blob: 2e1f5af7f56554f58908889c950fd71f0715be8a [file] [log] [blame]
/*
* time_in_state eBPF program
*
* Copyright (C) 2018 Google
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version
* 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#ifdef MOCK_BPF
#include <test/mock_bpf_helpers.h>
#else
#include <bpf_helpers.h>
#endif
#include <bpf_timeinstate.h>
DEFINE_BPF_MAP_GRW(total_time_in_state_map, PERCPU_ARRAY, uint32_t, uint64_t, MAX_FREQS_FOR_TOTAL,
AID_SYSTEM)
DEFINE_BPF_MAP_GRW(uid_time_in_state_map, PERCPU_HASH, time_key_t, tis_val_t, 1024, AID_SYSTEM)
DEFINE_BPF_MAP_GRW(uid_concurrent_times_map, PERCPU_HASH, time_key_t, concurrent_val_t, 1024,
AID_SYSTEM)
DEFINE_BPF_MAP_GRW(uid_last_update_map, HASH, uint32_t, uint64_t, 1024, AID_SYSTEM)
DEFINE_BPF_MAP_GWO(cpu_last_update_map, PERCPU_ARRAY, uint32_t, uint64_t, 1, AID_SYSTEM)
DEFINE_BPF_MAP_GWO(cpu_policy_map, ARRAY, uint32_t, uint32_t, 1024, AID_SYSTEM)
DEFINE_BPF_MAP_GWO(policy_freq_idx_map, ARRAY, uint32_t, uint8_t, 1024, AID_SYSTEM)
DEFINE_BPF_MAP_GWO(freq_to_idx_map, HASH, freq_idx_key_t, uint8_t, 2048, AID_SYSTEM)
DEFINE_BPF_MAP_GWO(nr_active_map, ARRAY, uint32_t, uint32_t, 1, AID_SYSTEM)
DEFINE_BPF_MAP_GWO(policy_nr_active_map, ARRAY, uint32_t, uint32_t, 1024, AID_SYSTEM)
DEFINE_BPF_MAP_GWO(pid_tracked_hash_map, HASH, uint32_t, pid_t, MAX_TRACKED_PIDS, AID_SYSTEM)
DEFINE_BPF_MAP_GWO(pid_tracked_map, ARRAY, uint32_t, tracked_pid_t, MAX_TRACKED_PIDS, AID_SYSTEM)
DEFINE_BPF_MAP_GWO(pid_task_aggregation_map, HASH, pid_t, uint16_t, 1024, AID_SYSTEM)
DEFINE_BPF_MAP_GRO(pid_time_in_state_map, PERCPU_HASH, aggregated_task_tis_key_t, tis_val_t, 1024,
AID_SYSTEM)
struct switch_args {
unsigned long long ignore;
char prev_comm[16];
int prev_pid;
int prev_prio;
long long prev_state;
char next_comm[16];
int next_pid;
int next_prio;
};
DEFINE_BPF_PROG("tracepoint/sched/sched_switch", AID_ROOT, AID_SYSTEM, tp_sched_switch)
(struct switch_args* args) {
const int ALLOW = 1; // return 1 to avoid blocking simpleperf from receiving events.
uint32_t zero = 0;
uint64_t* last = bpf_cpu_last_update_map_lookup_elem(&zero);
if (!last) return ALLOW;
uint64_t old_last = *last;
uint64_t time = bpf_ktime_get_ns();
*last = time;
uint32_t* active = bpf_nr_active_map_lookup_elem(&zero);
if (!active) return ALLOW;
uint32_t cpu = bpf_get_smp_processor_id();
uint32_t* policyp = bpf_cpu_policy_map_lookup_elem(&cpu);
if (!policyp) return ALLOW;
uint32_t policy = *policyp;
uint32_t* policy_active = bpf_policy_nr_active_map_lookup_elem(&policy);
if (!policy_active) return ALLOW;
uint32_t nactive = *active - 1;
uint32_t policy_nactive = *policy_active - 1;
if (!args->prev_pid || (!old_last && args->next_pid)) {
__sync_fetch_and_add(active, 1);
__sync_fetch_and_add(policy_active, 1);
}
// Return here in 2 scenarios:
// 1) prev_pid == 0, so we're exiting idle. No UID stats need updating, and active CPUs can't be
// decreasing.
// 2) old_last == 0, so this is the first time we've seen this CPU. Any delta will be invalid,
// and our active CPU counts don't include this CPU yet so we shouldn't decrement them even
// if we're going idle.
if (!args->prev_pid || !old_last) return ALLOW;
if (!args->next_pid) {
__sync_fetch_and_add(active, -1);
__sync_fetch_and_add(policy_active, -1);
}
uint8_t* freq_idxp = bpf_policy_freq_idx_map_lookup_elem(&policy);
if (!freq_idxp || !*freq_idxp) return ALLOW;
// freq_to_idx_map uses 1 as its minimum index so that *freq_idxp == 0 only when uninitialized
uint8_t freq_idx = *freq_idxp - 1;
uint32_t uid = bpf_get_current_uid_gid();
time_key_t key = {.uid = uid, .bucket = freq_idx / FREQS_PER_ENTRY};
tis_val_t* val = bpf_uid_time_in_state_map_lookup_elem(&key);
if (!val) {
tis_val_t zero_val = {.ar = {0}};
bpf_uid_time_in_state_map_update_elem(&key, &zero_val, BPF_NOEXIST);
val = bpf_uid_time_in_state_map_lookup_elem(&key);
}
uint64_t delta = time - old_last;
if (val) val->ar[freq_idx % FREQS_PER_ENTRY] += delta;
// Add delta to total.
const uint32_t total_freq_idx = freq_idx < MAX_FREQS_FOR_TOTAL ? freq_idx :
MAX_FREQS_FOR_TOTAL - 1;
uint64_t* total = bpf_total_time_in_state_map_lookup_elem(&total_freq_idx);
if (total) *total += delta;
const int pid = args->prev_pid;
const pid_t tgid = bpf_get_current_pid_tgid() >> 32;
bool is_tgid_tracked = false;
// eBPF verifier does not currently allow loops.
// Instruct the C compiler to unroll the loop into a series of steps.
#pragma unroll
for (uint32_t index = 0; index < MAX_TRACKED_PIDS; index++) {
const uint32_t key = index;
tracked_pid_t* tracked_pid = bpf_pid_tracked_map_lookup_elem(&key);
if (!tracked_pid) continue;
if (tracked_pid->state == TRACKED_PID_STATE_UNUSED) {
// Reached the end of the list
break;
}
if (tracked_pid->state == TRACKED_PID_STATE_ACTIVE && tracked_pid->pid == tgid) {
is_tgid_tracked = true;
break;
}
}
if (is_tgid_tracked) {
// If this process is marked for time-in-state tracking, aggregate the CPU time-in-state
// with other threads sharing the same TGID and aggregation key.
uint16_t* aggregation_key = bpf_pid_task_aggregation_map_lookup_elem(&pid);
aggregated_task_tis_key_t task_key = {
.tgid = tgid,
.aggregation_key = aggregation_key ? *aggregation_key : 0,
.bucket = freq_idx / FREQS_PER_ENTRY};
tis_val_t* task_val = bpf_pid_time_in_state_map_lookup_elem(&task_key);
if (!task_val) {
tis_val_t zero_val = {.ar = {0}};
bpf_pid_time_in_state_map_update_elem(&task_key, &zero_val, BPF_NOEXIST);
task_val = bpf_pid_time_in_state_map_lookup_elem(&task_key);
}
if (task_val) task_val->ar[freq_idx % FREQS_PER_ENTRY] += delta;
}
key.bucket = nactive / CPUS_PER_ENTRY;
concurrent_val_t* ct = bpf_uid_concurrent_times_map_lookup_elem(&key);
if (!ct) {
concurrent_val_t zero_val = {.active = {0}, .policy = {0}};
bpf_uid_concurrent_times_map_update_elem(&key, &zero_val, BPF_NOEXIST);
ct = bpf_uid_concurrent_times_map_lookup_elem(&key);
}
if (ct) ct->active[nactive % CPUS_PER_ENTRY] += delta;
if (policy_nactive / CPUS_PER_ENTRY != key.bucket) {
key.bucket = policy_nactive / CPUS_PER_ENTRY;
ct = bpf_uid_concurrent_times_map_lookup_elem(&key);
if (!ct) {
concurrent_val_t zero_val = {.active = {0}, .policy = {0}};
bpf_uid_concurrent_times_map_update_elem(&key, &zero_val, BPF_NOEXIST);
ct = bpf_uid_concurrent_times_map_lookup_elem(&key);
}
}
if (ct) ct->policy[policy_nactive % CPUS_PER_ENTRY] += delta;
uint64_t* uid_last_update = bpf_uid_last_update_map_lookup_elem(&uid);
if (uid_last_update) {
*uid_last_update = time;
} else {
bpf_uid_last_update_map_update_elem(&uid, &time, BPF_NOEXIST);
}
return ALLOW;
}
struct cpufreq_args {
unsigned long long ignore;
unsigned int state;
unsigned int cpu_id;
};
DEFINE_BPF_PROG("tracepoint/power/cpu_frequency", AID_ROOT, AID_SYSTEM, tp_cpufreq)
(struct cpufreq_args* args) {
uint32_t cpu = args->cpu_id;
unsigned int new = args->state;
uint32_t* policyp = bpf_cpu_policy_map_lookup_elem(&cpu);
if (!policyp) return 0;
uint32_t policy = *policyp;
freq_idx_key_t key = {.policy = policy, .freq = new};
uint8_t* idxp = bpf_freq_to_idx_map_lookup_elem(&key);
if (!idxp) return 0;
uint8_t idx = *idxp;
bpf_policy_freq_idx_map_update_elem(&policy, &idx, BPF_ANY);
return 0;
}
// The format of the sched/sched_process_free event is described in
// adb shell cat /d/tracing/events/sched/sched_process_free/format
struct sched_process_free_args {
unsigned long long ignore;
char comm[16];
pid_t pid;
int prio;
};
DEFINE_BPF_PROG("tracepoint/sched/sched_process_free", AID_ROOT, AID_SYSTEM, tp_sched_process_free)
(struct sched_process_free_args* args) {
const int ALLOW = 1;
int pid = args->pid;
bool is_last = true;
// eBPF verifier does not currently allow loops.
// Instruct the C compiler to unroll the loop into a series of steps.
#pragma unroll
for (uint32_t index = 0; index < MAX_TRACKED_PIDS; index++) {
const uint32_t key = MAX_TRACKED_PIDS - index - 1;
tracked_pid_t* tracked_pid = bpf_pid_tracked_map_lookup_elem(&key);
if (!tracked_pid) continue;
if (tracked_pid->pid == pid) {
tracked_pid->pid = 0;
tracked_pid->state = is_last ? TRACKED_PID_STATE_UNUSED : TRACKED_PID_STATE_EXITED;
bpf_pid_tracked_hash_map_delete_elem(&key);
break;
}
if (tracked_pid->state == TRACKED_PID_STATE_ACTIVE) {
is_last = false;
}
}
bpf_pid_task_aggregation_map_delete_elem(&pid);
return ALLOW;
}
LICENSE("GPL");