blob: 42594cca846ca45ee18279c8fade6438508adeae [file] [log] [blame]
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <stdint.h>
#include <type_traits>
#include <utility>
namespace android::base {
//
// function_ref<> - a class that stores a reference to a callable object,
// similar to string_view for strings.
//
// We need to pass around lots of callbacks. The standard way of doing it
// is via std::function<> class, and it usually works OK. But there are some
// noticeable drawbacks:
//
// 1. std::function<> in most STLs performs heap allocation for all callables
// bigger than a single poiner to a function.
// 2. std::function<> goes through at least two pointers + a vptr call to call
// the stored function.
// 3. std::function<> copies the passed object inside at least once; this also
// means it can't work with non-copyable functors.
//
// function_ref is an alternative way of passing functors around. Instead of
// storing a copy of the functor inside, it follows the path of string_view and
// merely captures a pointer to the object to call. This allows for a simple,
// fast and lightweight wrapper design; it also dictates the limitations:
//
// 1. function_ref<> stores a pointer to outside functor. That functor _must_
// outlive the ref.
// 2. function_ref<> has two calls through a function pointer in its call
// operator. That's still better than std::function<>, but slower compared
// to a raw function pointer call with a "void* opaque" context parameter.
//
// Limitation #1 dictates the best use case: a function parameter type for some
// generic callback which doesn't get stored inside an object field but only
// gets called in this call. E.g.:
//
// void someLongOperation(function_ref<void(int progress)> onProgress) {
// firstStep(onProgress);
// ...
// onProgress(50);
// ...
// lastStep(onProgress);
// onProgress(100);
// }
//
// In this code std::function<> is an overkill as the whole use of |onProgresss|
// callback is scoped and easy to track. An alternative design - making it a
// template parameter (template <class Callback> ... (Callback onProgress))
// forces one to put someLongOperation() + some private functions into the
// header. function_ref<> is the choice then.
//
// NOTE: Beware of passing temporary functions via function_ref<>! Temporaries
// live until the end of full expression (usually till the next semicolon), and
// having a function_ref<> that refers to a dangling pointer is a bug that's
// hard to debug. E.g.:
// function_ref<...> v = [](){}; // this is fine
// function_ref<...> v = std::function<...>([](){}); // this will kill you
//
// NOTE2: function_ref<> should not have an empty state, but it doesn't have a
// runtime check against that. Don't construct it from a null function!
template <class Signature>
class function_ref;
template <class Ret, class... Args>
class function_ref<Ret(Args...)> final {
public:
constexpr function_ref() noexcept = delete;
constexpr function_ref(const function_ref& other) noexcept = default;
constexpr function_ref& operator=(const function_ref&) noexcept = default;
using RawFunc = Ret(Args...);
function_ref(RawFunc* funcptr) noexcept { *this = funcptr; }
template <class Callable, class = std::enable_if_t<
std::is_invocable_r_v<Ret, Callable, Args...> &&
!std::is_same_v<function_ref, std::remove_reference_t<Callable>>>>
function_ref(Callable&& c) noexcept {
*this = std::forward<Callable>(c);
}
function_ref& operator=(RawFunc* funcptr) noexcept {
mTypeErasedFunction = [](uintptr_t funcptr, Args... args) -> Ret {
return (reinterpret_cast<RawFunc*>(funcptr))(std::forward<Args>(args)...);
};
mCallable = reinterpret_cast<uintptr_t>(funcptr);
return *this;
}
template <class Callable, class = std::enable_if_t<
std::is_invocable_r_v<Ret, Callable, Args...> &&
!std::is_same_v<function_ref, std::remove_reference_t<Callable>>>>
function_ref& operator=(Callable&& c) noexcept {
mTypeErasedFunction = [](uintptr_t callable, Args... args) -> Ret {
// Generate a lambda that remembers the type of the passed
// |Callable|.
return (*reinterpret_cast<std::remove_reference_t<Callable>*>(callable))(
std::forward<Args>(args)...);
};
mCallable = reinterpret_cast<uintptr_t>(&c);
return *this;
}
Ret operator()(Args... args) const {
return mTypeErasedFunction(mCallable, std::forward<Args>(args)...);
}
private:
using TypeErasedFunc = Ret(uintptr_t, Args...);
TypeErasedFunc* mTypeErasedFunction;
uintptr_t mCallable;
};
} // namespace android::base