blob: 0a81e0ccd953aa4775289ff8ac73b6cbc6e3f16f [file] [log] [blame]
Martin Stjernholm4fb51112021-04-30 11:53:52 +01001// Formatting library for C++ - the core API
2//
3// Copyright (c) 2012 - present, Victor Zverovich
4// All rights reserved.
5//
6// For the license information refer to format.h.
7
8#ifndef FMT_CORE_H_
9#define FMT_CORE_H_
10
11#include <cstdio> // std::FILE
12#include <cstring>
13#include <functional>
14#include <iterator>
15#include <memory>
16#include <string>
17#include <type_traits>
18#include <vector>
19
20// The fmt library version in the form major * 10000 + minor * 100 + patch.
21#define FMT_VERSION 70103
22
23#ifdef __clang__
24# define FMT_CLANG_VERSION (__clang_major__ * 100 + __clang_minor__)
25#else
26# define FMT_CLANG_VERSION 0
27#endif
28
29#if defined(__GNUC__) && !defined(__clang__)
30# define FMT_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
31#else
32# define FMT_GCC_VERSION 0
33#endif
34
35#if defined(__INTEL_COMPILER)
36# define FMT_ICC_VERSION __INTEL_COMPILER
37#else
38# define FMT_ICC_VERSION 0
39#endif
40
41#if __cplusplus >= 201103L || defined(__GXX_EXPERIMENTAL_CXX0X__)
42# define FMT_HAS_GXX_CXX11 FMT_GCC_VERSION
43#else
44# define FMT_HAS_GXX_CXX11 0
45#endif
46
47#ifdef __NVCC__
48# define FMT_NVCC __NVCC__
49#else
50# define FMT_NVCC 0
51#endif
52
53#ifdef _MSC_VER
54# define FMT_MSC_VER _MSC_VER
55# define FMT_SUPPRESS_MSC_WARNING(n) __pragma(warning(suppress : n))
56#else
57# define FMT_MSC_VER 0
58# define FMT_SUPPRESS_MSC_WARNING(n)
59#endif
60
61#ifdef __has_feature
62# define FMT_HAS_FEATURE(x) __has_feature(x)
63#else
64# define FMT_HAS_FEATURE(x) 0
65#endif
66
67#if defined(__has_include) && !defined(__INTELLISENSE__) && \
68 (!FMT_ICC_VERSION || FMT_ICC_VERSION >= 1600)
69# define FMT_HAS_INCLUDE(x) __has_include(x)
70#else
71# define FMT_HAS_INCLUDE(x) 0
72#endif
73
74#ifdef __has_cpp_attribute
75# define FMT_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x)
76#else
77# define FMT_HAS_CPP_ATTRIBUTE(x) 0
78#endif
79
80#define FMT_HAS_CPP14_ATTRIBUTE(attribute) \
81 (__cplusplus >= 201402L && FMT_HAS_CPP_ATTRIBUTE(attribute))
82
83#define FMT_HAS_CPP17_ATTRIBUTE(attribute) \
84 (__cplusplus >= 201703L && FMT_HAS_CPP_ATTRIBUTE(attribute))
85
86// Check if relaxed C++14 constexpr is supported.
87// GCC doesn't allow throw in constexpr until version 6 (bug 67371).
88#ifndef FMT_USE_CONSTEXPR
89# define FMT_USE_CONSTEXPR \
90 (FMT_HAS_FEATURE(cxx_relaxed_constexpr) || FMT_MSC_VER >= 1910 || \
91 (FMT_GCC_VERSION >= 600 && __cplusplus >= 201402L)) && \
92 !FMT_NVCC && !FMT_ICC_VERSION
93#endif
94#if FMT_USE_CONSTEXPR
95# define FMT_CONSTEXPR constexpr
96# define FMT_CONSTEXPR_DECL constexpr
97#else
98# define FMT_CONSTEXPR inline
99# define FMT_CONSTEXPR_DECL
100#endif
101
102#ifndef FMT_OVERRIDE
103# if FMT_HAS_FEATURE(cxx_override_control) || \
104 (FMT_GCC_VERSION >= 408 && FMT_HAS_GXX_CXX11) || FMT_MSC_VER >= 1900
105# define FMT_OVERRIDE override
106# else
107# define FMT_OVERRIDE
108# endif
109#endif
110
111// Check if exceptions are disabled.
112#ifndef FMT_EXCEPTIONS
113# if (defined(__GNUC__) && !defined(__EXCEPTIONS)) || \
114 FMT_MSC_VER && !_HAS_EXCEPTIONS
115# define FMT_EXCEPTIONS 0
116# else
117# define FMT_EXCEPTIONS 1
118# endif
119#endif
120
121// Define FMT_USE_NOEXCEPT to make fmt use noexcept (C++11 feature).
122#ifndef FMT_USE_NOEXCEPT
123# define FMT_USE_NOEXCEPT 0
124#endif
125
126#if FMT_USE_NOEXCEPT || FMT_HAS_FEATURE(cxx_noexcept) || \
127 (FMT_GCC_VERSION >= 408 && FMT_HAS_GXX_CXX11) || FMT_MSC_VER >= 1900
128# define FMT_DETECTED_NOEXCEPT noexcept
129# define FMT_HAS_CXX11_NOEXCEPT 1
130#else
131# define FMT_DETECTED_NOEXCEPT throw()
132# define FMT_HAS_CXX11_NOEXCEPT 0
133#endif
134
135#ifndef FMT_NOEXCEPT
136# if FMT_EXCEPTIONS || FMT_HAS_CXX11_NOEXCEPT
137# define FMT_NOEXCEPT FMT_DETECTED_NOEXCEPT
138# else
139# define FMT_NOEXCEPT
140# endif
141#endif
142
143// [[noreturn]] is disabled on MSVC and NVCC because of bogus unreachable code
144// warnings.
145#if FMT_EXCEPTIONS && FMT_HAS_CPP_ATTRIBUTE(noreturn) && !FMT_MSC_VER && \
146 !FMT_NVCC
147# define FMT_NORETURN [[noreturn]]
148#else
149# define FMT_NORETURN
150#endif
151
152#ifndef FMT_DEPRECATED
153# if FMT_HAS_CPP14_ATTRIBUTE(deprecated) || FMT_MSC_VER >= 1900
154# define FMT_DEPRECATED [[deprecated]]
155# else
156# if (defined(__GNUC__) && !defined(__LCC__)) || defined(__clang__)
157# define FMT_DEPRECATED __attribute__((deprecated))
158# elif FMT_MSC_VER
159# define FMT_DEPRECATED __declspec(deprecated)
160# else
161# define FMT_DEPRECATED /* deprecated */
162# endif
163# endif
164#endif
165
166// Workaround broken [[deprecated]] in the Intel, PGI and NVCC compilers.
167#if FMT_ICC_VERSION || defined(__PGI) || FMT_NVCC
168# define FMT_DEPRECATED_ALIAS
169#else
170# define FMT_DEPRECATED_ALIAS FMT_DEPRECATED
171#endif
172
173#ifndef FMT_INLINE
174# if FMT_GCC_VERSION || FMT_CLANG_VERSION
175# define FMT_INLINE inline __attribute__((always_inline))
176# else
177# define FMT_INLINE inline
178# endif
179#endif
180
181#ifndef FMT_USE_INLINE_NAMESPACES
182# if FMT_HAS_FEATURE(cxx_inline_namespaces) || FMT_GCC_VERSION >= 404 || \
183 (FMT_MSC_VER >= 1900 && !_MANAGED)
184# define FMT_USE_INLINE_NAMESPACES 1
185# else
186# define FMT_USE_INLINE_NAMESPACES 0
187# endif
188#endif
189
190#ifndef FMT_BEGIN_NAMESPACE
191# if FMT_USE_INLINE_NAMESPACES
192# define FMT_INLINE_NAMESPACE inline namespace
193# define FMT_END_NAMESPACE \
194 } \
195 }
196# else
197# define FMT_INLINE_NAMESPACE namespace
198# define FMT_END_NAMESPACE \
199 } \
200 using namespace v7; \
201 }
202# endif
203# define FMT_BEGIN_NAMESPACE \
204 namespace fmt { \
205 FMT_INLINE_NAMESPACE v7 {
206#endif
207
208#if !defined(FMT_HEADER_ONLY) && defined(_WIN32)
209# define FMT_CLASS_API FMT_SUPPRESS_MSC_WARNING(4275)
210# ifdef FMT_EXPORT
211# define FMT_API __declspec(dllexport)
212# define FMT_EXTERN_TEMPLATE_API FMT_API
213# define FMT_EXPORTED
214# elif defined(FMT_SHARED)
215# define FMT_API __declspec(dllimport)
216# define FMT_EXTERN_TEMPLATE_API FMT_API
217# endif
218#else
219# define FMT_CLASS_API
220#endif
221#ifndef FMT_API
222# define FMT_API
223#endif
224#ifndef FMT_EXTERN_TEMPLATE_API
225# define FMT_EXTERN_TEMPLATE_API
226#endif
227#ifndef FMT_INSTANTIATION_DEF_API
228# define FMT_INSTANTIATION_DEF_API FMT_API
229#endif
230
231#ifndef FMT_HEADER_ONLY
232# define FMT_EXTERN extern
233#else
234# define FMT_EXTERN
235#endif
236
237// libc++ supports string_view in pre-c++17.
238#if (FMT_HAS_INCLUDE(<string_view>) && \
239 (__cplusplus > 201402L || defined(_LIBCPP_VERSION))) || \
240 (defined(_MSVC_LANG) && _MSVC_LANG > 201402L && _MSC_VER >= 1910)
241# include <string_view>
242# define FMT_USE_STRING_VIEW
243#elif FMT_HAS_INCLUDE("experimental/string_view") && __cplusplus >= 201402L
244# include <experimental/string_view>
245# define FMT_USE_EXPERIMENTAL_STRING_VIEW
246#endif
247
248#ifndef FMT_UNICODE
249# define FMT_UNICODE !FMT_MSC_VER
250#endif
251#if FMT_UNICODE && FMT_MSC_VER
252# pragma execution_character_set("utf-8")
253#endif
254
255FMT_BEGIN_NAMESPACE
256
257// Implementations of enable_if_t and other metafunctions for older systems.
258template <bool B, class T = void>
259using enable_if_t = typename std::enable_if<B, T>::type;
260template <bool B, class T, class F>
261using conditional_t = typename std::conditional<B, T, F>::type;
262template <bool B> using bool_constant = std::integral_constant<bool, B>;
263template <typename T>
264using remove_reference_t = typename std::remove_reference<T>::type;
265template <typename T>
266using remove_const_t = typename std::remove_const<T>::type;
267template <typename T>
268using remove_cvref_t = typename std::remove_cv<remove_reference_t<T>>::type;
269template <typename T> struct type_identity { using type = T; };
270template <typename T> using type_identity_t = typename type_identity<T>::type;
271
272struct monostate {};
273
274// An enable_if helper to be used in template parameters which results in much
275// shorter symbols: https://godbolt.org/z/sWw4vP. Extra parentheses are needed
276// to workaround a bug in MSVC 2019 (see #1140 and #1186).
277#define FMT_ENABLE_IF(...) enable_if_t<(__VA_ARGS__), int> = 0
278
279namespace detail {
280
281// A helper function to suppress "conditional expression is constant" warnings.
282template <typename T> constexpr T const_check(T value) { return value; }
283
284FMT_NORETURN FMT_API void assert_fail(const char* file, int line,
285 const char* message);
286
287#ifndef FMT_ASSERT
288# ifdef NDEBUG
289// FMT_ASSERT is not empty to avoid -Werror=empty-body.
290# define FMT_ASSERT(condition, message) ((void)0)
291# else
292# define FMT_ASSERT(condition, message) \
293 ((condition) /* void() fails with -Winvalid-constexpr on clang 4.0.1 */ \
294 ? (void)0 \
295 : ::fmt::detail::assert_fail(__FILE__, __LINE__, (message)))
296# endif
297#endif
298
299#if defined(FMT_USE_STRING_VIEW)
300template <typename Char> using std_string_view = std::basic_string_view<Char>;
301#elif defined(FMT_USE_EXPERIMENTAL_STRING_VIEW)
302template <typename Char>
303using std_string_view = std::experimental::basic_string_view<Char>;
304#else
305template <typename T> struct std_string_view {};
306#endif
307
308#ifdef FMT_USE_INT128
309// Do nothing.
310#elif defined(__SIZEOF_INT128__) && !FMT_NVCC && \
311 !(FMT_CLANG_VERSION && FMT_MSC_VER)
312# define FMT_USE_INT128 1
313using int128_t = __int128_t;
314using uint128_t = __uint128_t;
315#else
316# define FMT_USE_INT128 0
317#endif
318#if !FMT_USE_INT128
319struct int128_t {};
320struct uint128_t {};
321#endif
322
323// Casts a nonnegative integer to unsigned.
324template <typename Int>
325FMT_CONSTEXPR typename std::make_unsigned<Int>::type to_unsigned(Int value) {
326 FMT_ASSERT(value >= 0, "negative value");
327 return static_cast<typename std::make_unsigned<Int>::type>(value);
328}
329
330FMT_SUPPRESS_MSC_WARNING(4566) constexpr unsigned char micro[] = "\u00B5";
331
332template <typename Char> constexpr bool is_unicode() {
333 return FMT_UNICODE || sizeof(Char) != 1 ||
334 (sizeof(micro) == 3 && micro[0] == 0xC2 && micro[1] == 0xB5);
335}
336
337#ifdef __cpp_char8_t
338using char8_type = char8_t;
339#else
340enum char8_type : unsigned char {};
341#endif
342} // namespace detail
343
344#ifdef FMT_USE_INTERNAL
345namespace internal = detail; // DEPRECATED
346#endif
347
348/**
349 An implementation of ``std::basic_string_view`` for pre-C++17. It provides a
350 subset of the API. ``fmt::basic_string_view`` is used for format strings even
351 if ``std::string_view`` is available to prevent issues when a library is
352 compiled with a different ``-std`` option than the client code (which is not
353 recommended).
354 */
355template <typename Char> class basic_string_view {
356 private:
357 const Char* data_;
358 size_t size_;
359
360 public:
361 using value_type = Char;
362 using iterator = const Char*;
363
364 constexpr basic_string_view() FMT_NOEXCEPT : data_(nullptr), size_(0) {}
365
366 /** Constructs a string reference object from a C string and a size. */
367 constexpr basic_string_view(const Char* s, size_t count) FMT_NOEXCEPT
368 : data_(s),
369 size_(count) {}
370
371 /**
372 \rst
373 Constructs a string reference object from a C string computing
374 the size with ``std::char_traits<Char>::length``.
375 \endrst
376 */
377#if __cplusplus >= 201703L // C++17's char_traits::length() is constexpr.
378 FMT_CONSTEXPR
379#endif
380 basic_string_view(const Char* s)
381 : data_(s), size_(std::char_traits<Char>::length(s)) {}
382
383 /** Constructs a string reference from a ``std::basic_string`` object. */
384 template <typename Traits, typename Alloc>
385 FMT_CONSTEXPR basic_string_view(
386 const std::basic_string<Char, Traits, Alloc>& s) FMT_NOEXCEPT
387 : data_(s.data()),
388 size_(s.size()) {}
389
390 template <typename S, FMT_ENABLE_IF(std::is_same<
391 S, detail::std_string_view<Char>>::value)>
392 FMT_CONSTEXPR basic_string_view(S s) FMT_NOEXCEPT : data_(s.data()),
393 size_(s.size()) {}
394
395 /** Returns a pointer to the string data. */
396 constexpr const Char* data() const { return data_; }
397
398 /** Returns the string size. */
399 constexpr size_t size() const { return size_; }
400
401 constexpr iterator begin() const { return data_; }
402 constexpr iterator end() const { return data_ + size_; }
403
404 constexpr const Char& operator[](size_t pos) const { return data_[pos]; }
405
406 FMT_CONSTEXPR void remove_prefix(size_t n) {
407 data_ += n;
408 size_ -= n;
409 }
410
411 // Lexicographically compare this string reference to other.
412 int compare(basic_string_view other) const {
413 size_t str_size = size_ < other.size_ ? size_ : other.size_;
414 int result = std::char_traits<Char>::compare(data_, other.data_, str_size);
415 if (result == 0)
416 result = size_ == other.size_ ? 0 : (size_ < other.size_ ? -1 : 1);
417 return result;
418 }
419
420 friend bool operator==(basic_string_view lhs, basic_string_view rhs) {
421 return lhs.compare(rhs) == 0;
422 }
423 friend bool operator!=(basic_string_view lhs, basic_string_view rhs) {
424 return lhs.compare(rhs) != 0;
425 }
426 friend bool operator<(basic_string_view lhs, basic_string_view rhs) {
427 return lhs.compare(rhs) < 0;
428 }
429 friend bool operator<=(basic_string_view lhs, basic_string_view rhs) {
430 return lhs.compare(rhs) <= 0;
431 }
432 friend bool operator>(basic_string_view lhs, basic_string_view rhs) {
433 return lhs.compare(rhs) > 0;
434 }
435 friend bool operator>=(basic_string_view lhs, basic_string_view rhs) {
436 return lhs.compare(rhs) >= 0;
437 }
438};
439
440using string_view = basic_string_view<char>;
441using wstring_view = basic_string_view<wchar_t>;
442
443/** Specifies if ``T`` is a character type. Can be specialized by users. */
444template <typename T> struct is_char : std::false_type {};
445template <> struct is_char<char> : std::true_type {};
446template <> struct is_char<wchar_t> : std::true_type {};
447template <> struct is_char<detail::char8_type> : std::true_type {};
448template <> struct is_char<char16_t> : std::true_type {};
449template <> struct is_char<char32_t> : std::true_type {};
450
451/**
452 \rst
453 Returns a string view of `s`. In order to add custom string type support to
454 {fmt} provide an overload of `to_string_view` for it in the same namespace as
455 the type for the argument-dependent lookup to work.
456
457 **Example**::
458
459 namespace my_ns {
460 inline string_view to_string_view(const my_string& s) {
461 return {s.data(), s.length()};
462 }
463 }
464 std::string message = fmt::format(my_string("The answer is {}"), 42);
465 \endrst
466 */
467template <typename Char, FMT_ENABLE_IF(is_char<Char>::value)>
468inline basic_string_view<Char> to_string_view(const Char* s) {
469 return s;
470}
471
472template <typename Char, typename Traits, typename Alloc>
473inline basic_string_view<Char> to_string_view(
474 const std::basic_string<Char, Traits, Alloc>& s) {
475 return s;
476}
477
478template <typename Char>
479inline basic_string_view<Char> to_string_view(basic_string_view<Char> s) {
480 return s;
481}
482
483template <typename Char,
484 FMT_ENABLE_IF(!std::is_empty<detail::std_string_view<Char>>::value)>
485inline basic_string_view<Char> to_string_view(detail::std_string_view<Char> s) {
486 return s;
487}
488
489// A base class for compile-time strings. It is defined in the fmt namespace to
490// make formatting functions visible via ADL, e.g. format(FMT_STRING("{}"), 42).
491struct compile_string {};
492
493template <typename S>
494struct is_compile_string : std::is_base_of<compile_string, S> {};
495
496template <typename S, FMT_ENABLE_IF(is_compile_string<S>::value)>
497constexpr basic_string_view<typename S::char_type> to_string_view(const S& s) {
498 return s;
499}
500
501namespace detail {
502void to_string_view(...);
503using fmt::v7::to_string_view;
504
505// Specifies whether S is a string type convertible to fmt::basic_string_view.
506// It should be a constexpr function but MSVC 2017 fails to compile it in
507// enable_if and MSVC 2015 fails to compile it as an alias template.
508template <typename S>
509struct is_string : std::is_class<decltype(to_string_view(std::declval<S>()))> {
510};
511
512template <typename S, typename = void> struct char_t_impl {};
513template <typename S> struct char_t_impl<S, enable_if_t<is_string<S>::value>> {
514 using result = decltype(to_string_view(std::declval<S>()));
515 using type = typename result::value_type;
516};
517
518// Reports a compile-time error if S is not a valid format string.
519template <typename..., typename S, FMT_ENABLE_IF(!is_compile_string<S>::value)>
520FMT_INLINE void check_format_string(const S&) {
521#ifdef FMT_ENFORCE_COMPILE_STRING
522 static_assert(is_compile_string<S>::value,
523 "FMT_ENFORCE_COMPILE_STRING requires all format strings to use "
524 "FMT_STRING.");
525#endif
526}
527template <typename..., typename S, FMT_ENABLE_IF(is_compile_string<S>::value)>
528void check_format_string(S);
529
530struct error_handler {
531 constexpr error_handler() = default;
532 constexpr error_handler(const error_handler&) = default;
533
534 // This function is intentionally not constexpr to give a compile-time error.
535 FMT_NORETURN FMT_API void on_error(const char* message);
536};
537} // namespace detail
538
539/** String's character type. */
540template <typename S> using char_t = typename detail::char_t_impl<S>::type;
541
542/**
543 \rst
544 Parsing context consisting of a format string range being parsed and an
545 argument counter for automatic indexing.
546
547 You can use one of the following type aliases for common character types:
548
549 +-----------------------+-------------------------------------+
550 | Type | Definition |
551 +=======================+=====================================+
552 | format_parse_context | basic_format_parse_context<char> |
553 +-----------------------+-------------------------------------+
554 | wformat_parse_context | basic_format_parse_context<wchar_t> |
555 +-----------------------+-------------------------------------+
556 \endrst
557 */
558template <typename Char, typename ErrorHandler = detail::error_handler>
559class basic_format_parse_context : private ErrorHandler {
560 private:
561 basic_string_view<Char> format_str_;
562 int next_arg_id_;
563
564 public:
565 using char_type = Char;
566 using iterator = typename basic_string_view<Char>::iterator;
567
568 explicit constexpr basic_format_parse_context(
569 basic_string_view<Char> format_str, ErrorHandler eh = {},
570 int next_arg_id = 0)
571 : ErrorHandler(eh), format_str_(format_str), next_arg_id_(next_arg_id) {}
572
573 /**
574 Returns an iterator to the beginning of the format string range being
575 parsed.
576 */
577 constexpr iterator begin() const FMT_NOEXCEPT { return format_str_.begin(); }
578
579 /**
580 Returns an iterator past the end of the format string range being parsed.
581 */
582 constexpr iterator end() const FMT_NOEXCEPT { return format_str_.end(); }
583
584 /** Advances the begin iterator to ``it``. */
585 FMT_CONSTEXPR void advance_to(iterator it) {
586 format_str_.remove_prefix(detail::to_unsigned(it - begin()));
587 }
588
589 /**
590 Reports an error if using the manual argument indexing; otherwise returns
591 the next argument index and switches to the automatic indexing.
592 */
593 FMT_CONSTEXPR int next_arg_id() {
594 // Don't check if the argument id is valid to avoid overhead and because it
595 // will be checked during formatting anyway.
596 if (next_arg_id_ >= 0) return next_arg_id_++;
597 on_error("cannot switch from manual to automatic argument indexing");
598 return 0;
599 }
600
601 /**
602 Reports an error if using the automatic argument indexing; otherwise
603 switches to the manual indexing.
604 */
605 FMT_CONSTEXPR void check_arg_id(int) {
606 if (next_arg_id_ > 0)
607 on_error("cannot switch from automatic to manual argument indexing");
608 else
609 next_arg_id_ = -1;
610 }
611
612 FMT_CONSTEXPR void check_arg_id(basic_string_view<Char>) {}
613
614 FMT_CONSTEXPR void on_error(const char* message) {
615 ErrorHandler::on_error(message);
616 }
617
618 constexpr ErrorHandler error_handler() const { return *this; }
619};
620
621using format_parse_context = basic_format_parse_context<char>;
622using wformat_parse_context = basic_format_parse_context<wchar_t>;
623
624template <typename Context> class basic_format_arg;
625template <typename Context> class basic_format_args;
626template <typename Context> class dynamic_format_arg_store;
627
628// A formatter for objects of type T.
629template <typename T, typename Char = char, typename Enable = void>
630struct formatter {
631 // A deleted default constructor indicates a disabled formatter.
632 formatter() = delete;
633};
634
635// Specifies if T has an enabled formatter specialization. A type can be
636// formattable even if it doesn't have a formatter e.g. via a conversion.
637template <typename T, typename Context>
638using has_formatter =
639 std::is_constructible<typename Context::template formatter_type<T>>;
640
641// Checks whether T is a container with contiguous storage.
642template <typename T> struct is_contiguous : std::false_type {};
643template <typename Char>
644struct is_contiguous<std::basic_string<Char>> : std::true_type {};
645
646namespace detail {
647
648// Extracts a reference to the container from back_insert_iterator.
649template <typename Container>
650inline Container& get_container(std::back_insert_iterator<Container> it) {
651 using bi_iterator = std::back_insert_iterator<Container>;
652 struct accessor : bi_iterator {
653 accessor(bi_iterator iter) : bi_iterator(iter) {}
654 using bi_iterator::container;
655 };
656 return *accessor(it).container;
657}
658
659/**
660 \rst
661 A contiguous memory buffer with an optional growing ability. It is an internal
662 class and shouldn't be used directly, only via `~fmt::basic_memory_buffer`.
663 \endrst
664 */
665template <typename T> class buffer {
666 private:
667 T* ptr_;
668 size_t size_;
669 size_t capacity_;
670
671 protected:
672 // Don't initialize ptr_ since it is not accessed to save a few cycles.
673 FMT_SUPPRESS_MSC_WARNING(26495)
674 buffer(size_t sz) FMT_NOEXCEPT : size_(sz), capacity_(sz) {}
675
676 buffer(T* p = nullptr, size_t sz = 0, size_t cap = 0) FMT_NOEXCEPT
677 : ptr_(p),
678 size_(sz),
679 capacity_(cap) {}
680
681 ~buffer() = default;
682
683 /** Sets the buffer data and capacity. */
684 void set(T* buf_data, size_t buf_capacity) FMT_NOEXCEPT {
685 ptr_ = buf_data;
686 capacity_ = buf_capacity;
687 }
688
689 /** Increases the buffer capacity to hold at least *capacity* elements. */
690 virtual void grow(size_t capacity) = 0;
691
692 public:
693 using value_type = T;
694 using const_reference = const T&;
695
696 buffer(const buffer&) = delete;
697 void operator=(const buffer&) = delete;
698
699 T* begin() FMT_NOEXCEPT { return ptr_; }
700 T* end() FMT_NOEXCEPT { return ptr_ + size_; }
701
702 const T* begin() const FMT_NOEXCEPT { return ptr_; }
703 const T* end() const FMT_NOEXCEPT { return ptr_ + size_; }
704
705 /** Returns the size of this buffer. */
706 size_t size() const FMT_NOEXCEPT { return size_; }
707
708 /** Returns the capacity of this buffer. */
709 size_t capacity() const FMT_NOEXCEPT { return capacity_; }
710
711 /** Returns a pointer to the buffer data. */
712 T* data() FMT_NOEXCEPT { return ptr_; }
713
714 /** Returns a pointer to the buffer data. */
715 const T* data() const FMT_NOEXCEPT { return ptr_; }
716
717 /** Clears this buffer. */
718 void clear() { size_ = 0; }
719
720 // Tries resizing the buffer to contain *count* elements. If T is a POD type
721 // the new elements may not be initialized.
722 void try_resize(size_t count) {
723 try_reserve(count);
724 size_ = count <= capacity_ ? count : capacity_;
725 }
726
727 // Tries increasing the buffer capacity to *new_capacity*. It can increase the
728 // capacity by a smaller amount than requested but guarantees there is space
729 // for at least one additional element either by increasing the capacity or by
730 // flushing the buffer if it is full.
731 void try_reserve(size_t new_capacity) {
732 if (new_capacity > capacity_) grow(new_capacity);
733 }
734
735 void push_back(const T& value) {
736 try_reserve(size_ + 1);
737 ptr_[size_++] = value;
738 }
739
740 /** Appends data to the end of the buffer. */
741 template <typename U> void append(const U* begin, const U* end);
742
743 template <typename I> T& operator[](I index) { return ptr_[index]; }
744 template <typename I> const T& operator[](I index) const {
745 return ptr_[index];
746 }
747};
748
749struct buffer_traits {
750 explicit buffer_traits(size_t) {}
751 size_t count() const { return 0; }
752 size_t limit(size_t size) { return size; }
753};
754
755class fixed_buffer_traits {
756 private:
757 size_t count_ = 0;
758 size_t limit_;
759
760 public:
761 explicit fixed_buffer_traits(size_t limit) : limit_(limit) {}
762 size_t count() const { return count_; }
763 size_t limit(size_t size) {
764 size_t n = limit_ > count_ ? limit_ - count_ : 0;
765 count_ += size;
766 return size < n ? size : n;
767 }
768};
769
770// A buffer that writes to an output iterator when flushed.
771template <typename OutputIt, typename T, typename Traits = buffer_traits>
772class iterator_buffer final : public Traits, public buffer<T> {
773 private:
774 OutputIt out_;
775 enum { buffer_size = 256 };
776 T data_[buffer_size];
777
778 protected:
779 void grow(size_t) final FMT_OVERRIDE {
780 if (this->size() == buffer_size) flush();
781 }
782 void flush();
783
784 public:
785 explicit iterator_buffer(OutputIt out, size_t n = buffer_size)
786 : Traits(n),
787 buffer<T>(data_, 0, buffer_size),
788 out_(out) {}
789 ~iterator_buffer() { flush(); }
790
791 OutputIt out() {
792 flush();
793 return out_;
794 }
795 size_t count() const { return Traits::count() + this->size(); }
796};
797
798template <typename T> class iterator_buffer<T*, T> final : public buffer<T> {
799 protected:
800 void grow(size_t) final FMT_OVERRIDE {}
801
802 public:
803 explicit iterator_buffer(T* out, size_t = 0) : buffer<T>(out, 0, ~size_t()) {}
804
805 T* out() { return &*this->end(); }
806};
807
808// A buffer that writes to a container with the contiguous storage.
809template <typename Container>
810class iterator_buffer<std::back_insert_iterator<Container>,
811 enable_if_t<is_contiguous<Container>::value,
812 typename Container::value_type>>
813 final : public buffer<typename Container::value_type> {
814 private:
815 Container& container_;
816
817 protected:
818 void grow(size_t capacity) final FMT_OVERRIDE {
819 container_.resize(capacity);
820 this->set(&container_[0], capacity);
821 }
822
823 public:
824 explicit iterator_buffer(Container& c)
825 : buffer<typename Container::value_type>(c.size()), container_(c) {}
826 explicit iterator_buffer(std::back_insert_iterator<Container> out, size_t = 0)
827 : iterator_buffer(get_container(out)) {}
828 std::back_insert_iterator<Container> out() {
829 return std::back_inserter(container_);
830 }
831};
832
833// A buffer that counts the number of code units written discarding the output.
834template <typename T = char> class counting_buffer final : public buffer<T> {
835 private:
836 enum { buffer_size = 256 };
837 T data_[buffer_size];
838 size_t count_ = 0;
839
840 protected:
841 void grow(size_t) final FMT_OVERRIDE {
842 if (this->size() != buffer_size) return;
843 count_ += this->size();
844 this->clear();
845 }
846
847 public:
848 counting_buffer() : buffer<T>(data_, 0, buffer_size) {}
849
850 size_t count() { return count_ + this->size(); }
851};
852
853// An output iterator that appends to the buffer.
854// It is used to reduce symbol sizes for the common case.
855template <typename T>
856class buffer_appender : public std::back_insert_iterator<buffer<T>> {
857 using base = std::back_insert_iterator<buffer<T>>;
858
859 public:
860 explicit buffer_appender(buffer<T>& buf) : base(buf) {}
861 buffer_appender(base it) : base(it) {}
862
863 buffer_appender& operator++() {
864 base::operator++();
865 return *this;
866 }
867
868 buffer_appender operator++(int) {
869 buffer_appender tmp = *this;
870 ++*this;
871 return tmp;
872 }
873};
874
875// Maps an output iterator into a buffer.
876template <typename T, typename OutputIt>
877iterator_buffer<OutputIt, T> get_buffer(OutputIt);
878template <typename T> buffer<T>& get_buffer(buffer_appender<T>);
879
880template <typename OutputIt> OutputIt get_buffer_init(OutputIt out) {
881 return out;
882}
883template <typename T> buffer<T>& get_buffer_init(buffer_appender<T> out) {
884 return get_container(out);
885}
886
887template <typename Buffer>
888auto get_iterator(Buffer& buf) -> decltype(buf.out()) {
889 return buf.out();
890}
891template <typename T> buffer_appender<T> get_iterator(buffer<T>& buf) {
892 return buffer_appender<T>(buf);
893}
894
895template <typename T, typename Char = char, typename Enable = void>
896struct fallback_formatter {
897 fallback_formatter() = delete;
898};
899
900// Specifies if T has an enabled fallback_formatter specialization.
901template <typename T, typename Context>
902using has_fallback_formatter =
903 std::is_constructible<fallback_formatter<T, typename Context::char_type>>;
904
905struct view {};
906
907template <typename Char, typename T> struct named_arg : view {
908 const Char* name;
909 const T& value;
910 named_arg(const Char* n, const T& v) : name(n), value(v) {}
911};
912
913template <typename Char> struct named_arg_info {
914 const Char* name;
915 int id;
916};
917
918template <typename T, typename Char, size_t NUM_ARGS, size_t NUM_NAMED_ARGS>
919struct arg_data {
920 // args_[0].named_args points to named_args_ to avoid bloating format_args.
921 // +1 to workaround a bug in gcc 7.5 that causes duplicated-branches warning.
922 T args_[1 + (NUM_ARGS != 0 ? NUM_ARGS : +1)];
923 named_arg_info<Char> named_args_[NUM_NAMED_ARGS];
924
925 template <typename... U>
926 arg_data(const U&... init) : args_{T(named_args_, NUM_NAMED_ARGS), init...} {}
927 arg_data(const arg_data& other) = delete;
928 const T* args() const { return args_ + 1; }
929 named_arg_info<Char>* named_args() { return named_args_; }
930};
931
932template <typename T, typename Char, size_t NUM_ARGS>
933struct arg_data<T, Char, NUM_ARGS, 0> {
934 // +1 to workaround a bug in gcc 7.5 that causes duplicated-branches warning.
935 T args_[NUM_ARGS != 0 ? NUM_ARGS : +1];
936
937 template <typename... U>
938 FMT_INLINE arg_data(const U&... init) : args_{init...} {}
939 FMT_INLINE const T* args() const { return args_; }
940 FMT_INLINE std::nullptr_t named_args() { return nullptr; }
941};
942
943template <typename Char>
944inline void init_named_args(named_arg_info<Char>*, int, int) {}
945
946template <typename Char, typename T, typename... Tail>
947void init_named_args(named_arg_info<Char>* named_args, int arg_count,
948 int named_arg_count, const T&, const Tail&... args) {
949 init_named_args(named_args, arg_count + 1, named_arg_count, args...);
950}
951
952template <typename Char, typename T, typename... Tail>
953void init_named_args(named_arg_info<Char>* named_args, int arg_count,
954 int named_arg_count, const named_arg<Char, T>& arg,
955 const Tail&... args) {
956 named_args[named_arg_count++] = {arg.name, arg_count};
957 init_named_args(named_args, arg_count + 1, named_arg_count, args...);
958}
959
960template <typename... Args>
961FMT_INLINE void init_named_args(std::nullptr_t, int, int, const Args&...) {}
962
963template <typename T> struct is_named_arg : std::false_type {};
964
965template <typename T, typename Char>
966struct is_named_arg<named_arg<Char, T>> : std::true_type {};
967
968template <bool B = false> constexpr size_t count() { return B ? 1 : 0; }
969template <bool B1, bool B2, bool... Tail> constexpr size_t count() {
970 return (B1 ? 1 : 0) + count<B2, Tail...>();
971}
972
973template <typename... Args> constexpr size_t count_named_args() {
974 return count<is_named_arg<Args>::value...>();
975}
976
977enum class type {
978 none_type,
979 // Integer types should go first,
980 int_type,
981 uint_type,
982 long_long_type,
983 ulong_long_type,
984 int128_type,
985 uint128_type,
986 bool_type,
987 char_type,
988 last_integer_type = char_type,
989 // followed by floating-point types.
990 float_type,
991 double_type,
992 long_double_type,
993 last_numeric_type = long_double_type,
994 cstring_type,
995 string_type,
996 pointer_type,
997 custom_type
998};
999
1000// Maps core type T to the corresponding type enum constant.
1001template <typename T, typename Char>
1002struct type_constant : std::integral_constant<type, type::custom_type> {};
1003
1004#define FMT_TYPE_CONSTANT(Type, constant) \
1005 template <typename Char> \
1006 struct type_constant<Type, Char> \
1007 : std::integral_constant<type, type::constant> {}
1008
1009FMT_TYPE_CONSTANT(int, int_type);
1010FMT_TYPE_CONSTANT(unsigned, uint_type);
1011FMT_TYPE_CONSTANT(long long, long_long_type);
1012FMT_TYPE_CONSTANT(unsigned long long, ulong_long_type);
1013FMT_TYPE_CONSTANT(int128_t, int128_type);
1014FMT_TYPE_CONSTANT(uint128_t, uint128_type);
1015FMT_TYPE_CONSTANT(bool, bool_type);
1016FMT_TYPE_CONSTANT(Char, char_type);
1017FMT_TYPE_CONSTANT(float, float_type);
1018FMT_TYPE_CONSTANT(double, double_type);
1019FMT_TYPE_CONSTANT(long double, long_double_type);
1020FMT_TYPE_CONSTANT(const Char*, cstring_type);
1021FMT_TYPE_CONSTANT(basic_string_view<Char>, string_type);
1022FMT_TYPE_CONSTANT(const void*, pointer_type);
1023
1024constexpr bool is_integral_type(type t) {
1025 return t > type::none_type && t <= type::last_integer_type;
1026}
1027
1028constexpr bool is_arithmetic_type(type t) {
1029 return t > type::none_type && t <= type::last_numeric_type;
1030}
1031
1032template <typename Char> struct string_value {
1033 const Char* data;
1034 size_t size;
1035};
1036
1037template <typename Char> struct named_arg_value {
1038 const named_arg_info<Char>* data;
1039 size_t size;
1040};
1041
1042template <typename Context> struct custom_value {
1043 using parse_context = typename Context::parse_context_type;
1044 const void* value;
1045 void (*format)(const void* arg, parse_context& parse_ctx, Context& ctx);
1046};
1047
1048// A formatting argument value.
1049template <typename Context> class value {
1050 public:
1051 using char_type = typename Context::char_type;
1052
1053 union {
1054 int int_value;
1055 unsigned uint_value;
1056 long long long_long_value;
1057 unsigned long long ulong_long_value;
1058 int128_t int128_value;
1059 uint128_t uint128_value;
1060 bool bool_value;
1061 char_type char_value;
1062 float float_value;
1063 double double_value;
1064 long double long_double_value;
1065 const void* pointer;
1066 string_value<char_type> string;
1067 custom_value<Context> custom;
1068 named_arg_value<char_type> named_args;
1069 };
1070
1071 constexpr FMT_INLINE value(int val = 0) : int_value(val) {}
1072 constexpr FMT_INLINE value(unsigned val) : uint_value(val) {}
1073 FMT_INLINE value(long long val) : long_long_value(val) {}
1074 FMT_INLINE value(unsigned long long val) : ulong_long_value(val) {}
1075 FMT_INLINE value(int128_t val) : int128_value(val) {}
1076 FMT_INLINE value(uint128_t val) : uint128_value(val) {}
1077 FMT_INLINE value(float val) : float_value(val) {}
1078 FMT_INLINE value(double val) : double_value(val) {}
1079 FMT_INLINE value(long double val) : long_double_value(val) {}
1080 FMT_INLINE value(bool val) : bool_value(val) {}
1081 FMT_INLINE value(char_type val) : char_value(val) {}
1082 FMT_INLINE value(const char_type* val) { string.data = val; }
1083 FMT_INLINE value(basic_string_view<char_type> val) {
1084 string.data = val.data();
1085 string.size = val.size();
1086 }
1087 FMT_INLINE value(const void* val) : pointer(val) {}
1088 FMT_INLINE value(const named_arg_info<char_type>* args, size_t size)
1089 : named_args{args, size} {}
1090
1091 template <typename T> FMT_INLINE value(const T& val) {
1092 custom.value = &val;
1093 // Get the formatter type through the context to allow different contexts
1094 // have different extension points, e.g. `formatter<T>` for `format` and
1095 // `printf_formatter<T>` for `printf`.
1096 custom.format = format_custom_arg<
1097 T, conditional_t<has_formatter<T, Context>::value,
1098 typename Context::template formatter_type<T>,
1099 fallback_formatter<T, char_type>>>;
1100 }
1101
1102 private:
1103 // Formats an argument of a custom type, such as a user-defined class.
1104 template <typename T, typename Formatter>
1105 static void format_custom_arg(const void* arg,
1106 typename Context::parse_context_type& parse_ctx,
1107 Context& ctx) {
1108 Formatter f;
1109 parse_ctx.advance_to(f.parse(parse_ctx));
1110 ctx.advance_to(f.format(*static_cast<const T*>(arg), ctx));
1111 }
1112};
1113
1114template <typename Context, typename T>
1115FMT_CONSTEXPR basic_format_arg<Context> make_arg(const T& value);
1116
1117// To minimize the number of types we need to deal with, long is translated
1118// either to int or to long long depending on its size.
1119enum { long_short = sizeof(long) == sizeof(int) };
1120using long_type = conditional_t<long_short, int, long long>;
1121using ulong_type = conditional_t<long_short, unsigned, unsigned long long>;
1122
1123struct unformattable {};
1124
1125// Maps formatting arguments to core types.
1126template <typename Context> struct arg_mapper {
1127 using char_type = typename Context::char_type;
1128
1129 FMT_CONSTEXPR int map(signed char val) { return val; }
1130 FMT_CONSTEXPR unsigned map(unsigned char val) { return val; }
1131 FMT_CONSTEXPR int map(short val) { return val; }
1132 FMT_CONSTEXPR unsigned map(unsigned short val) { return val; }
1133 FMT_CONSTEXPR int map(int val) { return val; }
1134 FMT_CONSTEXPR unsigned map(unsigned val) { return val; }
1135 FMT_CONSTEXPR long_type map(long val) { return val; }
1136 FMT_CONSTEXPR ulong_type map(unsigned long val) { return val; }
1137 FMT_CONSTEXPR long long map(long long val) { return val; }
1138 FMT_CONSTEXPR unsigned long long map(unsigned long long val) { return val; }
1139 FMT_CONSTEXPR int128_t map(int128_t val) { return val; }
1140 FMT_CONSTEXPR uint128_t map(uint128_t val) { return val; }
1141 FMT_CONSTEXPR bool map(bool val) { return val; }
1142
1143 template <typename T, FMT_ENABLE_IF(is_char<T>::value)>
1144 FMT_CONSTEXPR char_type map(T val) {
1145 static_assert(
1146 std::is_same<T, char>::value || std::is_same<T, char_type>::value,
1147 "mixing character types is disallowed");
1148 return val;
1149 }
1150
1151 FMT_CONSTEXPR float map(float val) { return val; }
1152 FMT_CONSTEXPR double map(double val) { return val; }
1153 FMT_CONSTEXPR long double map(long double val) { return val; }
1154
1155 FMT_CONSTEXPR const char_type* map(char_type* val) { return val; }
1156 FMT_CONSTEXPR const char_type* map(const char_type* val) { return val; }
1157 template <typename T, FMT_ENABLE_IF(is_string<T>::value)>
1158 FMT_CONSTEXPR basic_string_view<char_type> map(const T& val) {
1159 static_assert(std::is_same<char_type, char_t<T>>::value,
1160 "mixing character types is disallowed");
1161 return to_string_view(val);
1162 }
1163 template <typename T,
1164 FMT_ENABLE_IF(
1165 std::is_constructible<basic_string_view<char_type>, T>::value &&
1166 !is_string<T>::value && !has_formatter<T, Context>::value &&
1167 !has_fallback_formatter<T, Context>::value)>
1168 FMT_CONSTEXPR basic_string_view<char_type> map(const T& val) {
1169 return basic_string_view<char_type>(val);
1170 }
1171 template <
1172 typename T,
1173 FMT_ENABLE_IF(
1174 std::is_constructible<std_string_view<char_type>, T>::value &&
1175 !std::is_constructible<basic_string_view<char_type>, T>::value &&
1176 !is_string<T>::value && !has_formatter<T, Context>::value &&
1177 !has_fallback_formatter<T, Context>::value)>
1178 FMT_CONSTEXPR basic_string_view<char_type> map(const T& val) {
1179 return std_string_view<char_type>(val);
1180 }
1181 FMT_CONSTEXPR const char* map(const signed char* val) {
1182 static_assert(std::is_same<char_type, char>::value, "invalid string type");
1183 return reinterpret_cast<const char*>(val);
1184 }
1185 FMT_CONSTEXPR const char* map(const unsigned char* val) {
1186 static_assert(std::is_same<char_type, char>::value, "invalid string type");
1187 return reinterpret_cast<const char*>(val);
1188 }
1189 FMT_CONSTEXPR const char* map(signed char* val) {
1190 const auto* const_val = val;
1191 return map(const_val);
1192 }
1193 FMT_CONSTEXPR const char* map(unsigned char* val) {
1194 const auto* const_val = val;
1195 return map(const_val);
1196 }
1197
1198 FMT_CONSTEXPR const void* map(void* val) { return val; }
1199 FMT_CONSTEXPR const void* map(const void* val) { return val; }
1200 FMT_CONSTEXPR const void* map(std::nullptr_t val) { return val; }
1201 template <typename T> FMT_CONSTEXPR int map(const T*) {
1202 // Formatting of arbitrary pointers is disallowed. If you want to output
1203 // a pointer cast it to "void *" or "const void *". In particular, this
1204 // forbids formatting of "[const] volatile char *" which is printed as bool
1205 // by iostreams.
1206 static_assert(!sizeof(T), "formatting of non-void pointers is disallowed");
1207 return 0;
1208 }
1209
1210 template <typename T,
1211 FMT_ENABLE_IF(std::is_enum<T>::value &&
1212 !has_formatter<T, Context>::value &&
1213 !has_fallback_formatter<T, Context>::value)>
1214 FMT_CONSTEXPR auto map(const T& val)
1215 -> decltype(std::declval<arg_mapper>().map(
1216 static_cast<typename std::underlying_type<T>::type>(val))) {
1217 return map(static_cast<typename std::underlying_type<T>::type>(val));
1218 }
1219 template <typename T,
1220 FMT_ENABLE_IF(!is_string<T>::value && !is_char<T>::value &&
1221 (has_formatter<T, Context>::value ||
1222 has_fallback_formatter<T, Context>::value))>
1223 FMT_CONSTEXPR const T& map(const T& val) {
1224 return val;
1225 }
1226
1227 template <typename T>
1228 FMT_CONSTEXPR auto map(const named_arg<char_type, T>& val)
1229 -> decltype(std::declval<arg_mapper>().map(val.value)) {
1230 return map(val.value);
1231 }
1232
1233 unformattable map(...) { return {}; }
1234};
1235
1236// A type constant after applying arg_mapper<Context>.
1237template <typename T, typename Context>
1238using mapped_type_constant =
1239 type_constant<decltype(arg_mapper<Context>().map(std::declval<const T&>())),
1240 typename Context::char_type>;
1241
1242enum { packed_arg_bits = 4 };
1243// Maximum number of arguments with packed types.
1244enum { max_packed_args = 62 / packed_arg_bits };
1245enum : unsigned long long { is_unpacked_bit = 1ULL << 63 };
1246enum : unsigned long long { has_named_args_bit = 1ULL << 62 };
1247} // namespace detail
1248
1249// A formatting argument. It is a trivially copyable/constructible type to
1250// allow storage in basic_memory_buffer.
1251template <typename Context> class basic_format_arg {
1252 private:
1253 detail::value<Context> value_;
1254 detail::type type_;
1255
1256 template <typename ContextType, typename T>
1257 friend FMT_CONSTEXPR basic_format_arg<ContextType> detail::make_arg(
1258 const T& value);
1259
1260 template <typename Visitor, typename Ctx>
1261 friend FMT_CONSTEXPR auto visit_format_arg(Visitor&& vis,
1262 const basic_format_arg<Ctx>& arg)
1263 -> decltype(vis(0));
1264
1265 friend class basic_format_args<Context>;
1266 friend class dynamic_format_arg_store<Context>;
1267
1268 using char_type = typename Context::char_type;
1269
1270 template <typename T, typename Char, size_t NUM_ARGS, size_t NUM_NAMED_ARGS>
1271 friend struct detail::arg_data;
1272
1273 basic_format_arg(const detail::named_arg_info<char_type>* args, size_t size)
1274 : value_(args, size) {}
1275
1276 public:
1277 class handle {
1278 public:
1279 explicit handle(detail::custom_value<Context> custom) : custom_(custom) {}
1280
1281 void format(typename Context::parse_context_type& parse_ctx,
1282 Context& ctx) const {
1283 custom_.format(custom_.value, parse_ctx, ctx);
1284 }
1285
1286 private:
1287 detail::custom_value<Context> custom_;
1288 };
1289
1290 constexpr basic_format_arg() : type_(detail::type::none_type) {}
1291
1292 constexpr explicit operator bool() const FMT_NOEXCEPT {
1293 return type_ != detail::type::none_type;
1294 }
1295
1296 detail::type type() const { return type_; }
1297
1298 bool is_integral() const { return detail::is_integral_type(type_); }
1299 bool is_arithmetic() const { return detail::is_arithmetic_type(type_); }
1300};
1301
1302/**
1303 \rst
1304 Visits an argument dispatching to the appropriate visit method based on
1305 the argument type. For example, if the argument type is ``double`` then
1306 ``vis(value)`` will be called with the value of type ``double``.
1307 \endrst
1308 */
1309template <typename Visitor, typename Context>
1310FMT_CONSTEXPR_DECL FMT_INLINE auto visit_format_arg(
1311 Visitor&& vis, const basic_format_arg<Context>& arg) -> decltype(vis(0)) {
1312 using char_type = typename Context::char_type;
1313 switch (arg.type_) {
1314 case detail::type::none_type:
1315 break;
1316 case detail::type::int_type:
1317 return vis(arg.value_.int_value);
1318 case detail::type::uint_type:
1319 return vis(arg.value_.uint_value);
1320 case detail::type::long_long_type:
1321 return vis(arg.value_.long_long_value);
1322 case detail::type::ulong_long_type:
1323 return vis(arg.value_.ulong_long_value);
1324#if FMT_USE_INT128
1325 case detail::type::int128_type:
1326 return vis(arg.value_.int128_value);
1327 case detail::type::uint128_type:
1328 return vis(arg.value_.uint128_value);
1329#else
1330 case detail::type::int128_type:
1331 case detail::type::uint128_type:
1332 break;
1333#endif
1334 case detail::type::bool_type:
1335 return vis(arg.value_.bool_value);
1336 case detail::type::char_type:
1337 return vis(arg.value_.char_value);
1338 case detail::type::float_type:
1339 return vis(arg.value_.float_value);
1340 case detail::type::double_type:
1341 return vis(arg.value_.double_value);
1342 case detail::type::long_double_type:
1343 return vis(arg.value_.long_double_value);
1344 case detail::type::cstring_type:
1345 return vis(arg.value_.string.data);
1346 case detail::type::string_type:
1347 return vis(basic_string_view<char_type>(arg.value_.string.data,
1348 arg.value_.string.size));
1349 case detail::type::pointer_type:
1350 return vis(arg.value_.pointer);
1351 case detail::type::custom_type:
1352 return vis(typename basic_format_arg<Context>::handle(arg.value_.custom));
1353 }
1354 return vis(monostate());
1355}
1356
1357template <typename T> struct formattable : std::false_type {};
1358
1359namespace detail {
1360
1361// A workaround for gcc 4.8 to make void_t work in a SFINAE context.
1362template <typename... Ts> struct void_t_impl { using type = void; };
1363template <typename... Ts>
1364using void_t = typename detail::void_t_impl<Ts...>::type;
1365
1366template <typename It, typename T, typename Enable = void>
1367struct is_output_iterator : std::false_type {};
1368
1369template <typename It, typename T>
1370struct is_output_iterator<
1371 It, T,
1372 void_t<typename std::iterator_traits<It>::iterator_category,
1373 decltype(*std::declval<It>() = std::declval<T>())>>
1374 : std::true_type {};
1375
1376template <typename OutputIt>
1377struct is_back_insert_iterator : std::false_type {};
1378template <typename Container>
1379struct is_back_insert_iterator<std::back_insert_iterator<Container>>
1380 : std::true_type {};
1381
1382template <typename OutputIt>
1383struct is_contiguous_back_insert_iterator : std::false_type {};
1384template <typename Container>
1385struct is_contiguous_back_insert_iterator<std::back_insert_iterator<Container>>
1386 : is_contiguous<Container> {};
1387template <typename Char>
1388struct is_contiguous_back_insert_iterator<buffer_appender<Char>>
1389 : std::true_type {};
1390
1391// A type-erased reference to an std::locale to avoid heavy <locale> include.
1392class locale_ref {
1393 private:
1394 const void* locale_; // A type-erased pointer to std::locale.
1395
1396 public:
1397 locale_ref() : locale_(nullptr) {}
1398 template <typename Locale> explicit locale_ref(const Locale& loc);
1399
1400 explicit operator bool() const FMT_NOEXCEPT { return locale_ != nullptr; }
1401
1402 template <typename Locale> Locale get() const;
1403};
1404
1405template <typename> constexpr unsigned long long encode_types() { return 0; }
1406
1407template <typename Context, typename Arg, typename... Args>
1408constexpr unsigned long long encode_types() {
1409 return static_cast<unsigned>(mapped_type_constant<Arg, Context>::value) |
1410 (encode_types<Context, Args...>() << packed_arg_bits);
1411}
1412
1413template <typename Context, typename T>
1414FMT_CONSTEXPR basic_format_arg<Context> make_arg(const T& value) {
1415 basic_format_arg<Context> arg;
1416 arg.type_ = mapped_type_constant<T, Context>::value;
1417 arg.value_ = arg_mapper<Context>().map(value);
1418 return arg;
1419}
1420
1421template <typename T> int check(unformattable) {
1422 static_assert(
1423 formattable<T>(),
1424 "Cannot format an argument. To make type T formattable provide a "
1425 "formatter<T> specialization: https://fmt.dev/latest/api.html#udt");
1426 return 0;
1427}
1428template <typename T, typename U> inline const U& check(const U& val) {
1429 return val;
1430}
1431
1432// The type template parameter is there to avoid an ODR violation when using
1433// a fallback formatter in one translation unit and an implicit conversion in
1434// another (not recommended).
1435template <bool IS_PACKED, typename Context, type, typename T,
1436 FMT_ENABLE_IF(IS_PACKED)>
1437inline value<Context> make_arg(const T& val) {
1438 return check<T>(arg_mapper<Context>().map(val));
1439}
1440
1441template <bool IS_PACKED, typename Context, type, typename T,
1442 FMT_ENABLE_IF(!IS_PACKED)>
1443inline basic_format_arg<Context> make_arg(const T& value) {
1444 return make_arg<Context>(value);
1445}
1446
1447template <typename T> struct is_reference_wrapper : std::false_type {};
1448template <typename T>
1449struct is_reference_wrapper<std::reference_wrapper<T>> : std::true_type {};
1450
1451template <typename T> const T& unwrap(const T& v) { return v; }
1452template <typename T> const T& unwrap(const std::reference_wrapper<T>& v) {
1453 return static_cast<const T&>(v);
1454}
1455
1456class dynamic_arg_list {
1457 // Workaround for clang's -Wweak-vtables. Unlike for regular classes, for
1458 // templates it doesn't complain about inability to deduce single translation
1459 // unit for placing vtable. So storage_node_base is made a fake template.
1460 template <typename = void> struct node {
1461 virtual ~node() = default;
1462 std::unique_ptr<node<>> next;
1463 };
1464
1465 template <typename T> struct typed_node : node<> {
1466 T value;
1467
1468 template <typename Arg>
1469 FMT_CONSTEXPR typed_node(const Arg& arg) : value(arg) {}
1470
1471 template <typename Char>
1472 FMT_CONSTEXPR typed_node(const basic_string_view<Char>& arg)
1473 : value(arg.data(), arg.size()) {}
1474 };
1475
1476 std::unique_ptr<node<>> head_;
1477
1478 public:
1479 template <typename T, typename Arg> const T& push(const Arg& arg) {
1480 auto new_node = std::unique_ptr<typed_node<T>>(new typed_node<T>(arg));
1481 auto& value = new_node->value;
1482 new_node->next = std::move(head_);
1483 head_ = std::move(new_node);
1484 return value;
1485 }
1486};
1487} // namespace detail
1488
1489// Formatting context.
1490template <typename OutputIt, typename Char> class basic_format_context {
1491 public:
1492 /** The character type for the output. */
1493 using char_type = Char;
1494
1495 private:
1496 OutputIt out_;
1497 basic_format_args<basic_format_context> args_;
1498 detail::locale_ref loc_;
1499
1500 public:
1501 using iterator = OutputIt;
1502 using format_arg = basic_format_arg<basic_format_context>;
1503 using parse_context_type = basic_format_parse_context<Char>;
1504 template <typename T> using formatter_type = formatter<T, char_type>;
1505
1506 basic_format_context(const basic_format_context&) = delete;
1507 void operator=(const basic_format_context&) = delete;
1508 /**
1509 Constructs a ``basic_format_context`` object. References to the arguments are
1510 stored in the object so make sure they have appropriate lifetimes.
1511 */
1512 basic_format_context(OutputIt out,
1513 basic_format_args<basic_format_context> ctx_args,
1514 detail::locale_ref loc = detail::locale_ref())
1515 : out_(out), args_(ctx_args), loc_(loc) {}
1516
1517 format_arg arg(int id) const { return args_.get(id); }
1518 format_arg arg(basic_string_view<char_type> name) { return args_.get(name); }
1519 int arg_id(basic_string_view<char_type> name) { return args_.get_id(name); }
1520 const basic_format_args<basic_format_context>& args() const { return args_; }
1521
1522 detail::error_handler error_handler() { return {}; }
1523 void on_error(const char* message) { error_handler().on_error(message); }
1524
1525 // Returns an iterator to the beginning of the output range.
1526 iterator out() { return out_; }
1527
1528 // Advances the begin iterator to ``it``.
1529 void advance_to(iterator it) {
1530 if (!detail::is_back_insert_iterator<iterator>()) out_ = it;
1531 }
1532
1533 detail::locale_ref locale() { return loc_; }
1534};
1535
1536template <typename Char>
1537using buffer_context =
1538 basic_format_context<detail::buffer_appender<Char>, Char>;
1539using format_context = buffer_context<char>;
1540using wformat_context = buffer_context<wchar_t>;
1541
1542// Workaround an alias issue: https://stackoverflow.com/q/62767544/471164.
1543#define FMT_BUFFER_CONTEXT(Char) \
1544 basic_format_context<detail::buffer_appender<Char>, Char>
1545
1546/**
1547 \rst
1548 An array of references to arguments. It can be implicitly converted into
1549 `~fmt::basic_format_args` for passing into type-erased formatting functions
1550 such as `~fmt::vformat`.
1551 \endrst
1552 */
1553template <typename Context, typename... Args>
1554class format_arg_store
1555#if FMT_GCC_VERSION && FMT_GCC_VERSION < 409
1556 // Workaround a GCC template argument substitution bug.
1557 : public basic_format_args<Context>
1558#endif
1559{
1560 private:
1561 static const size_t num_args = sizeof...(Args);
1562 static const size_t num_named_args = detail::count_named_args<Args...>();
1563 static const bool is_packed = num_args <= detail::max_packed_args;
1564
1565 using value_type = conditional_t<is_packed, detail::value<Context>,
1566 basic_format_arg<Context>>;
1567
1568 detail::arg_data<value_type, typename Context::char_type, num_args,
1569 num_named_args>
1570 data_;
1571
1572 friend class basic_format_args<Context>;
1573
1574 static constexpr unsigned long long desc =
1575 (is_packed ? detail::encode_types<Context, Args...>()
1576 : detail::is_unpacked_bit | num_args) |
1577 (num_named_args != 0
1578 ? static_cast<unsigned long long>(detail::has_named_args_bit)
1579 : 0);
1580
1581 public:
1582 format_arg_store(const Args&... args)
1583 :
1584#if FMT_GCC_VERSION && FMT_GCC_VERSION < 409
1585 basic_format_args<Context>(*this),
1586#endif
1587 data_{detail::make_arg<
1588 is_packed, Context,
1589 detail::mapped_type_constant<Args, Context>::value>(args)...} {
1590 detail::init_named_args(data_.named_args(), 0, 0, args...);
1591 }
1592};
1593
1594/**
1595 \rst
1596 Constructs a `~fmt::format_arg_store` object that contains references to
1597 arguments and can be implicitly converted to `~fmt::format_args`. `Context`
1598 can be omitted in which case it defaults to `~fmt::context`.
1599 See `~fmt::arg` for lifetime considerations.
1600 \endrst
1601 */
1602template <typename Context = format_context, typename... Args>
1603inline format_arg_store<Context, Args...> make_format_args(
1604 const Args&... args) {
1605 return {args...};
1606}
1607
1608/**
1609 \rst
1610 Constructs a `~fmt::format_arg_store` object that contains references
1611 to arguments and can be implicitly converted to `~fmt::format_args`.
1612 If ``format_str`` is a compile-time string then `make_args_checked` checks
1613 its validity at compile time.
1614 \endrst
1615 */
1616template <typename... Args, typename S, typename Char = char_t<S>>
1617inline auto make_args_checked(const S& format_str,
1618 const remove_reference_t<Args>&... args)
1619 -> format_arg_store<buffer_context<Char>, remove_reference_t<Args>...> {
1620 static_assert(
1621 detail::count<(
1622 std::is_base_of<detail::view, remove_reference_t<Args>>::value &&
1623 std::is_reference<Args>::value)...>() == 0,
1624 "passing views as lvalues is disallowed");
1625 detail::check_format_string<Args...>(format_str);
1626 return {args...};
1627}
1628
1629/**
1630 \rst
1631 Returns a named argument to be used in a formatting function. It should only
1632 be used in a call to a formatting function.
1633
1634 **Example**::
1635
1636 fmt::print("Elapsed time: {s:.2f} seconds", fmt::arg("s", 1.23));
1637 \endrst
1638 */
1639template <typename Char, typename T>
1640inline detail::named_arg<Char, T> arg(const Char* name, const T& arg) {
1641 static_assert(!detail::is_named_arg<T>(), "nested named arguments");
1642 return {name, arg};
1643}
1644
1645/**
1646 \rst
1647 A dynamic version of `fmt::format_arg_store`.
1648 It's equipped with a storage to potentially temporary objects which lifetimes
1649 could be shorter than the format arguments object.
1650
1651 It can be implicitly converted into `~fmt::basic_format_args` for passing
1652 into type-erased formatting functions such as `~fmt::vformat`.
1653 \endrst
1654 */
1655template <typename Context>
1656class dynamic_format_arg_store
1657#if FMT_GCC_VERSION && FMT_GCC_VERSION < 409
1658 // Workaround a GCC template argument substitution bug.
1659 : public basic_format_args<Context>
1660#endif
1661{
1662 private:
1663 using char_type = typename Context::char_type;
1664
1665 template <typename T> struct need_copy {
1666 static constexpr detail::type mapped_type =
1667 detail::mapped_type_constant<T, Context>::value;
1668
1669 enum {
1670 value = !(detail::is_reference_wrapper<T>::value ||
1671 std::is_same<T, basic_string_view<char_type>>::value ||
1672 std::is_same<T, detail::std_string_view<char_type>>::value ||
1673 (mapped_type != detail::type::cstring_type &&
1674 mapped_type != detail::type::string_type &&
1675 mapped_type != detail::type::custom_type))
1676 };
1677 };
1678
1679 template <typename T>
1680 using stored_type = conditional_t<detail::is_string<T>::value,
1681 std::basic_string<char_type>, T>;
1682
1683 // Storage of basic_format_arg must be contiguous.
1684 std::vector<basic_format_arg<Context>> data_;
1685 std::vector<detail::named_arg_info<char_type>> named_info_;
1686
1687 // Storage of arguments not fitting into basic_format_arg must grow
1688 // without relocation because items in data_ refer to it.
1689 detail::dynamic_arg_list dynamic_args_;
1690
1691 friend class basic_format_args<Context>;
1692
1693 unsigned long long get_types() const {
1694 return detail::is_unpacked_bit | data_.size() |
1695 (named_info_.empty()
1696 ? 0ULL
1697 : static_cast<unsigned long long>(detail::has_named_args_bit));
1698 }
1699
1700 const basic_format_arg<Context>* data() const {
1701 return named_info_.empty() ? data_.data() : data_.data() + 1;
1702 }
1703
1704 template <typename T> void emplace_arg(const T& arg) {
1705 data_.emplace_back(detail::make_arg<Context>(arg));
1706 }
1707
1708 template <typename T>
1709 void emplace_arg(const detail::named_arg<char_type, T>& arg) {
1710 if (named_info_.empty()) {
1711 constexpr const detail::named_arg_info<char_type>* zero_ptr{nullptr};
1712 data_.insert(data_.begin(), {zero_ptr, 0});
1713 }
1714 data_.emplace_back(detail::make_arg<Context>(detail::unwrap(arg.value)));
1715 auto pop_one = [](std::vector<basic_format_arg<Context>>* data) {
1716 data->pop_back();
1717 };
1718 std::unique_ptr<std::vector<basic_format_arg<Context>>, decltype(pop_one)>
1719 guard{&data_, pop_one};
1720 named_info_.push_back({arg.name, static_cast<int>(data_.size() - 2u)});
1721 data_[0].value_.named_args = {named_info_.data(), named_info_.size()};
1722 guard.release();
1723 }
1724
1725 public:
1726 /**
1727 \rst
1728 Adds an argument into the dynamic store for later passing to a formatting
1729 function.
1730
1731 Note that custom types and string types (but not string views) are copied
1732 into the store dynamically allocating memory if necessary.
1733
1734 **Example**::
1735
1736 fmt::dynamic_format_arg_store<fmt::format_context> store;
1737 store.push_back(42);
1738 store.push_back("abc");
1739 store.push_back(1.5f);
1740 std::string result = fmt::vformat("{} and {} and {}", store);
1741 \endrst
1742 */
1743 template <typename T> void push_back(const T& arg) {
1744 if (detail::const_check(need_copy<T>::value))
1745 emplace_arg(dynamic_args_.push<stored_type<T>>(arg));
1746 else
1747 emplace_arg(detail::unwrap(arg));
1748 }
1749
1750 /**
1751 \rst
1752 Adds a reference to the argument into the dynamic store for later passing to
1753 a formatting function. Supports named arguments wrapped in
1754 ``std::reference_wrapper`` via ``std::ref()``/``std::cref()``.
1755
1756 **Example**::
1757
1758 fmt::dynamic_format_arg_store<fmt::format_context> store;
1759 char str[] = "1234567890";
1760 store.push_back(std::cref(str));
1761 int a1_val{42};
1762 auto a1 = fmt::arg("a1_", a1_val);
1763 store.push_back(std::cref(a1));
1764
1765 // Changing str affects the output but only for string and custom types.
1766 str[0] = 'X';
1767
1768 std::string result = fmt::vformat("{} and {a1_}");
1769 assert(result == "X234567890 and 42");
1770 \endrst
1771 */
1772 template <typename T> void push_back(std::reference_wrapper<T> arg) {
1773 static_assert(
1774 detail::is_named_arg<typename std::remove_cv<T>::type>::value ||
1775 need_copy<T>::value,
1776 "objects of built-in types and string views are always copied");
1777 emplace_arg(arg.get());
1778 }
1779
1780 /**
1781 Adds named argument into the dynamic store for later passing to a formatting
1782 function. ``std::reference_wrapper`` is supported to avoid copying of the
1783 argument.
1784 */
1785 template <typename T>
1786 void push_back(const detail::named_arg<char_type, T>& arg) {
1787 const char_type* arg_name =
1788 dynamic_args_.push<std::basic_string<char_type>>(arg.name).c_str();
1789 if (detail::const_check(need_copy<T>::value)) {
1790 emplace_arg(
1791 fmt::arg(arg_name, dynamic_args_.push<stored_type<T>>(arg.value)));
1792 } else {
1793 emplace_arg(fmt::arg(arg_name, arg.value));
1794 }
1795 }
1796
1797 /** Erase all elements from the store */
1798 void clear() {
1799 data_.clear();
1800 named_info_.clear();
1801 dynamic_args_ = detail::dynamic_arg_list();
1802 }
1803
1804 /**
1805 \rst
1806 Reserves space to store at least *new_cap* arguments including
1807 *new_cap_named* named arguments.
1808 \endrst
1809 */
1810 void reserve(size_t new_cap, size_t new_cap_named) {
1811 FMT_ASSERT(new_cap >= new_cap_named,
1812 "Set of arguments includes set of named arguments");
1813 data_.reserve(new_cap);
1814 named_info_.reserve(new_cap_named);
1815 }
1816};
1817
1818/**
1819 \rst
1820 A view of a collection of formatting arguments. To avoid lifetime issues it
1821 should only be used as a parameter type in type-erased functions such as
1822 ``vformat``::
1823
1824 void vlog(string_view format_str, format_args args); // OK
1825 format_args args = make_format_args(42); // Error: dangling reference
1826 \endrst
1827 */
1828template <typename Context> class basic_format_args {
1829 public:
1830 using size_type = int;
1831 using format_arg = basic_format_arg<Context>;
1832
1833 private:
1834 // A descriptor that contains information about formatting arguments.
1835 // If the number of arguments is less or equal to max_packed_args then
1836 // argument types are passed in the descriptor. This reduces binary code size
1837 // per formatting function call.
1838 unsigned long long desc_;
1839 union {
1840 // If is_packed() returns true then argument values are stored in values_;
1841 // otherwise they are stored in args_. This is done to improve cache
1842 // locality and reduce compiled code size since storing larger objects
1843 // may require more code (at least on x86-64) even if the same amount of
1844 // data is actually copied to stack. It saves ~10% on the bloat test.
1845 const detail::value<Context>* values_;
1846 const format_arg* args_;
1847 };
1848
1849 bool is_packed() const { return (desc_ & detail::is_unpacked_bit) == 0; }
1850 bool has_named_args() const {
1851 return (desc_ & detail::has_named_args_bit) != 0;
1852 }
1853
1854 detail::type type(int index) const {
1855 int shift = index * detail::packed_arg_bits;
1856 unsigned int mask = (1 << detail::packed_arg_bits) - 1;
1857 return static_cast<detail::type>((desc_ >> shift) & mask);
1858 }
1859
1860 basic_format_args(unsigned long long desc,
1861 const detail::value<Context>* values)
1862 : desc_(desc), values_(values) {}
1863 basic_format_args(unsigned long long desc, const format_arg* args)
1864 : desc_(desc), args_(args) {}
1865
1866 public:
1867 basic_format_args() : desc_(0) {}
1868
1869 /**
1870 \rst
1871 Constructs a `basic_format_args` object from `~fmt::format_arg_store`.
1872 \endrst
1873 */
1874 template <typename... Args>
1875 FMT_INLINE basic_format_args(const format_arg_store<Context, Args...>& store)
1876 : basic_format_args(store.desc, store.data_.args()) {}
1877
1878 /**
1879 \rst
1880 Constructs a `basic_format_args` object from
1881 `~fmt::dynamic_format_arg_store`.
1882 \endrst
1883 */
1884 FMT_INLINE basic_format_args(const dynamic_format_arg_store<Context>& store)
1885 : basic_format_args(store.get_types(), store.data()) {}
1886
1887 /**
1888 \rst
1889 Constructs a `basic_format_args` object from a dynamic set of arguments.
1890 \endrst
1891 */
1892 basic_format_args(const format_arg* args, int count)
1893 : basic_format_args(detail::is_unpacked_bit | detail::to_unsigned(count),
1894 args) {}
1895
1896 /** Returns the argument with the specified id. */
1897 format_arg get(int id) const {
1898 format_arg arg;
1899 if (!is_packed()) {
1900 if (id < max_size()) arg = args_[id];
1901 return arg;
1902 }
1903 if (id >= detail::max_packed_args) return arg;
1904 arg.type_ = type(id);
1905 if (arg.type_ == detail::type::none_type) return arg;
1906 arg.value_ = values_[id];
1907 return arg;
1908 }
1909
1910 template <typename Char> format_arg get(basic_string_view<Char> name) const {
1911 int id = get_id(name);
1912 return id >= 0 ? get(id) : format_arg();
1913 }
1914
1915 template <typename Char> int get_id(basic_string_view<Char> name) const {
1916 if (!has_named_args()) return -1;
1917 const auto& named_args =
1918 (is_packed() ? values_[-1] : args_[-1].value_).named_args;
1919 for (size_t i = 0; i < named_args.size; ++i) {
1920 if (named_args.data[i].name == name) return named_args.data[i].id;
1921 }
1922 return -1;
1923 }
1924
1925 int max_size() const {
1926 unsigned long long max_packed = detail::max_packed_args;
1927 return static_cast<int>(is_packed() ? max_packed
1928 : desc_ & ~detail::is_unpacked_bit);
1929 }
1930};
1931
1932#ifdef FMT_ARM_ABI_COMPATIBILITY
1933/** An alias to ``basic_format_args<format_context>``. */
1934// Separate types would result in shorter symbols but break ABI compatibility
1935// between clang and gcc on ARM (#1919).
1936using format_args = basic_format_args<format_context>;
1937using wformat_args = basic_format_args<wformat_context>;
1938#else
1939// DEPRECATED! These are kept for ABI compatibility.
1940// It is a separate type rather than an alias to make symbols readable.
1941struct format_args : basic_format_args<format_context> {
1942 template <typename... Args>
1943 FMT_INLINE format_args(const Args&... args) : basic_format_args(args...) {}
1944};
1945struct wformat_args : basic_format_args<wformat_context> {
1946 using basic_format_args::basic_format_args;
1947};
1948#endif
1949
1950namespace detail {
1951
1952template <typename Char, FMT_ENABLE_IF(!std::is_same<Char, char>::value)>
1953std::basic_string<Char> vformat(
1954 basic_string_view<Char> format_str,
1955 basic_format_args<buffer_context<type_identity_t<Char>>> args);
1956
1957FMT_API std::string vformat(string_view format_str, format_args args);
1958
1959template <typename Char>
1960void vformat_to(
1961 buffer<Char>& buf, basic_string_view<Char> format_str,
1962 basic_format_args<FMT_BUFFER_CONTEXT(type_identity_t<Char>)> args,
1963 detail::locale_ref loc = {});
1964
1965template <typename Char, typename Args,
1966 FMT_ENABLE_IF(!std::is_same<Char, char>::value)>
1967inline void vprint_mojibake(std::FILE*, basic_string_view<Char>, const Args&) {}
1968
1969FMT_API void vprint_mojibake(std::FILE*, string_view, format_args);
1970#ifndef _WIN32
1971inline void vprint_mojibake(std::FILE*, string_view, format_args) {}
1972#endif
1973} // namespace detail
1974
1975/** Formats a string and writes the output to ``out``. */
1976// GCC 8 and earlier cannot handle std::back_insert_iterator<Container> with
1977// vformat_to<ArgFormatter>(...) overload, so SFINAE on iterator type instead.
1978template <typename OutputIt, typename S, typename Char = char_t<S>,
1979 bool enable = detail::is_output_iterator<OutputIt, Char>::value>
1980auto vformat_to(OutputIt out, const S& format_str,
1981 basic_format_args<buffer_context<type_identity_t<Char>>> args)
1982 -> typename std::enable_if<enable, OutputIt>::type {
1983 decltype(detail::get_buffer<Char>(out)) buf(detail::get_buffer_init(out));
1984 detail::vformat_to(buf, to_string_view(format_str), args);
1985 return detail::get_iterator(buf);
1986}
1987
1988/**
1989 \rst
1990 Formats arguments, writes the result to the output iterator ``out`` and returns
1991 the iterator past the end of the output range.
1992
1993 **Example**::
1994
1995 std::vector<char> out;
1996 fmt::format_to(std::back_inserter(out), "{}", 42);
1997 \endrst
1998 */
1999// We cannot use FMT_ENABLE_IF because of a bug in gcc 8.3.
2000template <typename OutputIt, typename S, typename... Args,
2001 bool enable = detail::is_output_iterator<OutputIt, char_t<S>>::value>
2002inline auto format_to(OutputIt out, const S& format_str, Args&&... args) ->
2003 typename std::enable_if<enable, OutputIt>::type {
2004 const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...);
2005 return vformat_to(out, to_string_view(format_str), vargs);
2006}
2007
2008template <typename OutputIt> struct format_to_n_result {
2009 /** Iterator past the end of the output range. */
2010 OutputIt out;
2011 /** Total (not truncated) output size. */
2012 size_t size;
2013};
2014
2015template <typename OutputIt, typename Char, typename... Args,
2016 FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, Char>::value)>
2017inline format_to_n_result<OutputIt> vformat_to_n(
2018 OutputIt out, size_t n, basic_string_view<Char> format_str,
2019 basic_format_args<buffer_context<type_identity_t<Char>>> args) {
2020 detail::iterator_buffer<OutputIt, Char, detail::fixed_buffer_traits> buf(out,
2021 n);
2022 detail::vformat_to(buf, format_str, args);
2023 return {buf.out(), buf.count()};
2024}
2025
2026/**
2027 \rst
2028 Formats arguments, writes up to ``n`` characters of the result to the output
2029 iterator ``out`` and returns the total output size and the iterator past the
2030 end of the output range.
2031 \endrst
2032 */
2033template <typename OutputIt, typename S, typename... Args,
2034 bool enable = detail::is_output_iterator<OutputIt, char_t<S>>::value>
2035inline auto format_to_n(OutputIt out, size_t n, const S& format_str,
2036 const Args&... args) ->
2037 typename std::enable_if<enable, format_to_n_result<OutputIt>>::type {
2038 const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...);
2039 return vformat_to_n(out, n, to_string_view(format_str), vargs);
2040}
2041
2042/**
2043 Returns the number of characters in the output of
2044 ``format(format_str, args...)``.
2045 */
2046template <typename... Args>
2047inline size_t formatted_size(string_view format_str, Args&&... args) {
2048 const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...);
2049 detail::counting_buffer<> buf;
2050 detail::vformat_to(buf, format_str, vargs);
2051 return buf.count();
2052}
2053
2054template <typename S, typename Char = char_t<S>>
2055FMT_INLINE std::basic_string<Char> vformat(
2056 const S& format_str,
2057 basic_format_args<buffer_context<type_identity_t<Char>>> args) {
2058 return detail::vformat(to_string_view(format_str), args);
2059}
2060
2061/**
2062 \rst
2063 Formats arguments and returns the result as a string.
2064
2065 **Example**::
2066
2067 #include <fmt/core.h>
2068 std::string message = fmt::format("The answer is {}", 42);
2069 \endrst
2070*/
2071// Pass char_t as a default template parameter instead of using
2072// std::basic_string<char_t<S>> to reduce the symbol size.
2073template <typename S, typename... Args, typename Char = char_t<S>>
2074FMT_INLINE std::basic_string<Char> format(const S& format_str, Args&&... args) {
2075 const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...);
2076 return detail::vformat(to_string_view(format_str), vargs);
2077}
2078
2079FMT_API void vprint(string_view, format_args);
2080FMT_API void vprint(std::FILE*, string_view, format_args);
2081
2082/**
2083 \rst
2084 Formats ``args`` according to specifications in ``format_str`` and writes the
2085 output to the file ``f``. Strings are assumed to be Unicode-encoded unless the
2086 ``FMT_UNICODE`` macro is set to 0.
2087
2088 **Example**::
2089
2090 fmt::print(stderr, "Don't {}!", "panic");
2091 \endrst
2092 */
2093template <typename S, typename... Args, typename Char = char_t<S>>
2094inline void print(std::FILE* f, const S& format_str, Args&&... args) {
2095 const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...);
2096 return detail::is_unicode<Char>()
2097 ? vprint(f, to_string_view(format_str), vargs)
2098 : detail::vprint_mojibake(f, to_string_view(format_str), vargs);
2099}
2100
2101/**
2102 \rst
2103 Formats ``args`` according to specifications in ``format_str`` and writes
2104 the output to ``stdout``. Strings are assumed to be Unicode-encoded unless
2105 the ``FMT_UNICODE`` macro is set to 0.
2106
2107 **Example**::
2108
2109 fmt::print("Elapsed time: {0:.2f} seconds", 1.23);
2110 \endrst
2111 */
2112template <typename S, typename... Args, typename Char = char_t<S>>
2113inline void print(const S& format_str, Args&&... args) {
2114 const auto& vargs = fmt::make_args_checked<Args...>(format_str, args...);
2115 return detail::is_unicode<Char>()
2116 ? vprint(to_string_view(format_str), vargs)
2117 : detail::vprint_mojibake(stdout, to_string_view(format_str),
2118 vargs);
2119}
2120FMT_END_NAMESPACE
2121
2122#endif // FMT_CORE_H_