-C is read instead of |
| // calling the process Ctrl-C routine (configured by |
| // SetConsoleCtrlHandler()). |
| // Disable ENABLE_LINE_INPUT so that input is immediately sent. |
| // Disable ENABLE_ECHO_INPUT to disable local echo. Disabling this |
| // flag also seems necessary to have proper line-ending processing. |
| DWORD new_console_mode = _old_console_mode & ~(ENABLE_PROCESSED_INPUT | |
| ENABLE_LINE_INPUT | |
| ENABLE_ECHO_INPUT); |
| // Enable ENABLE_WINDOW_INPUT to get window resizes. |
| new_console_mode |= ENABLE_WINDOW_INPUT; |
| |
| if (!SetConsoleMode(in, new_console_mode)) { |
| // This really should not fail. |
| D("stdin_raw_init: SetConsoleMode() failed: %s", |
| android::base::SystemErrorCodeToString(GetLastError()).c_str()); |
| } |
| |
| // Once this is set, it means that stdin has been configured for |
| // reading from and that the old console mode should be restored later. |
| _console_handle = in; |
| |
| // Note that we don't need to configure C Runtime line-ending |
| // translation because _console_read() does not call the C Runtime to |
| // read from the console. |
| } |
| |
| void stdin_raw_restore() { |
| if (_console_handle != nullptr) { |
| const HANDLE in = _console_handle; |
| _console_handle = nullptr; // clear state |
| |
| if (!SetConsoleMode(in, _old_console_mode)) { |
| // This really should not fail. |
| D("stdin_raw_restore: SetConsoleMode() failed: %s", |
| android::base::SystemErrorCodeToString(GetLastError()).c_str()); |
| } |
| } |
| } |
| |
| // Called by 'adb shell' and 'adb exec-in' (via unix_read()) to read from stdin. |
| int unix_read_interruptible(int fd, void* buf, size_t len) { |
| if ((fd == STDIN_FILENO) && (_console_handle != nullptr)) { |
| // If it is a request to read from stdin, and stdin_raw_init() has been |
| // called, and it successfully configured the console, then read from |
| // the console using Win32 console APIs and partially emulate a unix |
| // terminal. |
| return _console_read(_console_handle, buf, len); |
| } else { |
| // On older versions of Windows (definitely 7, definitely not 10), |
| // ReadConsole() with a size >= 31367 fails, so if |fd| is a console |
| // we need to limit the read size. |
| if (len > 4096 && unix_isatty(fd)) { |
| len = 4096; |
| } |
| // Just call into C Runtime which can read from pipes/files and which |
| // can do LF/CR translation (which is overridable with _setmode()). |
| // Undefine the macro that is set in sysdeps.h which bans calls to |
| // plain read() in favor of unix_read() or adb_read(). |
| #pragma push_macro("read") |
| #undef read |
| return read(fd, buf, len); |
| #pragma pop_macro("read") |
| } |
| } |
| |
| /**************************************************************************/ |
| /**************************************************************************/ |
| /***** *****/ |
| /***** Unicode support *****/ |
| /***** *****/ |
| /**************************************************************************/ |
| /**************************************************************************/ |
| |
| // This implements support for using files with Unicode filenames and for |
| // outputting Unicode text to a Win32 console window. This is inspired from |
| // http://utf8everywhere.org/. |
| // |
| // Background |
| // ---------- |
| // |
| // On POSIX systems, to deal with files with Unicode filenames, just pass UTF-8 |
| // filenames to APIs such as open(). This works because filenames are largely |
| // opaque 'cookies' (perhaps excluding path separators). |
| // |
| // On Windows, the native file APIs such as CreateFileW() take 2-byte wchar_t |
| // UTF-16 strings. There is an API, CreateFileA() that takes 1-byte char |
| // strings, but the strings are in the ANSI codepage and not UTF-8. (The |
| // CreateFile() API is really just a macro that adds the W/A based on whether |
| // the UNICODE preprocessor symbol is defined). |
| // |
| // Options |
| // ------- |
| // |
| // Thus, to write a portable program, there are a few options: |
| // |
| // 1. Write the program with wchar_t filenames (wchar_t path[256];). |
| // For Windows, just call CreateFileW(). For POSIX, write a wrapper openW() |
| // that takes a wchar_t string, converts it to UTF-8 and then calls the real |
| // open() API. |
| // |
| // 2. Write the program with a TCHAR typedef that is 2 bytes on Windows and |
| // 1 byte on POSIX. Make T-* wrappers for various OS APIs and call those, |
| // potentially touching a lot of code. |
| // |
| // 3. Write the program with a 1-byte char filenames (char path[256];) that are |
| // UTF-8. For POSIX, just call open(). For Windows, write a wrapper that |
| // takes a UTF-8 string, converts it to UTF-16 and then calls the real OS |
| // or C Runtime API. |
| // |
| // The Choice |
| // ---------- |
| // |
| // The code below chooses option 3, the UTF-8 everywhere strategy. It uses |
| // android::base::WideToUTF8() which converts UTF-16 to UTF-8. This is used by the |
| // NarrowArgs helper class that is used to convert wmain() args into UTF-8 |
| // args that are passed to main() at the beginning of program startup. We also use |
| // android::base::UTF8ToWide() which converts from UTF-8 to UTF-16. This is used to |
| // implement wrappers below that call UTF-16 OS and C Runtime APIs. |
| // |
| // Unicode console output |
| // ---------------------- |
| // |
| // The way to output Unicode to a Win32 console window is to call |
| // WriteConsoleW() with UTF-16 text. (The user must also choose a proper font |
| // such as Lucida Console or Consolas, and in the case of East Asian languages |
| // (such as Chinese, Japanese, Korean), the user must go to the Control Panel |
| // and change the "system locale" to Chinese, etc., which allows a Chinese, etc. |
| // font to be used in console windows.) |
| // |
| // The problem is getting the C Runtime to make fprintf and related APIs call |
| // WriteConsoleW() under the covers. The C Runtime API, _setmode() sounds |
| // promising, but the various modes have issues: |
| // |
| // 1. _setmode(_O_TEXT) (the default) does not use WriteConsoleW() so UTF-8 and |
| // UTF-16 do not display properly. |
| // 2. _setmode(_O_BINARY) does not use WriteConsoleW() and the text comes out |
| // totally wrong. |
| // 3. _setmode(_O_U8TEXT) seems to cause the C Runtime _invalid_parameter |
| // handler to be called (upon a later I/O call), aborting the process. |
| // 4. _setmode(_O_U16TEXT) and _setmode(_O_WTEXT) cause non-wide printf/fprintf |
| // to output nothing. |
| // |
| // So the only solution is to write our own adb_fprintf() that converts UTF-8 |
| // to UTF-16 and then calls WriteConsoleW(). |
| |
| |
| // Constructor for helper class to convert wmain() UTF-16 args to UTF-8 to |
| // be passed to main(). |
| NarrowArgs::NarrowArgs(const int argc, wchar_t** const argv) { |
| narrow_args = new char*[argc + 1]; |
| |
| for (int i = 0; i < argc; ++i) { |
| std::string arg_narrow; |
| if (!android::base::WideToUTF8(argv[i], &arg_narrow)) { |
| PLOG(FATAL) << "cannot convert argument from UTF-16 to UTF-8"; |
| } |
| narrow_args[i] = strdup(arg_narrow.c_str()); |
| } |
| narrow_args[argc] = nullptr; // terminate |
| } |
| |
| NarrowArgs::~NarrowArgs() { |
| if (narrow_args != nullptr) { |
| for (char** argp = narrow_args; *argp != nullptr; ++argp) { |
| free(*argp); |
| } |
| delete[] narrow_args; |
| narrow_args = nullptr; |
| } |
| } |
| |
| int unix_open(const char* path, int options, ...) { |
| std::wstring path_wide; |
| if (!android::base::UTF8ToWide(path, &path_wide)) { |
| return -1; |
| } |
| if ((options & O_CREAT) == 0) { |
| return _wopen(path_wide.c_str(), options); |
| } else { |
| int mode; |
| va_list args; |
| va_start(args, options); |
| mode = va_arg(args, int); |
| va_end(args); |
| return _wopen(path_wide.c_str(), options, mode); |
| } |
| } |
| |
| // Version of opendir() that takes a UTF-8 path. |
| DIR* adb_opendir(const char* path) { |
| std::wstring path_wide; |
| if (!android::base::UTF8ToWide(path, &path_wide)) { |
| return nullptr; |
| } |
| |
| // Just cast _WDIR* to DIR*. This doesn't work if the caller reads any of |
| // the fields, but right now all the callers treat the structure as |
| // opaque. |
| return reinterpret_cast<DIR*>(_wopendir(path_wide.c_str())); |
| } |
| |
| // Version of readdir() that returns UTF-8 paths. |
| struct dirent* adb_readdir(DIR* dir) { |
| _WDIR* const wdir = reinterpret_cast<_WDIR*>(dir); |
| struct _wdirent* const went = _wreaddir(wdir); |
| if (went == nullptr) { |
| return nullptr; |
| } |
| |
| // Convert from UTF-16 to UTF-8. |
| std::string name_utf8; |
| if (!android::base::WideToUTF8(went->d_name, &name_utf8)) { |
| return nullptr; |
| } |
| |
| // Cast the _wdirent* to dirent* and overwrite the d_name field (which has |
| // space for UTF-16 wchar_t's) with UTF-8 char's. |
| struct dirent* ent = reinterpret_cast<struct dirent*>(went); |
| |
| if (name_utf8.length() + 1 > sizeof(went->d_name)) { |
| // Name too big to fit in existing buffer. |
| errno = ENOMEM; |
| return nullptr; |
| } |
| |
| // Note that sizeof(_wdirent::d_name) is bigger than sizeof(dirent::d_name) |
| // because _wdirent contains wchar_t instead of char. So even if name_utf8 |
| // can fit in _wdirent::d_name, the resulting dirent::d_name field may be |
| // bigger than the caller expects because they expect a dirent structure |
| // which has a smaller d_name field. Ignore this since the caller should be |
| // resilient. |
| |
| // Rewrite the UTF-16 d_name field to UTF-8. |
| strcpy(ent->d_name, name_utf8.c_str()); |
| |
| return ent; |
| } |
| |
| // Version of closedir() to go with our version of adb_opendir(). |
| int adb_closedir(DIR* dir) { |
| return _wclosedir(reinterpret_cast<_WDIR*>(dir)); |
| } |
| |
| // Version of unlink() that takes a UTF-8 path. |
| int adb_unlink(const char* path) { |
| std::wstring wpath; |
| if (!android::base::UTF8ToWide(path, &wpath)) { |
| return -1; |
| } |
| |
| int rc = _wunlink(wpath.c_str()); |
| |
| if (rc == -1 && errno == EACCES) { |
| /* unlink returns EACCES when the file is read-only, so we first */ |
| /* try to make it writable, then unlink again... */ |
| rc = _wchmod(wpath.c_str(), _S_IREAD | _S_IWRITE); |
| if (rc == 0) |
| rc = _wunlink(wpath.c_str()); |
| } |
| return rc; |
| } |
| |
| // Version of mkdir() that takes a UTF-8 path. |
| int adb_mkdir(const std::string& path, int mode) { |
| std::wstring path_wide; |
| if (!android::base::UTF8ToWide(path, &path_wide)) { |
| return -1; |
| } |
| |
| return _wmkdir(path_wide.c_str()); |
| } |
| |
| // Version of utime() that takes a UTF-8 path. |
| int adb_utime(const char* path, struct utimbuf* u) { |
| std::wstring path_wide; |
| if (!android::base::UTF8ToWide(path, &path_wide)) { |
| return -1; |
| } |
| |
| static_assert(sizeof(struct utimbuf) == sizeof(struct _utimbuf), |
| "utimbuf and _utimbuf should be the same size because they both " |
| "contain the same types, namely time_t"); |
| return _wutime(path_wide.c_str(), reinterpret_cast<struct _utimbuf*>(u)); |
| } |
| |
| // Version of chmod() that takes a UTF-8 path. |
| int adb_chmod(const char* path, int mode) { |
| std::wstring path_wide; |
| if (!android::base::UTF8ToWide(path, &path_wide)) { |
| return -1; |
| } |
| |
| return _wchmod(path_wide.c_str(), mode); |
| } |
| |
| // From libutils/Unicode.cpp, get the length of a UTF-8 sequence given the lead byte. |
| static inline size_t utf8_codepoint_len(uint8_t ch) { |
| return ((0xe5000000 >> ((ch >> 3) & 0x1e)) & 3) + 1; |
| } |
| |
| namespace internal { |
| |
| // Given a sequence of UTF-8 bytes (denoted by the range [first, last)), return the number of bytes |
| // (from the beginning) that are complete UTF-8 sequences and append the remaining bytes to |
| // remaining_bytes. |
| size_t ParseCompleteUTF8(const char* const first, const char* const last, |
| std::vector<char>* const remaining_bytes) { |
| // Walk backwards from the end of the sequence looking for the beginning of a UTF-8 sequence. |
| // Current_after points one byte past the current byte to be examined. |
| for (const char* current_after = last; current_after != first; --current_after) { |
| const char* const current = current_after - 1; |
| const char ch = *current; |
| const char kHighBit = 0x80u; |
| const char kTwoHighestBits = 0xC0u; |
| if ((ch & kHighBit) == 0) { // high bit not set |
| // The buffer ends with a one-byte UTF-8 sequence, possibly followed by invalid trailing |
| // bytes with no leading byte, so return the entire buffer. |
| break; |
| } else if ((ch & kTwoHighestBits) == kTwoHighestBits) { // top two highest bits set |
| // Lead byte in UTF-8 sequence, so check if we have all the bytes in the sequence. |
| const size_t bytes_available = last - current; |
| if (bytes_available < utf8_codepoint_len(ch)) { |
| // We don't have all the bytes in the UTF-8 sequence, so return all the bytes |
| // preceding the current incomplete UTF-8 sequence and append the remaining bytes |
| // to remaining_bytes. |
| remaining_bytes->insert(remaining_bytes->end(), current, last); |
| return current - first; |
| } else { |
| // The buffer ends with a complete UTF-8 sequence, possibly followed by invalid |
| // trailing bytes with no lead byte, so return the entire buffer. |
| break; |
| } |
| } else { |
| // Trailing byte, so keep going backwards looking for the lead byte. |
| } |
| } |
| |
| // Return the size of the entire buffer. It is possible that we walked backward past invalid |
| // trailing bytes with no lead byte, in which case we want to return all those invalid bytes |
| // so that they can be processed. |
| return last - first; |
| } |
| |
| } |
| |
| // Bytes that have not yet been output to the console because they are incomplete UTF-8 sequences. |
| // Note that we use only one buffer even though stderr and stdout are logically separate streams. |
| // This matches the behavior of Linux. |
| |
| // Internal helper function to write UTF-8 bytes to a console. Returns -1 on error. |
| static int _console_write_utf8(const char* const buf, const size_t buf_size, FILE* stream, |
| HANDLE console) { |
| static std::mutex& console_output_buffer_lock = *new std::mutex(); |
| static auto& console_output_buffer = *new std::vector<char>(); |
| |
| const int saved_errno = errno; |
| std::vector<char> combined_buffer; |
| |
| // Complete UTF-8 sequences that should be immediately written to the console. |
| const char* utf8; |
| size_t utf8_size; |
| |
| { |
| std::lock_guard<std::mutex> lock(console_output_buffer_lock); |
| if (console_output_buffer.empty()) { |
| // If console_output_buffer doesn't have a buffered up incomplete UTF-8 sequence (the |
| // common case with plain ASCII), parse buf directly. |
| utf8 = buf; |
| utf8_size = internal::ParseCompleteUTF8(buf, buf + buf_size, &console_output_buffer); |
| } else { |
| // If console_output_buffer has a buffered up incomplete UTF-8 sequence, move it to |
| // combined_buffer (and effectively clear console_output_buffer) and append buf to |
| // combined_buffer, then parse it all together. |
| combined_buffer.swap(console_output_buffer); |
| combined_buffer.insert(combined_buffer.end(), buf, buf + buf_size); |
| |
| utf8 = combined_buffer.data(); |
| utf8_size = internal::ParseCompleteUTF8(utf8, utf8 + combined_buffer.size(), |
| &console_output_buffer); |
| } |
| } |
| |
| std::wstring utf16; |
| |
| // Try to convert from data that might be UTF-8 to UTF-16, ignoring errors (just like Linux |
| // which does not return an error on bad UTF-8). Data might not be UTF-8 if the user cat's |
| // random data, runs dmesg (which might have non-UTF-8), etc. |
| // This could throw std::bad_alloc. |
| (void)android::base::UTF8ToWide(utf8, utf8_size, &utf16); |
| |
| // Note that this does not do \n => \r\n translation because that |
| // doesn't seem necessary for the Windows console. For the Windows |
| // console \r moves to the beginning of the line and \n moves to a new |
| // line. |
| |
| // Flush any stream buffering so that our output is afterwards which |
| // makes sense because our call is afterwards. |
| (void)fflush(stream); |
| |
| // Write UTF-16 to the console. |
| DWORD written = 0; |
| if (!WriteConsoleW(console, utf16.c_str(), utf16.length(), &written, nullptr)) { |
| errno = EIO; |
| return -1; |
| } |
| |
| // Return the size of the original buffer passed in, signifying that we consumed it all, even |
| // if nothing was displayed, in the case of being passed an incomplete UTF-8 sequence. This |
| // matches the Linux behavior. |
| errno = saved_errno; |
| return buf_size; |
| } |
| |
| // Function prototype because attributes cannot be placed on func definitions. |
| static int _console_vfprintf(const HANDLE console, FILE* stream, const char* format, va_list ap) |
| __attribute__((__format__(__printf__, 3, 0))); |
| |
| // Internal function to format a UTF-8 string and write it to a Win32 console. |
| // Returns -1 on error. |
| static int _console_vfprintf(const HANDLE console, FILE* stream, |
| const char *format, va_list ap) { |
| const int saved_errno = errno; |
| std::string output_utf8; |
| |
| // Format the string. |
| // This could throw std::bad_alloc. |
| android::base::StringAppendV(&output_utf8, format, ap); |
| |
| const int result = _console_write_utf8(output_utf8.c_str(), output_utf8.length(), stream, |
| console); |
| if (result != -1) { |
| errno = saved_errno; |
| } else { |
| // If -1 was returned, errno has been set. |
| } |
| return result; |
| } |
| |
| // Version of vfprintf() that takes UTF-8 and can write Unicode to a |
| // Windows console. |
| int adb_vfprintf(FILE *stream, const char *format, va_list ap) { |
| const HANDLE console = _get_console_handle(stream); |
| |
| // If there is an associated Win32 console, write to it specially, |
| // otherwise defer to the regular C Runtime, passing it UTF-8. |
| if (console != nullptr) { |
| return _console_vfprintf(console, stream, format, ap); |
| } else { |
| // If vfprintf is a macro, undefine it, so we can call the real |
| // C Runtime API. |
| #pragma push_macro("vfprintf") |
| #undef vfprintf |
| return vfprintf(stream, format, ap); |
| #pragma pop_macro("vfprintf") |
| } |
| } |
| |
| // Version of vprintf() that takes UTF-8 and can write Unicode to a Windows console. |
| int adb_vprintf(const char *format, va_list ap) { |
| return adb_vfprintf(stdout, format, ap); |
| } |
| |
| // Version of fprintf() that takes UTF-8 and can write Unicode to a |
| // Windows console. |
| int adb_fprintf(FILE *stream, const char *format, ...) { |
| va_list ap; |
| va_start(ap, format); |
| const int result = adb_vfprintf(stream, format, ap); |
| va_end(ap); |
| |
| return result; |
| } |
| |
| // Version of printf() that takes UTF-8 and can write Unicode to a |
| // Windows console. |
| int adb_printf(const char *format, ...) { |
| va_list ap; |
| va_start(ap, format); |
| const int result = adb_vfprintf(stdout, format, ap); |
| va_end(ap); |
| |
| return result; |
| } |
| |
| // Version of fputs() that takes UTF-8 and can write Unicode to a |
| // Windows console. |
| int adb_fputs(const char* buf, FILE* stream) { |
| // adb_fprintf returns -1 on error, which is conveniently the same as EOF |
| // which fputs (and hence adb_fputs) should return on error. |
| static_assert(EOF == -1, "EOF is not -1, so this code needs to be fixed"); |
| return adb_fprintf(stream, "%s", buf); |
| } |
| |
| // Version of fputc() that takes UTF-8 and can write Unicode to a |
| // Windows console. |
| int adb_fputc(int ch, FILE* stream) { |
| const int result = adb_fprintf(stream, "%c", ch); |
| if (result == -1) { |
| return EOF; |
| } |
| // For success, fputc returns the char, cast to unsigned char, then to int. |
| return static_cast<unsigned char>(ch); |
| } |
| |
| // Version of putchar() that takes UTF-8 and can write Unicode to a Windows console. |
| int adb_putchar(int ch) { |
| return adb_fputc(ch, stdout); |
| } |
| |
| // Version of puts() that takes UTF-8 and can write Unicode to a Windows console. |
| int adb_puts(const char* buf) { |
| // adb_printf returns -1 on error, which is conveniently the same as EOF |
| // which puts (and hence adb_puts) should return on error. |
| static_assert(EOF == -1, "EOF is not -1, so this code needs to be fixed"); |
| return adb_printf("%s\n", buf); |
| } |
| |
| // Internal function to write UTF-8 to a Win32 console. Returns the number of |
| // items (of length size) written. On error, returns a short item count or 0. |
| static size_t _console_fwrite(const void* ptr, size_t size, size_t nmemb, |
| FILE* stream, HANDLE console) { |
| const int result = _console_write_utf8(reinterpret_cast<const char*>(ptr), size * nmemb, stream, |
| console); |
| if (result == -1) { |
| return 0; |
| } |
| return result / size; |
| } |
| |
| // Version of fwrite() that takes UTF-8 and can write Unicode to a |
| // Windows console. |
| size_t adb_fwrite(const void* ptr, size_t size, size_t nmemb, FILE* stream) { |
| const HANDLE console = _get_console_handle(stream); |
| |
| // If there is an associated Win32 console, write to it specially, |
| // otherwise defer to the regular C Runtime, passing it UTF-8. |
| if (console != nullptr) { |
| return _console_fwrite(ptr, size, nmemb, stream, console); |
| } else { |
| // If fwrite is a macro, undefine it, so we can call the real |
| // C Runtime API. |
| #pragma push_macro("fwrite") |
| #undef fwrite |
| return fwrite(ptr, size, nmemb, stream); |
| #pragma pop_macro("fwrite") |
| } |
| } |
| |
| // Version of fopen() that takes a UTF-8 filename and can access a file with |
| // a Unicode filename. |
| FILE* adb_fopen(const char* path, const char* mode) { |
| std::wstring path_wide; |
| if (!android::base::UTF8ToWide(path, &path_wide)) { |
| return nullptr; |
| } |
| |
| std::wstring mode_wide; |
| if (!android::base::UTF8ToWide(mode, &mode_wide)) { |
| return nullptr; |
| } |
| |
| return _wfopen(path_wide.c_str(), mode_wide.c_str()); |
| } |
| |
| // Return a lowercase version of the argument. Uses C Runtime tolower() on |
| // each byte which is not UTF-8 aware, and theoretically uses the current C |
| // Runtime locale (which in practice is not changed, so this becomes a ASCII |
| // conversion). |
| static std::string ToLower(const std::string& anycase) { |
| // copy string |
| std::string str(anycase); |
| // transform the copy |
| std::transform(str.begin(), str.end(), str.begin(), tolower); |
| return str; |
| } |
| |
| extern "C" int main(int argc, char** argv); |
| |
| // Link with -municode to cause this wmain() to be used as the program |
| // entrypoint. It will convert the args from UTF-16 to UTF-8 and call the |
| // regular main() with UTF-8 args. |
| extern "C" int wmain(int argc, wchar_t **argv) { |
| // Convert args from UTF-16 to UTF-8 and pass that to main(). |
| NarrowArgs narrow_args(argc, argv); |
| return main(argc, narrow_args.data()); |
| } |
| |
| // Shadow UTF-8 environment variable name/value pairs that are created from |
| // _wenviron the first time that adb_getenv() is called. Note that this is not |
| // currently updated if putenv, setenv, unsetenv are called. Note that no |
| // thread synchronization is done, but we're called early enough in |
| // single-threaded startup that things work ok. |
| static auto& g_environ_utf8 = *new std::unordered_map<std::string, char*>(); |
| |
| // Make sure that shadow UTF-8 environment variables are setup. |
| static void _ensure_env_setup() { |
| // If some name/value pairs exist, then we've already done the setup below. |
| if (g_environ_utf8.size() != 0) { |
| return; |
| } |
| |
| if (_wenviron == nullptr) { |
| // If _wenviron is null, then -municode probably wasn't used. That |
| // linker flag will cause the entry point to setup _wenviron. It will |
| // also require an implementation of wmain() (which we provide above). |
| LOG(FATAL) << "_wenviron is not set, did you link with -municode?"; |
| } |
| |
| // Read name/value pairs from UTF-16 _wenviron and write new name/value |
| // pairs to UTF-8 g_environ_utf8. Note that it probably does not make sense |
| // to use the D() macro here because that tracing only works if the |
| // ADB_TRACE environment variable is setup, but that env var can't be read |
| // until this code completes. |
| for (wchar_t** env = _wenviron; *env != nullptr; ++env) { |
| wchar_t* const equal = wcschr(*env, L'='); |
| if (equal == nullptr) { |
| // Malformed environment variable with no equal sign. Shouldn't |
| // really happen, but we should be resilient to this. |
| continue; |
| } |
| |
| // If we encounter an error converting UTF-16, don't error-out on account of a single env |
| // var because the program might never even read this particular variable. |
| std::string name_utf8; |
| if (!android::base::WideToUTF8(*env, equal - *env, &name_utf8)) { |
| continue; |
| } |
| |
| // Store lowercase name so that we can do case-insensitive searches. |
| name_utf8 = ToLower(name_utf8); |
| |
| std::string value_utf8; |
| if (!android::base::WideToUTF8(equal + 1, &value_utf8)) { |
| continue; |
| } |
| |
| char* const value_dup = strdup(value_utf8.c_str()); |
| |
| // Don't overwrite a previus env var with the same name. In reality, |
| // the system probably won't let two env vars with the same name exist |
| // in _wenviron. |
| g_environ_utf8.insert({name_utf8, value_dup}); |
| } |
| } |
| |
| // Version of getenv() that takes a UTF-8 environment variable name and |
| // retrieves a UTF-8 value. Case-insensitive to match getenv() on Windows. |
| char* adb_getenv(const char* name) { |
| _ensure_env_setup(); |
| |
| // Case-insensitive search by searching for lowercase name in a map of |
| // lowercase names. |
| const auto it = g_environ_utf8.find(ToLower(std::string(name))); |
| if (it == g_environ_utf8.end()) { |
| return nullptr; |
| } |
| |
| return it->second; |
| } |
| |
| // Version of getcwd() that returns the current working directory in UTF-8. |
| char* adb_getcwd(char* buf, int size) { |
| wchar_t* wbuf = _wgetcwd(nullptr, 0); |
| if (wbuf == nullptr) { |
| return nullptr; |
| } |
| |
| std::string buf_utf8; |
| const bool narrow_result = android::base::WideToUTF8(wbuf, &buf_utf8); |
| free(wbuf); |
| wbuf = nullptr; |
| |
| if (!narrow_result) { |
| return nullptr; |
| } |
| |
| // If size was specified, make sure all the chars will fit. |
| if (size != 0) { |
| if (size < static_cast<int>(buf_utf8.length() + 1)) { |
| errno = ERANGE; |
| return nullptr; |
| } |
| } |
| |
| // If buf was not specified, allocate storage. |
| if (buf == nullptr) { |
| if (size == 0) { |
| size = buf_utf8.length() + 1; |
| } |
| buf = reinterpret_cast<char*>(malloc(size)); |
| if (buf == nullptr) { |
| return nullptr; |
| } |
| } |
| |
| // Destination buffer was allocated with enough space, or we've already |
| // checked an existing buffer size for enough space. |
| strcpy(buf, buf_utf8.c_str()); |
| |
| return buf; |
| } |
| |
| // The SetThreadDescription API was brought in version 1607 of Windows 10. |
| typedef HRESULT(WINAPI* SetThreadDescription)(HANDLE hThread, PCWSTR lpThreadDescription); |
| |
| // Based on PlatformThread::SetName() from |
| // https://cs.chromium.org/chromium/src/base/threading/platform_thread_win.cc |
| int adb_thread_setname(const std::string& name) { |
| // The SetThreadDescription API works even if no debugger is attached. |
| auto set_thread_description_func = reinterpret_cast<SetThreadDescription>( |
| ::GetProcAddress(::GetModuleHandleW(L"Kernel32.dll"), "SetThreadDescription")); |
| if (set_thread_description_func) { |
| std::wstring name_wide; |
| if (!android::base::UTF8ToWide(name.c_str(), &name_wide)) { |
| return errno; |
| } |
| set_thread_description_func(::GetCurrentThread(), name_wide.c_str()); |
| } |
| |
| // Don't use the thread naming SEH exception because we're compiled with -fno-exceptions. |
| // https://docs.microsoft.com/en-us/visualstudio/debugger/how-to-set-a-thread-name-in-native-code?view=vs-2017 |
| |
| return 0; |
| } |