blob: 1601ff0ac1fc7eb7f7b5f6d8e3485881ec1824f4 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "fdevent/fdevent.h"
#include <gtest/gtest.h>
#include <array>
#include <limits>
#include <queue>
#include <string>
#include <thread>
#include <vector>
#include <unistd.h>
#include "adb.h"
#include "adb_io.h"
#include "fdevent/fdevent_test.h"
#include "socket.h"
#include "sysdeps.h"
#include "sysdeps/chrono.h"
using namespace std::string_literals;
using namespace std::string_view_literals;
struct ThreadArg {
int first_read_fd;
int last_write_fd;
size_t middle_pipe_count;
};
class LocalSocketTest : public FdeventTest {};
TEST_F(LocalSocketTest, smoke) {
// Join two socketpairs with a chain of intermediate socketpairs.
int first[2];
std::vector<std::array<int, 2>> intermediates;
int last[2];
constexpr size_t INTERMEDIATE_COUNT = 50;
constexpr size_t MESSAGE_LOOP_COUNT = 100;
const std::string MESSAGE = "socket_test";
intermediates.resize(INTERMEDIATE_COUNT);
ASSERT_EQ(0, adb_socketpair(first)) << strerror(errno);
ASSERT_EQ(0, adb_socketpair(last)) << strerror(errno);
asocket* prev_tail = create_local_socket(unique_fd(first[1]));
ASSERT_NE(nullptr, prev_tail);
auto connect = [](asocket* tail, asocket* head) {
tail->peer = head;
head->peer = tail;
tail->ready(tail);
};
for (auto& intermediate : intermediates) {
ASSERT_EQ(0, adb_socketpair(intermediate.data())) << strerror(errno);
asocket* head = create_local_socket(unique_fd(intermediate[0]));
ASSERT_NE(nullptr, head);
asocket* tail = create_local_socket(unique_fd(intermediate[1]));
ASSERT_NE(nullptr, tail);
connect(prev_tail, head);
prev_tail = tail;
}
asocket* end = create_local_socket(unique_fd(last[0]));
ASSERT_NE(nullptr, end);
connect(prev_tail, end);
PrepareThread();
for (size_t i = 0; i < MESSAGE_LOOP_COUNT; ++i) {
std::string read_buffer = MESSAGE;
std::string write_buffer(MESSAGE.size(), 'a');
ASSERT_TRUE(WriteFdExactly(first[0], &read_buffer[0], read_buffer.size()));
ASSERT_TRUE(ReadFdExactly(last[1], &write_buffer[0], write_buffer.size()));
ASSERT_EQ(read_buffer, write_buffer);
}
ASSERT_EQ(0, adb_close(first[0]));
ASSERT_EQ(0, adb_close(last[1]));
// Wait until the local sockets are closed.
WaitForFdeventLoop();
ASSERT_EQ(GetAdditionalLocalSocketCount(), fdevent_installed_count());
TerminateThread();
}
struct CloseWithPacketArg {
unique_fd socket_fd;
size_t bytes_written;
unique_fd cause_close_fd;
};
static void CreateCloser(CloseWithPacketArg* arg) {
fdevent_run_on_main_thread([arg]() {
asocket* s = create_local_socket(std::move(arg->socket_fd));
ASSERT_TRUE(s != nullptr);
arg->bytes_written = 0;
// On platforms that implement sockets via underlying sockets (e.g. Wine),
// a socket can appear to be full, and then become available for writes
// again without read being called on the other end. Loop and sleep after
// each write to give the underlying implementation time to flush.
bool socket_filled = false;
for (int i = 0; i < 128; ++i) {
apacket::payload_type data;
data.resize(MAX_PAYLOAD);
arg->bytes_written += data.size();
int ret = s->enqueue(s, std::move(data));
if (ret == 1) {
socket_filled = true;
break;
}
ASSERT_NE(-1, ret);
std::this_thread::sleep_for(250ms);
}
ASSERT_TRUE(socket_filled);
asocket* cause_close_s = create_local_socket(std::move(arg->cause_close_fd));
ASSERT_TRUE(cause_close_s != nullptr);
cause_close_s->peer = s;
s->peer = cause_close_s;
cause_close_s->ready(cause_close_s);
});
WaitForFdeventLoop();
}
// This test checks if we can close local socket in the following situation:
// The socket is closing but having some packets, so it is not closed. Then
// some write error happens in the socket's file handler, e.g., the file
// handler is closed.
TEST_F(LocalSocketTest, close_socket_with_packet) {
int socket_fd[2];
ASSERT_EQ(0, adb_socketpair(socket_fd));
int cause_close_fd[2];
ASSERT_EQ(0, adb_socketpair(cause_close_fd));
CloseWithPacketArg arg;
arg.socket_fd.reset(socket_fd[1]);
arg.cause_close_fd.reset(cause_close_fd[1]);
PrepareThread();
CreateCloser(&arg);
ASSERT_EQ(0, adb_close(cause_close_fd[0]));
WaitForFdeventLoop();
EXPECT_EQ(1u + GetAdditionalLocalSocketCount(), fdevent_installed_count());
ASSERT_EQ(0, adb_close(socket_fd[0]));
WaitForFdeventLoop();
ASSERT_EQ(GetAdditionalLocalSocketCount(), fdevent_installed_count());
TerminateThread();
}
// This test checks if we can read packets from a closing local socket.
TEST_F(LocalSocketTest, read_from_closing_socket) {
int socket_fd[2];
ASSERT_EQ(0, adb_socketpair(socket_fd));
int cause_close_fd[2];
ASSERT_EQ(0, adb_socketpair(cause_close_fd));
CloseWithPacketArg arg;
arg.socket_fd.reset(socket_fd[1]);
arg.cause_close_fd.reset(cause_close_fd[1]);
PrepareThread();
CreateCloser(&arg);
WaitForFdeventLoop();
ASSERT_EQ(0, adb_close(cause_close_fd[0]));
WaitForFdeventLoop();
EXPECT_EQ(1u + GetAdditionalLocalSocketCount(), fdevent_installed_count());
// Verify if we can read successfully.
std::vector<char> buf(arg.bytes_written);
ASSERT_NE(0u, arg.bytes_written);
ASSERT_EQ(true, ReadFdExactly(socket_fd[0], buf.data(), buf.size()));
ASSERT_EQ(0, adb_close(socket_fd[0]));
WaitForFdeventLoop();
ASSERT_EQ(GetAdditionalLocalSocketCount(), fdevent_installed_count());
TerminateThread();
}
// This test checks if we can close local socket in the following situation:
// The socket is not closed and has some packets. When it fails to write to
// the socket's file handler because the other end is closed, we check if the
// socket is closed.
TEST_F(LocalSocketTest, write_error_when_having_packets) {
int socket_fd[2];
ASSERT_EQ(0, adb_socketpair(socket_fd));
int cause_close_fd[2];
ASSERT_EQ(0, adb_socketpair(cause_close_fd));
CloseWithPacketArg arg;
arg.socket_fd.reset(socket_fd[1]);
arg.cause_close_fd.reset(cause_close_fd[1]);
PrepareThread();
CreateCloser(&arg);
WaitForFdeventLoop();
EXPECT_EQ(2u + GetAdditionalLocalSocketCount(), fdevent_installed_count());
ASSERT_EQ(0, adb_close(socket_fd[0]));
std::this_thread::sleep_for(2s);
WaitForFdeventLoop();
ASSERT_EQ(GetAdditionalLocalSocketCount(), fdevent_installed_count());
TerminateThread();
}
// Ensure that if we fail to write output to an fd, we will still flush data coming from it.
TEST_F(LocalSocketTest, flush_after_shutdown) {
int head_fd[2];
int tail_fd[2];
ASSERT_EQ(0, adb_socketpair(head_fd));
ASSERT_EQ(0, adb_socketpair(tail_fd));
asocket* head = create_local_socket(unique_fd(head_fd[1]));
asocket* tail = create_local_socket(unique_fd(tail_fd[1]));
head->peer = tail;
head->ready(head);
tail->peer = head;
tail->ready(tail);
PrepareThread();
EXPECT_TRUE(WriteFdExactly(head_fd[0], "foo", 3));
EXPECT_EQ(0, adb_shutdown(head_fd[0], SHUT_RD));
const char* str = "write succeeds, but local_socket will fail to write";
EXPECT_TRUE(WriteFdExactly(tail_fd[0], str, strlen(str)));
EXPECT_TRUE(WriteFdExactly(head_fd[0], "bar", 3));
char buf[6];
EXPECT_TRUE(ReadFdExactly(tail_fd[0], buf, 6));
EXPECT_EQ(0, memcmp(buf, "foobar", 6));
adb_close(head_fd[0]);
adb_close(tail_fd[0]);
WaitForFdeventLoop();
ASSERT_EQ(GetAdditionalLocalSocketCount(), fdevent_installed_count());
TerminateThread();
}
#if defined(__linux__)
static void ClientThreadFunc() {
std::string error;
int fd = network_loopback_client(5038, SOCK_STREAM, &error);
ASSERT_GE(fd, 0) << error;
std::this_thread::sleep_for(1s);
ASSERT_EQ(0, adb_close(fd));
}
// This test checks if we can close sockets in CLOSE_WAIT state.
TEST_F(LocalSocketTest, close_socket_in_CLOSE_WAIT_state) {
std::string error;
int listen_fd = network_inaddr_any_server(5038, SOCK_STREAM, &error);
ASSERT_GE(listen_fd, 0);
std::thread client_thread(ClientThreadFunc);
int accept_fd = adb_socket_accept(listen_fd, nullptr, nullptr);
ASSERT_GE(accept_fd, 0);
PrepareThread();
fdevent_run_on_main_thread([accept_fd]() {
asocket* s = create_local_socket(unique_fd(accept_fd));
ASSERT_TRUE(s != nullptr);
});
WaitForFdeventLoop();
EXPECT_EQ(1u + GetAdditionalLocalSocketCount(), fdevent_installed_count());
// Wait until the client closes its socket.
client_thread.join();
WaitForFdeventLoop();
ASSERT_EQ(GetAdditionalLocalSocketCount(), fdevent_installed_count());
TerminateThread();
}
#endif // defined(__linux__)
#if ADB_HOST
#define VerifyParseHostServiceFailed(s) \
do { \
std::string service(s); \
std::string_view serial, command; \
bool result = internal::parse_host_service(&serial, &command, service); \
EXPECT_FALSE(result); \
} while (0)
#define VerifyParseHostService(s, expected_serial, expected_command) \
do { \
std::string service(s); \
std::string_view serial, command; \
bool result = internal::parse_host_service(&serial, &command, service); \
EXPECT_TRUE(result); \
EXPECT_EQ(std::string(expected_serial), std::string(serial)); \
EXPECT_EQ(std::string(expected_command), std::string(command)); \
} while (0);
// Check [tcp:|udp:]<serial>[:<port>]:<command> format.
TEST(socket_test, test_parse_host_service) {
for (const std::string& protocol : {"", "tcp:", "udp:"}) {
VerifyParseHostServiceFailed(protocol);
VerifyParseHostServiceFailed(protocol + "foo");
{
std::string serial = protocol + "foo";
VerifyParseHostService(serial + ":bar", serial, "bar");
VerifyParseHostService(serial + " :bar:baz", serial, "bar:baz");
}
{
// With port.
std::string serial = protocol + "foo:123";
VerifyParseHostService(serial + ":bar", serial, "bar");
VerifyParseHostService(serial + ":456", serial, "456");
VerifyParseHostService(serial + ":bar:baz", serial, "bar:baz");
}
// Don't register a port unless it's all numbers and ends with ':'.
VerifyParseHostService(protocol + "foo:123", protocol + "foo", "123");
VerifyParseHostService(protocol + "foo:123bar:baz", protocol + "foo", "123bar:baz");
std::string addresses[] = {"100.100.100.100", "[0123:4567:89ab:CDEF:0:9:a:f]", "[::1]"};
for (const std::string& address : addresses) {
std::string serial = protocol + address;
std::string serial_with_port = protocol + address + ":5555";
VerifyParseHostService(serial + ":foo", serial, "foo");
VerifyParseHostService(serial_with_port + ":foo", serial_with_port, "foo");
}
// If we can't find both [] then treat it as a normal serial with [ in it.
VerifyParseHostService(protocol + "[0123:foo", protocol + "[0123", "foo");
// Don't be fooled by random IPv6 addresses in the command string.
VerifyParseHostService(protocol + "foo:ping [0123:4567:89ab:CDEF:0:9:a:f]:5555",
protocol + "foo", "ping [0123:4567:89ab:CDEF:0:9:a:f]:5555");
// Handle embedded NULs properly.
VerifyParseHostService(protocol + "foo:echo foo\0bar"s, protocol + "foo",
"echo foo\0bar"sv);
}
}
// Check <prefix>:<serial>:<command> format.
TEST(socket_test, test_parse_host_service_prefix) {
for (const std::string& prefix : {"usb:", "product:", "model:", "device:"}) {
VerifyParseHostServiceFailed(prefix);
VerifyParseHostServiceFailed(prefix + "foo");
VerifyParseHostService(prefix + "foo:bar", prefix + "foo", "bar");
VerifyParseHostService(prefix + "foo:bar:baz", prefix + "foo", "bar:baz");
VerifyParseHostService(prefix + "foo:123:bar", prefix + "foo", "123:bar");
}
}
#endif // ADB_HOST