blob: d1471927edd0540a94411e270b4abfc1c71edd3e [file] [log] [blame]
/*
* Copyright 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/******************************************************************************
*
* Utility functions to help build and parse the AAC Codec Information
* Element and Media Payload.
*
******************************************************************************/
#define LOG_TAG "a2dp_aac"
#include "bt_target.h"
#include "a2dp_aac.h"
#include <string.h>
#include <base/logging.h>
#include "a2dp_aac_decoder.h"
#include "a2dp_aac_encoder.h"
#include "bt_utils.h"
#include "osi/include/log.h"
#include "osi/include/osi.h"
#define A2DP_AAC_DEFAULT_BITRATE 320000 // 320 kbps
#define A2DP_AAC_MIN_BITRATE 64000 // 64 kbps
// data type for the AAC Codec Information Element */
// NOTE: bits_per_sample is needed only for AAC encoder initialization.
typedef struct {
uint8_t objectType; /* Object Type */
uint16_t sampleRate; /* Sampling Frequency */
uint8_t channelMode; /* STEREO/MONO */
uint8_t variableBitRateSupport; /* Variable Bit Rate Support*/
uint32_t bitRate; /* Bit rate */
btav_a2dp_codec_bits_per_sample_t bits_per_sample;
} tA2DP_AAC_CIE;
/* AAC Source codec capabilities */
static const tA2DP_AAC_CIE a2dp_aac_caps = {
// objectType
A2DP_AAC_OBJECT_TYPE_MPEG2_LC,
// sampleRate
// TODO: AAC 48.0kHz sampling rate should be added back - see b/62301376
A2DP_AAC_SAMPLING_FREQ_44100,
// channelMode
A2DP_AAC_CHANNEL_MODE_STEREO,
// variableBitRateSupport
A2DP_AAC_VARIABLE_BIT_RATE_DISABLED,
// bitRate
A2DP_AAC_DEFAULT_BITRATE,
// bits_per_sample
BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16};
/* AAC Sink codec capabilities */
static const tA2DP_AAC_CIE a2dp_aac_sink_caps = {
// objectType
A2DP_AAC_OBJECT_TYPE_MPEG2_LC,
// sampleRate
A2DP_AAC_SAMPLING_FREQ_44100 | A2DP_AAC_SAMPLING_FREQ_48000,
// channelMode
A2DP_AAC_CHANNEL_MODE_MONO | A2DP_AAC_CHANNEL_MODE_STEREO,
// variableBitRateSupport
A2DP_AAC_VARIABLE_BIT_RATE_ENABLED,
// bitRate
A2DP_AAC_DEFAULT_BITRATE,
// bits_per_sample
BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16};
/* Default AAC codec configuration */
static const tA2DP_AAC_CIE a2dp_aac_default_config = {
A2DP_AAC_OBJECT_TYPE_MPEG2_LC, // objectType
A2DP_AAC_SAMPLING_FREQ_44100, // sampleRate
A2DP_AAC_CHANNEL_MODE_STEREO, // channelMode
A2DP_AAC_VARIABLE_BIT_RATE_DISABLED, // variableBitRateSupport
A2DP_AAC_DEFAULT_BITRATE, // bitRate
BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16 // bits_per_sample
};
static const tA2DP_ENCODER_INTERFACE a2dp_encoder_interface_aac = {
a2dp_aac_encoder_init,
a2dp_aac_encoder_cleanup,
a2dp_aac_feeding_reset,
a2dp_aac_feeding_flush,
a2dp_aac_get_encoder_interval_ms,
a2dp_aac_send_frames,
nullptr // set_transmit_queue_length
};
static const tA2DP_DECODER_INTERFACE a2dp_decoder_interface_aac = {
a2dp_aac_decoder_init, a2dp_aac_decoder_cleanup,
a2dp_aac_decoder_decode_packet,
};
UNUSED_ATTR static tA2DP_STATUS A2DP_CodecInfoMatchesCapabilityAac(
const tA2DP_AAC_CIE* p_cap, const uint8_t* p_codec_info,
bool is_capability);
// Builds the AAC Media Codec Capabilities byte sequence beginning from the
// LOSC octet. |media_type| is the media type |AVDT_MEDIA_TYPE_*|.
// |p_ie| is a pointer to the AAC Codec Information Element information.
// The result is stored in |p_result|. Returns A2DP_SUCCESS on success,
// otherwise the corresponding A2DP error status code.
static tA2DP_STATUS A2DP_BuildInfoAac(uint8_t media_type,
const tA2DP_AAC_CIE* p_ie,
uint8_t* p_result) {
if (p_ie == NULL || p_result == NULL) {
return A2DP_INVALID_PARAMS;
}
*p_result++ = A2DP_AAC_CODEC_LEN;
*p_result++ = (media_type << 4);
*p_result++ = A2DP_MEDIA_CT_AAC;
// Object Type
if (p_ie->objectType == 0) return A2DP_INVALID_PARAMS;
*p_result++ = p_ie->objectType;
// Sampling Frequency
if (p_ie->sampleRate == 0) return A2DP_INVALID_PARAMS;
*p_result++ = (uint8_t)(p_ie->sampleRate & A2DP_AAC_SAMPLING_FREQ_MASK0);
*p_result = (uint8_t)((p_ie->sampleRate & A2DP_AAC_SAMPLING_FREQ_MASK1) >> 8);
// Channel Mode
if (p_ie->channelMode == 0) return A2DP_INVALID_PARAMS;
*p_result++ |= (p_ie->channelMode & A2DP_AAC_CHANNEL_MODE_MASK);
// Variable Bit Rate Support
*p_result = (p_ie->variableBitRateSupport & A2DP_AAC_VARIABLE_BIT_RATE_MASK);
// Bit Rate
*p_result++ |= (uint8_t)((p_ie->bitRate & A2DP_AAC_BIT_RATE_MASK0) >> 16);
*p_result++ = (uint8_t)((p_ie->bitRate & A2DP_AAC_BIT_RATE_MASK1) >> 8);
*p_result++ = (uint8_t)(p_ie->bitRate & A2DP_AAC_BIT_RATE_MASK2);
return A2DP_SUCCESS;
}
// Parses the AAC Media Codec Capabilities byte sequence beginning from the
// LOSC octet. The result is stored in |p_ie|. The byte sequence to parse is
// |p_codec_info|. If |is_capability| is true, the byte sequence is
// codec capabilities, otherwise is codec configuration.
// Returns A2DP_SUCCESS on success, otherwise the corresponding A2DP error
// status code.
static tA2DP_STATUS A2DP_ParseInfoAac(tA2DP_AAC_CIE* p_ie,
const uint8_t* p_codec_info,
bool is_capability) {
uint8_t losc;
uint8_t media_type;
tA2DP_CODEC_TYPE codec_type;
if (p_ie == NULL || p_codec_info == NULL) return A2DP_INVALID_PARAMS;
// Check the codec capability length
losc = *p_codec_info++;
if (losc != A2DP_AAC_CODEC_LEN) return A2DP_WRONG_CODEC;
media_type = (*p_codec_info++) >> 4;
codec_type = *p_codec_info++;
/* Check the Media Type and Media Codec Type */
if (media_type != AVDT_MEDIA_TYPE_AUDIO || codec_type != A2DP_MEDIA_CT_AAC) {
return A2DP_WRONG_CODEC;
}
p_ie->objectType = *p_codec_info++;
p_ie->sampleRate = (*p_codec_info & A2DP_AAC_SAMPLING_FREQ_MASK0) |
(*(p_codec_info + 1) << 8 & A2DP_AAC_SAMPLING_FREQ_MASK1);
p_codec_info++;
p_ie->channelMode = *p_codec_info & A2DP_AAC_CHANNEL_MODE_MASK;
p_codec_info++;
p_ie->variableBitRateSupport =
*p_codec_info & A2DP_AAC_VARIABLE_BIT_RATE_MASK;
p_ie->bitRate = ((*p_codec_info) << 16 & A2DP_AAC_BIT_RATE_MASK0) |
(*(p_codec_info + 1) << 8 & A2DP_AAC_BIT_RATE_MASK1) |
(*(p_codec_info + 2) & A2DP_AAC_BIT_RATE_MASK2);
p_codec_info += 3;
if (is_capability) return A2DP_SUCCESS;
if (A2DP_BitsSet(p_ie->objectType) != A2DP_SET_ONE_BIT)
return A2DP_BAD_OBJ_TYPE;
if (A2DP_BitsSet(p_ie->sampleRate) != A2DP_SET_ONE_BIT)
return A2DP_BAD_SAMP_FREQ;
if (A2DP_BitsSet(p_ie->channelMode) != A2DP_SET_ONE_BIT)
return A2DP_BAD_CH_MODE;
return A2DP_SUCCESS;
}
bool A2DP_IsSourceCodecValidAac(const uint8_t* p_codec_info) {
tA2DP_AAC_CIE cfg_cie;
/* Use a liberal check when parsing the codec info */
return (A2DP_ParseInfoAac(&cfg_cie, p_codec_info, false) == A2DP_SUCCESS) ||
(A2DP_ParseInfoAac(&cfg_cie, p_codec_info, true) == A2DP_SUCCESS);
}
bool A2DP_IsSinkCodecValidAac(UNUSED_ATTR const uint8_t* p_codec_info) {
tA2DP_AAC_CIE cfg_cie;
/* Use a liberal check when parsing the codec info */
return (A2DP_ParseInfoAac(&cfg_cie, p_codec_info, false) == A2DP_SUCCESS) ||
(A2DP_ParseInfoAac(&cfg_cie, p_codec_info, true) == A2DP_SUCCESS);
}
bool A2DP_IsPeerSourceCodecValidAac(UNUSED_ATTR const uint8_t* p_codec_info) {
tA2DP_AAC_CIE cfg_cie;
/* Use a liberal check when parsing the codec info */
return (A2DP_ParseInfoAac(&cfg_cie, p_codec_info, false) == A2DP_SUCCESS) ||
(A2DP_ParseInfoAac(&cfg_cie, p_codec_info, true) == A2DP_SUCCESS);
}
bool A2DP_IsPeerSinkCodecValidAac(const uint8_t* p_codec_info) {
tA2DP_AAC_CIE cfg_cie;
/* Use a liberal check when parsing the codec info */
return (A2DP_ParseInfoAac(&cfg_cie, p_codec_info, false) == A2DP_SUCCESS) ||
(A2DP_ParseInfoAac(&cfg_cie, p_codec_info, true) == A2DP_SUCCESS);
}
bool A2DP_IsSinkCodecSupportedAac(const uint8_t* p_codec_info) {
return A2DP_CodecInfoMatchesCapabilityAac(&a2dp_aac_sink_caps, p_codec_info,
false) == A2DP_SUCCESS;
}
bool A2DP_IsPeerSourceCodecSupportedAac(const uint8_t* p_codec_info) {
return A2DP_CodecInfoMatchesCapabilityAac(&a2dp_aac_sink_caps, p_codec_info,
true) == A2DP_SUCCESS;
}
tA2DP_STATUS A2DP_BuildSrc2SinkConfigAac(UNUSED_ATTR const uint8_t* p_src_cap,
UNUSED_ATTR uint8_t* p_pref_cfg) {
return A2DP_NS_CODEC_TYPE;
}
// Checks whether A2DP AAC codec configuration matches with a device's codec
// capabilities. |p_cap| is the AAC codec configuration. |p_codec_info| is
// the device's codec capabilities. |is_capability| is true if
// |p_codec_info| contains A2DP codec capability.
// Returns A2DP_SUCCESS if the codec configuration matches with capabilities,
// otherwise the corresponding A2DP error status code.
static tA2DP_STATUS A2DP_CodecInfoMatchesCapabilityAac(
const tA2DP_AAC_CIE* p_cap, const uint8_t* p_codec_info,
bool is_capability) {
tA2DP_STATUS status;
tA2DP_AAC_CIE cfg_cie;
/* parse configuration */
status = A2DP_ParseInfoAac(&cfg_cie, p_codec_info, is_capability);
if (status != A2DP_SUCCESS) {
LOG_ERROR(LOG_TAG, "%s: parsing failed %d", __func__, status);
return status;
}
/* verify that each parameter is in range */
LOG_VERBOSE(LOG_TAG, "%s: Object Type peer: 0x%x, capability 0x%x", __func__,
cfg_cie.objectType, p_cap->objectType);
LOG_VERBOSE(LOG_TAG, "%s: Sample Rate peer: %u, capability %u", __func__,
cfg_cie.sampleRate, p_cap->sampleRate);
LOG_VERBOSE(LOG_TAG, "%s: Channel Mode peer: 0x%x, capability 0x%x", __func__,
cfg_cie.channelMode, p_cap->channelMode);
LOG_VERBOSE(
LOG_TAG, "%s: Variable Bit Rate Support peer: 0x%x, capability 0x%x",
__func__, cfg_cie.variableBitRateSupport, p_cap->variableBitRateSupport);
LOG_VERBOSE(LOG_TAG, "%s: Bit Rate peer: %u, capability %u", __func__,
cfg_cie.bitRate, p_cap->bitRate);
/* Object Type */
if ((cfg_cie.objectType & p_cap->objectType) == 0) return A2DP_BAD_OBJ_TYPE;
/* Sample Rate */
if ((cfg_cie.sampleRate & p_cap->sampleRate) == 0) return A2DP_BAD_SAMP_FREQ;
/* Channel Mode */
if ((cfg_cie.channelMode & p_cap->channelMode) == 0) return A2DP_NS_CH_MODE;
return A2DP_SUCCESS;
}
bool A2DP_UsesRtpHeaderAac(UNUSED_ATTR bool content_protection_enabled,
UNUSED_ATTR const uint8_t* p_codec_info) {
return true;
}
const char* A2DP_CodecNameAac(UNUSED_ATTR const uint8_t* p_codec_info) {
return "AAC";
}
bool A2DP_CodecTypeEqualsAac(const uint8_t* p_codec_info_a,
const uint8_t* p_codec_info_b) {
tA2DP_AAC_CIE aac_cie_a;
tA2DP_AAC_CIE aac_cie_b;
// Check whether the codec info contains valid data
tA2DP_STATUS a2dp_status =
A2DP_ParseInfoAac(&aac_cie_a, p_codec_info_a, true);
if (a2dp_status != A2DP_SUCCESS) {
LOG_ERROR(LOG_TAG, "%s: cannot decode codec information: %d", __func__,
a2dp_status);
return false;
}
a2dp_status = A2DP_ParseInfoAac(&aac_cie_b, p_codec_info_b, true);
if (a2dp_status != A2DP_SUCCESS) {
LOG_ERROR(LOG_TAG, "%s: cannot decode codec information: %d", __func__,
a2dp_status);
return false;
}
return true;
}
bool A2DP_CodecEqualsAac(const uint8_t* p_codec_info_a,
const uint8_t* p_codec_info_b) {
tA2DP_AAC_CIE aac_cie_a;
tA2DP_AAC_CIE aac_cie_b;
// Check whether the codec info contains valid data
tA2DP_STATUS a2dp_status =
A2DP_ParseInfoAac(&aac_cie_a, p_codec_info_a, true);
if (a2dp_status != A2DP_SUCCESS) {
LOG_ERROR(LOG_TAG, "%s: cannot decode codec information: %d", __func__,
a2dp_status);
return false;
}
a2dp_status = A2DP_ParseInfoAac(&aac_cie_b, p_codec_info_b, true);
if (a2dp_status != A2DP_SUCCESS) {
LOG_ERROR(LOG_TAG, "%s: cannot decode codec information: %d", __func__,
a2dp_status);
return false;
}
return (aac_cie_a.objectType == aac_cie_b.objectType) &&
(aac_cie_a.sampleRate == aac_cie_b.sampleRate) &&
(aac_cie_a.channelMode == aac_cie_b.channelMode) &&
(aac_cie_a.variableBitRateSupport ==
aac_cie_b.variableBitRateSupport) &&
(aac_cie_a.bitRate == aac_cie_b.bitRate);
}
int A2DP_GetTrackSampleRateAac(const uint8_t* p_codec_info) {
tA2DP_AAC_CIE aac_cie;
// Check whether the codec info contains valid data
tA2DP_STATUS a2dp_status = A2DP_ParseInfoAac(&aac_cie, p_codec_info, false);
if (a2dp_status != A2DP_SUCCESS) {
LOG_ERROR(LOG_TAG, "%s: cannot decode codec information: %d", __func__,
a2dp_status);
return -1;
}
switch (aac_cie.sampleRate) {
case A2DP_AAC_SAMPLING_FREQ_8000:
return 8000;
case A2DP_AAC_SAMPLING_FREQ_11025:
return 11025;
case A2DP_AAC_SAMPLING_FREQ_12000:
return 12000;
case A2DP_AAC_SAMPLING_FREQ_16000:
return 16000;
case A2DP_AAC_SAMPLING_FREQ_22050:
return 22050;
case A2DP_AAC_SAMPLING_FREQ_24000:
return 24000;
case A2DP_AAC_SAMPLING_FREQ_32000:
return 32000;
case A2DP_AAC_SAMPLING_FREQ_44100:
return 44100;
case A2DP_AAC_SAMPLING_FREQ_48000:
return 48000;
case A2DP_AAC_SAMPLING_FREQ_64000:
return 64000;
case A2DP_AAC_SAMPLING_FREQ_88200:
return 88200;
case A2DP_AAC_SAMPLING_FREQ_96000:
return 96000;
}
return -1;
}
int A2DP_GetTrackChannelCountAac(const uint8_t* p_codec_info) {
tA2DP_AAC_CIE aac_cie;
// Check whether the codec info contains valid data
tA2DP_STATUS a2dp_status = A2DP_ParseInfoAac(&aac_cie, p_codec_info, false);
if (a2dp_status != A2DP_SUCCESS) {
LOG_ERROR(LOG_TAG, "%s: cannot decode codec information: %d", __func__,
a2dp_status);
return -1;
}
switch (aac_cie.channelMode) {
case A2DP_AAC_CHANNEL_MODE_MONO:
return 1;
case A2DP_AAC_CHANNEL_MODE_STEREO:
return 2;
}
return -1;
}
int A2DP_GetSinkTrackChannelTypeAac(const uint8_t* p_codec_info) {
tA2DP_AAC_CIE aac_cie;
// Check whether the codec info contains valid data
tA2DP_STATUS a2dp_status = A2DP_ParseInfoAac(&aac_cie, p_codec_info, false);
if (a2dp_status != A2DP_SUCCESS) {
LOG_ERROR(LOG_TAG, "%s: cannot decode codec information: %d", __func__,
a2dp_status);
return -1;
}
switch (aac_cie.channelMode) {
case A2DP_AAC_CHANNEL_MODE_MONO:
return 1;
case A2DP_AAC_CHANNEL_MODE_STEREO:
return 3;
}
return -1;
}
int A2DP_GetObjectTypeCodeAac(const uint8_t* p_codec_info) {
tA2DP_AAC_CIE aac_cie;
// Check whether the codec info contains valid data
tA2DP_STATUS a2dp_status = A2DP_ParseInfoAac(&aac_cie, p_codec_info, false);
if (a2dp_status != A2DP_SUCCESS) {
LOG_ERROR(LOG_TAG, "%s: cannot decode codec information: %d", __func__,
a2dp_status);
return -1;
}
switch (aac_cie.objectType) {
case A2DP_AAC_OBJECT_TYPE_MPEG2_LC:
case A2DP_AAC_OBJECT_TYPE_MPEG4_LC:
case A2DP_AAC_OBJECT_TYPE_MPEG4_LTP:
case A2DP_AAC_OBJECT_TYPE_MPEG4_SCALABLE:
return aac_cie.objectType;
default:
break;
}
return -1;
}
int A2DP_GetChannelModeCodeAac(const uint8_t* p_codec_info) {
tA2DP_AAC_CIE aac_cie;
// Check whether the codec info contains valid data
tA2DP_STATUS a2dp_status = A2DP_ParseInfoAac(&aac_cie, p_codec_info, false);
if (a2dp_status != A2DP_SUCCESS) {
LOG_ERROR(LOG_TAG, "%s: cannot decode codec information: %d", __func__,
a2dp_status);
return -1;
}
switch (aac_cie.channelMode) {
case A2DP_AAC_CHANNEL_MODE_MONO:
case A2DP_AAC_CHANNEL_MODE_STEREO:
return aac_cie.channelMode;
default:
break;
}
return -1;
}
int A2DP_GetVariableBitRateSupportAac(const uint8_t* p_codec_info) {
tA2DP_AAC_CIE aac_cie;
// Check whether the codec info contains valid data
tA2DP_STATUS a2dp_status = A2DP_ParseInfoAac(&aac_cie, p_codec_info, false);
if (a2dp_status != A2DP_SUCCESS) {
LOG_ERROR(LOG_TAG, "%s: cannot decode codec information: %d", __func__,
a2dp_status);
return -1;
}
switch (aac_cie.variableBitRateSupport) {
case A2DP_AAC_VARIABLE_BIT_RATE_ENABLED:
case A2DP_AAC_VARIABLE_BIT_RATE_DISABLED:
return aac_cie.variableBitRateSupport;
default:
break;
}
return -1;
}
int A2DP_GetBitRateAac(const uint8_t* p_codec_info) {
tA2DP_AAC_CIE aac_cie;
// Check whether the codec info contains valid data
tA2DP_STATUS a2dp_status = A2DP_ParseInfoAac(&aac_cie, p_codec_info, false);
if (a2dp_status != A2DP_SUCCESS) {
LOG_ERROR(LOG_TAG, "%s: cannot decode codec information: %d", __func__,
a2dp_status);
return -1;
}
return aac_cie.bitRate;
}
int A2DP_ComputeMaxBitRateAac(const uint8_t* p_codec_info, uint16_t mtu) {
tA2DP_AAC_CIE aac_cie;
// Check whether the codec info contains valid data
tA2DP_STATUS a2dp_status = A2DP_ParseInfoAac(&aac_cie, p_codec_info, false);
if (a2dp_status != A2DP_SUCCESS) {
LOG_ERROR(LOG_TAG, "%s: cannot decode codec information: %d", __func__,
a2dp_status);
return -1;
}
int sampling_freq = A2DP_GetTrackSampleRateAac(p_codec_info);
if (sampling_freq == -1) return -1;
int pcm_channel_samples_per_frame = 0;
switch (aac_cie.objectType) {
case A2DP_AAC_OBJECT_TYPE_MPEG2_LC:
case A2DP_AAC_OBJECT_TYPE_MPEG4_LC:
pcm_channel_samples_per_frame = 1024;
break;
case A2DP_AAC_OBJECT_TYPE_MPEG4_LTP:
case A2DP_AAC_OBJECT_TYPE_MPEG4_SCALABLE:
// TODO: The MPEG documentation doesn't specify the value.
break;
default:
break;
}
if (pcm_channel_samples_per_frame == 0) return -1;
// See Section 3.2.1 Estimating Average Frame Size from
// the aacEncoder.pdf document included with the AAC source code.
return (8 * mtu * sampling_freq) / pcm_channel_samples_per_frame;
}
bool A2DP_GetPacketTimestampAac(const uint8_t* p_codec_info,
const uint8_t* p_data, uint32_t* p_timestamp) {
// TODO: Is this function really codec-specific?
*p_timestamp = *(const uint32_t*)p_data;
return true;
}
bool A2DP_BuildCodecHeaderAac(UNUSED_ATTR const uint8_t* p_codec_info,
UNUSED_ATTR BT_HDR* p_buf,
UNUSED_ATTR uint16_t frames_per_packet) {
return true;
}
bool A2DP_DumpCodecInfoAac(const uint8_t* p_codec_info) {
tA2DP_STATUS a2dp_status;
tA2DP_AAC_CIE aac_cie;
LOG_VERBOSE(LOG_TAG, "%s", __func__);
a2dp_status = A2DP_ParseInfoAac(&aac_cie, p_codec_info, true);
if (a2dp_status != A2DP_SUCCESS) {
LOG_ERROR(LOG_TAG, "%s: A2DP_ParseInfoAac fail:%d", __func__, a2dp_status);
return false;
}
LOG_VERBOSE(LOG_TAG, "\tobjectType: 0x%x", aac_cie.objectType);
if (aac_cie.objectType & A2DP_AAC_OBJECT_TYPE_MPEG2_LC) {
LOG_VERBOSE(LOG_TAG, "\tobjectType: (MPEG-2 AAC LC)");
}
if (aac_cie.objectType & A2DP_AAC_OBJECT_TYPE_MPEG4_LC) {
LOG_VERBOSE(LOG_TAG, "\tobjectType: (MPEG-4 AAC LC)");
}
if (aac_cie.objectType & A2DP_AAC_OBJECT_TYPE_MPEG4_LTP) {
LOG_VERBOSE(LOG_TAG, "\tobjectType: (MPEG-4 AAC LTP)");
}
if (aac_cie.objectType & A2DP_AAC_OBJECT_TYPE_MPEG4_SCALABLE) {
LOG_VERBOSE(LOG_TAG, "\tobjectType: (MPEG-4 AAC Scalable)");
}
LOG_VERBOSE(LOG_TAG, "\tsamp_freq: 0x%x", aac_cie.sampleRate);
if (aac_cie.sampleRate & A2DP_AAC_SAMPLING_FREQ_8000) {
LOG_VERBOSE(LOG_TAG, "\tsamp_freq: (8000)");
}
if (aac_cie.sampleRate & A2DP_AAC_SAMPLING_FREQ_11025) {
LOG_VERBOSE(LOG_TAG, "\tsamp_freq: (11025)");
}
if (aac_cie.sampleRate & A2DP_AAC_SAMPLING_FREQ_12000) {
LOG_VERBOSE(LOG_TAG, "\tsamp_freq: (12000)");
}
if (aac_cie.sampleRate & A2DP_AAC_SAMPLING_FREQ_16000) {
LOG_VERBOSE(LOG_TAG, "\tsamp_freq: (16000)");
}
if (aac_cie.sampleRate & A2DP_AAC_SAMPLING_FREQ_22050) {
LOG_VERBOSE(LOG_TAG, "\tsamp_freq: (22050)");
}
if (aac_cie.sampleRate & A2DP_AAC_SAMPLING_FREQ_24000) {
LOG_VERBOSE(LOG_TAG, "\tsamp_freq: (24000)");
}
if (aac_cie.sampleRate & A2DP_AAC_SAMPLING_FREQ_32000) {
LOG_VERBOSE(LOG_TAG, "\tsamp_freq: (32000)");
}
if (aac_cie.sampleRate & A2DP_AAC_SAMPLING_FREQ_44100) {
LOG_VERBOSE(LOG_TAG, "\tsamp_freq: (44100)");
}
if (aac_cie.sampleRate & A2DP_AAC_SAMPLING_FREQ_48000) {
LOG_VERBOSE(LOG_TAG, "\tsamp_freq: (48000)");
}
if (aac_cie.sampleRate & A2DP_AAC_SAMPLING_FREQ_64000) {
LOG_VERBOSE(LOG_TAG, "\tsamp_freq: (64000)");
}
if (aac_cie.sampleRate & A2DP_AAC_SAMPLING_FREQ_88200) {
LOG_VERBOSE(LOG_TAG, "\tsamp_freq: (88200)");
}
if (aac_cie.sampleRate & A2DP_AAC_SAMPLING_FREQ_96000) {
LOG_VERBOSE(LOG_TAG, "\tsamp_freq: (96000)");
}
LOG_VERBOSE(LOG_TAG, "\tch_mode: 0x%x", aac_cie.channelMode);
if (aac_cie.channelMode == A2DP_AAC_CHANNEL_MODE_MONO) {
LOG_VERBOSE(LOG_TAG, "\tch_mode: (Mono)");
}
if (aac_cie.channelMode == A2DP_AAC_CHANNEL_MODE_STEREO) {
LOG_VERBOSE(LOG_TAG, "\tch_mode: (Stereo)");
}
LOG_VERBOSE(LOG_TAG, "\tvariableBitRateSupport: %s",
(aac_cie.variableBitRateSupport != 0) ? "true" : "false");
LOG_VERBOSE(LOG_TAG, "\tbitRate: %u", aac_cie.bitRate);
return true;
}
const tA2DP_ENCODER_INTERFACE* A2DP_GetEncoderInterfaceAac(
const uint8_t* p_codec_info) {
if (!A2DP_IsSourceCodecValidAac(p_codec_info)) return NULL;
return &a2dp_encoder_interface_aac;
}
const tA2DP_DECODER_INTERFACE* A2DP_GetDecoderInterfaceAac(
const uint8_t* p_codec_info) {
if (!A2DP_IsSinkCodecValidAac(p_codec_info)) return NULL;
return &a2dp_decoder_interface_aac;
}
bool A2DP_AdjustCodecAac(uint8_t* p_codec_info) {
tA2DP_AAC_CIE cfg_cie;
// Nothing to do: just verify the codec info is valid
if (A2DP_ParseInfoAac(&cfg_cie, p_codec_info, true) != A2DP_SUCCESS)
return false;
return true;
}
btav_a2dp_codec_index_t A2DP_SourceCodecIndexAac(
UNUSED_ATTR const uint8_t* p_codec_info) {
return BTAV_A2DP_CODEC_INDEX_SOURCE_AAC;
}
const char* A2DP_CodecIndexStrAac(void) { return "AAC"; }
const char* A2DP_CodecIndexStrAacSink(void) { return "AAC SINK"; }
bool A2DP_InitCodecConfigAac(AvdtpSepConfig* p_cfg) {
if (A2DP_BuildInfoAac(AVDT_MEDIA_TYPE_AUDIO, &a2dp_aac_caps,
p_cfg->codec_info) != A2DP_SUCCESS) {
return false;
}
#if (BTA_AV_CO_CP_SCMS_T == TRUE)
/* Content protection info - support SCMS-T */
uint8_t* p = p_cfg->protect_info;
*p++ = AVDT_CP_LOSC;
UINT16_TO_STREAM(p, AVDT_CP_SCMS_T_ID);
p_cfg->num_protect = 1;
#endif
return true;
}
bool A2DP_InitCodecConfigAacSink(AvdtpSepConfig* p_cfg) {
return A2DP_BuildInfoAac(AVDT_MEDIA_TYPE_AUDIO, &a2dp_aac_sink_caps,
p_cfg->codec_info) == A2DP_SUCCESS;
}
UNUSED_ATTR static void build_codec_config(const tA2DP_AAC_CIE& config_cie,
btav_a2dp_codec_config_t* result) {
if (config_cie.sampleRate & A2DP_AAC_SAMPLING_FREQ_44100)
result->sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_44100;
if (config_cie.sampleRate & A2DP_AAC_SAMPLING_FREQ_48000)
result->sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_48000;
if (config_cie.sampleRate & A2DP_AAC_SAMPLING_FREQ_88200)
result->sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_88200;
if (config_cie.sampleRate & A2DP_AAC_SAMPLING_FREQ_96000)
result->sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_96000;
result->bits_per_sample = config_cie.bits_per_sample;
if (config_cie.channelMode & A2DP_AAC_CHANNEL_MODE_MONO)
result->channel_mode |= BTAV_A2DP_CODEC_CHANNEL_MODE_MONO;
if (config_cie.channelMode & A2DP_AAC_CHANNEL_MODE_STEREO) {
result->channel_mode |= BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO;
}
}
A2dpCodecConfigAac::A2dpCodecConfigAac(
btav_a2dp_codec_priority_t codec_priority)
: A2dpCodecConfig(BTAV_A2DP_CODEC_INDEX_SOURCE_AAC, A2DP_CodecIndexStrAac(),
codec_priority) {
// Compute the local capability
if (a2dp_aac_caps.sampleRate & A2DP_AAC_SAMPLING_FREQ_44100) {
codec_local_capability_.sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_44100;
}
if (a2dp_aac_caps.sampleRate & A2DP_AAC_SAMPLING_FREQ_48000) {
codec_local_capability_.sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_48000;
}
if (a2dp_aac_caps.sampleRate & A2DP_AAC_SAMPLING_FREQ_88200) {
codec_local_capability_.sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_88200;
}
if (a2dp_aac_caps.sampleRate & A2DP_AAC_SAMPLING_FREQ_96000) {
codec_local_capability_.sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_96000;
}
codec_local_capability_.bits_per_sample = a2dp_aac_caps.bits_per_sample;
if (a2dp_aac_caps.channelMode & A2DP_AAC_CHANNEL_MODE_MONO) {
codec_local_capability_.channel_mode |= BTAV_A2DP_CODEC_CHANNEL_MODE_MONO;
}
if (a2dp_aac_caps.channelMode & A2DP_AAC_CHANNEL_MODE_STEREO) {
codec_local_capability_.channel_mode |= BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO;
}
}
A2dpCodecConfigAac::~A2dpCodecConfigAac() {}
bool A2dpCodecConfigAac::init() {
if (!isValid()) return false;
// Load the encoder
if (!A2DP_LoadEncoderAac()) {
LOG_ERROR(LOG_TAG, "%s: cannot load the encoder", __func__);
return false;
}
return true;
}
bool A2dpCodecConfigAac::useRtpHeaderMarkerBit() const { return true; }
//
// Selects the best sample rate from |sampleRate|.
// The result is stored in |p_result| and |p_codec_config|.
// Returns true if a selection was made, otherwise false.
//
static bool select_best_sample_rate(uint16_t sampleRate,
tA2DP_AAC_CIE* p_result,
btav_a2dp_codec_config_t* p_codec_config) {
if (sampleRate & A2DP_AAC_SAMPLING_FREQ_96000) {
p_result->sampleRate = A2DP_AAC_SAMPLING_FREQ_96000;
p_codec_config->sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_96000;
return true;
}
if (sampleRate & A2DP_AAC_SAMPLING_FREQ_88200) {
p_result->sampleRate = A2DP_AAC_SAMPLING_FREQ_88200;
p_codec_config->sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_88200;
return true;
}
if (sampleRate & A2DP_AAC_SAMPLING_FREQ_48000) {
p_result->sampleRate = A2DP_AAC_SAMPLING_FREQ_48000;
p_codec_config->sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_48000;
return true;
}
if (sampleRate & A2DP_AAC_SAMPLING_FREQ_44100) {
p_result->sampleRate = A2DP_AAC_SAMPLING_FREQ_44100;
p_codec_config->sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_44100;
return true;
}
return false;
}
//
// Selects the audio sample rate from |p_codec_audio_config|.
// |sampleRate| contains the capability.
// The result is stored in |p_result| and |p_codec_config|.
// Returns true if a selection was made, otherwise false.
//
static bool select_audio_sample_rate(
const btav_a2dp_codec_config_t* p_codec_audio_config, uint16_t sampleRate,
tA2DP_AAC_CIE* p_result, btav_a2dp_codec_config_t* p_codec_config) {
switch (p_codec_audio_config->sample_rate) {
case BTAV_A2DP_CODEC_SAMPLE_RATE_44100:
if (sampleRate & A2DP_AAC_SAMPLING_FREQ_44100) {
p_result->sampleRate = A2DP_AAC_SAMPLING_FREQ_44100;
p_codec_config->sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_44100;
return true;
}
break;
case BTAV_A2DP_CODEC_SAMPLE_RATE_48000:
if (sampleRate & A2DP_AAC_SAMPLING_FREQ_48000) {
p_result->sampleRate = A2DP_AAC_SAMPLING_FREQ_48000;
p_codec_config->sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_48000;
return true;
}
break;
case BTAV_A2DP_CODEC_SAMPLE_RATE_88200:
if (sampleRate & A2DP_AAC_SAMPLING_FREQ_88200) {
p_result->sampleRate = A2DP_AAC_SAMPLING_FREQ_88200;
p_codec_config->sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_88200;
return true;
}
break;
case BTAV_A2DP_CODEC_SAMPLE_RATE_96000:
if (sampleRate & A2DP_AAC_SAMPLING_FREQ_96000) {
p_result->sampleRate = A2DP_AAC_SAMPLING_FREQ_96000;
p_codec_config->sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_96000;
return true;
}
break;
case BTAV_A2DP_CODEC_SAMPLE_RATE_176400:
case BTAV_A2DP_CODEC_SAMPLE_RATE_192000:
case BTAV_A2DP_CODEC_SAMPLE_RATE_16000:
case BTAV_A2DP_CODEC_SAMPLE_RATE_24000:
case BTAV_A2DP_CODEC_SAMPLE_RATE_NONE:
break;
}
return false;
}
//
// Selects the best bits per sample from |bits_per_sample|.
// |bits_per_sample| contains the capability.
// The result is stored in |p_result| and |p_codec_config|.
// Returns true if a selection was made, otherwise false.
//
static bool select_best_bits_per_sample(
btav_a2dp_codec_bits_per_sample_t bits_per_sample, tA2DP_AAC_CIE* p_result,
btav_a2dp_codec_config_t* p_codec_config) {
if (bits_per_sample & BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32) {
p_codec_config->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32;
p_result->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32;
return true;
}
if (bits_per_sample & BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24) {
p_codec_config->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24;
p_result->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24;
return true;
}
if (bits_per_sample & BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16) {
p_codec_config->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16;
p_result->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16;
return true;
}
return false;
}
//
// Selects the audio bits per sample from |p_codec_audio_config|.
// |bits_per_sample| contains the capability.
// The result is stored in |p_result| and |p_codec_config|.
// Returns true if a selection was made, otherwise false.
//
static bool select_audio_bits_per_sample(
const btav_a2dp_codec_config_t* p_codec_audio_config,
btav_a2dp_codec_bits_per_sample_t bits_per_sample, tA2DP_AAC_CIE* p_result,
btav_a2dp_codec_config_t* p_codec_config) {
switch (p_codec_audio_config->bits_per_sample) {
case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16:
if (bits_per_sample & BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16) {
p_codec_config->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16;
p_result->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16;
return true;
}
break;
case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24:
if (bits_per_sample & BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24) {
p_codec_config->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24;
p_result->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24;
return true;
}
break;
case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32:
if (bits_per_sample & BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32) {
p_codec_config->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32;
p_result->bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32;
return true;
}
break;
case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE:
break;
}
return false;
}
//
// Selects the best channel mode from |channelMode|.
// The result is stored in |p_result| and |p_codec_config|.
// Returns true if a selection was made, otherwise false.
//
static bool select_best_channel_mode(uint8_t channelMode,
tA2DP_AAC_CIE* p_result,
btav_a2dp_codec_config_t* p_codec_config) {
if (channelMode & A2DP_AAC_CHANNEL_MODE_STEREO) {
p_result->channelMode = A2DP_AAC_CHANNEL_MODE_STEREO;
p_codec_config->channel_mode = BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO;
return true;
}
if (channelMode & A2DP_AAC_CHANNEL_MODE_MONO) {
p_result->channelMode = A2DP_AAC_CHANNEL_MODE_MONO;
p_codec_config->channel_mode = BTAV_A2DP_CODEC_CHANNEL_MODE_MONO;
return true;
}
return false;
}
//
// Selects the audio channel mode from |p_codec_audio_config|.
// |channelMode| contains the capability.
// The result is stored in |p_result| and |p_codec_config|.
// Returns true if a selection was made, otherwise false.
//
static bool select_audio_channel_mode(
const btav_a2dp_codec_config_t* p_codec_audio_config, uint8_t channelMode,
tA2DP_AAC_CIE* p_result, btav_a2dp_codec_config_t* p_codec_config) {
switch (p_codec_audio_config->channel_mode) {
case BTAV_A2DP_CODEC_CHANNEL_MODE_MONO:
if (channelMode & A2DP_AAC_CHANNEL_MODE_MONO) {
p_result->channelMode = A2DP_AAC_CHANNEL_MODE_MONO;
p_codec_config->channel_mode = BTAV_A2DP_CODEC_CHANNEL_MODE_MONO;
return true;
}
break;
case BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO:
if (channelMode & A2DP_AAC_CHANNEL_MODE_STEREO) {
p_result->channelMode = A2DP_AAC_CHANNEL_MODE_STEREO;
p_codec_config->channel_mode = BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO;
return true;
}
break;
case BTAV_A2DP_CODEC_CHANNEL_MODE_NONE:
break;
}
return false;
}
bool A2dpCodecConfigAac::setCodecConfig(const uint8_t* p_peer_codec_info,
bool is_capability,
uint8_t* p_result_codec_config) {
std::lock_guard<std::recursive_mutex> lock(codec_mutex_);
tA2DP_AAC_CIE sink_info_cie;
tA2DP_AAC_CIE result_config_cie;
uint8_t channelMode;
uint16_t sampleRate;
btav_a2dp_codec_bits_per_sample_t bits_per_sample;
// Save the internal state
btav_a2dp_codec_config_t saved_codec_config = codec_config_;
btav_a2dp_codec_config_t saved_codec_capability = codec_capability_;
btav_a2dp_codec_config_t saved_codec_selectable_capability =
codec_selectable_capability_;
btav_a2dp_codec_config_t saved_codec_user_config = codec_user_config_;
btav_a2dp_codec_config_t saved_codec_audio_config = codec_audio_config_;
uint8_t saved_ota_codec_config[AVDT_CODEC_SIZE];
uint8_t saved_ota_codec_peer_capability[AVDT_CODEC_SIZE];
uint8_t saved_ota_codec_peer_config[AVDT_CODEC_SIZE];
memcpy(saved_ota_codec_config, ota_codec_config_, sizeof(ota_codec_config_));
memcpy(saved_ota_codec_peer_capability, ota_codec_peer_capability_,
sizeof(ota_codec_peer_capability_));
memcpy(saved_ota_codec_peer_config, ota_codec_peer_config_,
sizeof(ota_codec_peer_config_));
tA2DP_STATUS status =
A2DP_ParseInfoAac(&sink_info_cie, p_peer_codec_info, is_capability);
if (status != A2DP_SUCCESS) {
LOG_ERROR(LOG_TAG, "%s: can't parse peer's Sink capabilities: error = %d",
__func__, status);
goto fail;
}
//
// Build the preferred configuration
//
memset(&result_config_cie, 0, sizeof(result_config_cie));
// NOTE: Always assign the Object Type and Variable Bit Rate Support.
result_config_cie.objectType = a2dp_aac_caps.objectType;
result_config_cie.variableBitRateSupport =
a2dp_aac_caps.variableBitRateSupport;
// Set the bit rate as follows:
// 1. If the Sink device reports a bogus bit rate
// (bitRate < A2DP_AAC_MIN_BITRATE), then use the bit rate from our
// configuration. Examples of observed bogus bit rates are zero
// and 24576.
// 2. If the Sink device reports valid bit rate
// (bitRate >= A2DP_AAC_MIN_BITRATE), then use the smaller
// of the Sink device's bit rate and the bit rate from our configuration.
// In either case, the actual streaming bit rate will also consider the MTU.
if (sink_info_cie.bitRate < A2DP_AAC_MIN_BITRATE) {
// Bogus bit rate
result_config_cie.bitRate = a2dp_aac_caps.bitRate;
} else {
result_config_cie.bitRate =
std::min(a2dp_aac_caps.bitRate, sink_info_cie.bitRate);
}
//
// Select the sample frequency
//
sampleRate = a2dp_aac_caps.sampleRate & sink_info_cie.sampleRate;
codec_config_.sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_NONE;
switch (codec_user_config_.sample_rate) {
case BTAV_A2DP_CODEC_SAMPLE_RATE_44100:
if (sampleRate & A2DP_AAC_SAMPLING_FREQ_44100) {
result_config_cie.sampleRate = A2DP_AAC_SAMPLING_FREQ_44100;
codec_capability_.sample_rate = codec_user_config_.sample_rate;
codec_config_.sample_rate = codec_user_config_.sample_rate;
}
break;
case BTAV_A2DP_CODEC_SAMPLE_RATE_48000:
if (sampleRate & A2DP_AAC_SAMPLING_FREQ_48000) {
result_config_cie.sampleRate = A2DP_AAC_SAMPLING_FREQ_48000;
codec_capability_.sample_rate = codec_user_config_.sample_rate;
codec_config_.sample_rate = codec_user_config_.sample_rate;
}
break;
case BTAV_A2DP_CODEC_SAMPLE_RATE_88200:
if (sampleRate & A2DP_AAC_SAMPLING_FREQ_88200) {
result_config_cie.sampleRate = A2DP_AAC_SAMPLING_FREQ_88200;
codec_capability_.sample_rate = codec_user_config_.sample_rate;
codec_config_.sample_rate = codec_user_config_.sample_rate;
}
break;
case BTAV_A2DP_CODEC_SAMPLE_RATE_96000:
if (sampleRate & A2DP_AAC_SAMPLING_FREQ_96000) {
result_config_cie.sampleRate = A2DP_AAC_SAMPLING_FREQ_96000;
codec_capability_.sample_rate = codec_user_config_.sample_rate;
codec_config_.sample_rate = codec_user_config_.sample_rate;
}
break;
case BTAV_A2DP_CODEC_SAMPLE_RATE_176400:
case BTAV_A2DP_CODEC_SAMPLE_RATE_192000:
case BTAV_A2DP_CODEC_SAMPLE_RATE_16000:
case BTAV_A2DP_CODEC_SAMPLE_RATE_24000:
case BTAV_A2DP_CODEC_SAMPLE_RATE_NONE:
codec_capability_.sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_NONE;
codec_config_.sample_rate = BTAV_A2DP_CODEC_SAMPLE_RATE_NONE;
break;
}
// Select the sample frequency if there is no user preference
do {
// Compute the selectable capability
if (sampleRate & A2DP_AAC_SAMPLING_FREQ_44100) {
codec_selectable_capability_.sample_rate |=
BTAV_A2DP_CODEC_SAMPLE_RATE_44100;
}
if (sampleRate & A2DP_AAC_SAMPLING_FREQ_48000) {
codec_selectable_capability_.sample_rate |=
BTAV_A2DP_CODEC_SAMPLE_RATE_48000;
}
if (sampleRate & A2DP_AAC_SAMPLING_FREQ_88200) {
codec_selectable_capability_.sample_rate |=
BTAV_A2DP_CODEC_SAMPLE_RATE_88200;
}
if (sampleRate & A2DP_AAC_SAMPLING_FREQ_96000) {
codec_selectable_capability_.sample_rate |=
BTAV_A2DP_CODEC_SAMPLE_RATE_96000;
}
if (codec_config_.sample_rate != BTAV_A2DP_CODEC_SAMPLE_RATE_NONE) break;
// Compute the common capability
if (sampleRate & A2DP_AAC_SAMPLING_FREQ_44100)
codec_capability_.sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_44100;
if (sampleRate & A2DP_AAC_SAMPLING_FREQ_48000)
codec_capability_.sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_48000;
if (sampleRate & A2DP_AAC_SAMPLING_FREQ_88200)
codec_capability_.sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_88200;
if (sampleRate & A2DP_AAC_SAMPLING_FREQ_96000)
codec_capability_.sample_rate |= BTAV_A2DP_CODEC_SAMPLE_RATE_96000;
// No user preference - try the codec audio config
if (select_audio_sample_rate(&codec_audio_config_, sampleRate,
&result_config_cie, &codec_config_)) {
break;
}
// No user preference - try the default config
if (select_best_sample_rate(
a2dp_aac_default_config.sampleRate & sink_info_cie.sampleRate,
&result_config_cie, &codec_config_)) {
break;
}
// No user preference - use the best match
if (select_best_sample_rate(sampleRate, &result_config_cie,
&codec_config_)) {
break;
}
} while (false);
if (codec_config_.sample_rate == BTAV_A2DP_CODEC_SAMPLE_RATE_NONE) {
LOG_ERROR(LOG_TAG,
"%s: cannot match sample frequency: source caps = 0x%x "
"sink info = 0x%x",
__func__, a2dp_aac_caps.sampleRate, sink_info_cie.sampleRate);
goto fail;
}
//
// Select the bits per sample
//
// NOTE: this information is NOT included in the AAC A2DP codec description
// that is sent OTA.
bits_per_sample = a2dp_aac_caps.bits_per_sample;
codec_config_.bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE;
switch (codec_user_config_.bits_per_sample) {
case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16:
if (bits_per_sample & BTAV_A2DP_CODEC_BITS_PER_SAMPLE_16) {
result_config_cie.bits_per_sample = codec_user_config_.bits_per_sample;
codec_capability_.bits_per_sample = codec_user_config_.bits_per_sample;
codec_config_.bits_per_sample = codec_user_config_.bits_per_sample;
}
break;
case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24:
if (bits_per_sample & BTAV_A2DP_CODEC_BITS_PER_SAMPLE_24) {
result_config_cie.bits_per_sample = codec_user_config_.bits_per_sample;
codec_capability_.bits_per_sample = codec_user_config_.bits_per_sample;
codec_config_.bits_per_sample = codec_user_config_.bits_per_sample;
}
break;
case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32:
if (bits_per_sample & BTAV_A2DP_CODEC_BITS_PER_SAMPLE_32) {
result_config_cie.bits_per_sample = codec_user_config_.bits_per_sample;
codec_capability_.bits_per_sample = codec_user_config_.bits_per_sample;
codec_config_.bits_per_sample = codec_user_config_.bits_per_sample;
}
break;
case BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE:
result_config_cie.bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE;
codec_capability_.bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE;
codec_config_.bits_per_sample = BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE;
break;
}
// Select the bits per sample if there is no user preference
do {
// Compute the selectable capability
codec_selectable_capability_.bits_per_sample =
a2dp_aac_caps.bits_per_sample;
if (codec_config_.bits_per_sample != BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE)
break;
// Compute the common capability
codec_capability_.bits_per_sample = bits_per_sample;
// No user preference - the the codec audio config
if (select_audio_bits_per_sample(&codec_audio_config_,
a2dp_aac_caps.bits_per_sample,
&result_config_cie, &codec_config_)) {
break;
}
// No user preference - try the default config
if (select_best_bits_per_sample(a2dp_aac_default_config.bits_per_sample,
&result_config_cie, &codec_config_)) {
break;
}
// No user preference - use the best match
if (select_best_bits_per_sample(a2dp_aac_caps.bits_per_sample,
&result_config_cie, &codec_config_)) {
break;
}
} while (false);
if (codec_config_.bits_per_sample == BTAV_A2DP_CODEC_BITS_PER_SAMPLE_NONE) {
LOG_ERROR(LOG_TAG,
"%s: cannot match bits per sample: default = 0x%x "
"user preference = 0x%x",
__func__, a2dp_aac_default_config.bits_per_sample,
codec_user_config_.bits_per_sample);
goto fail;
}
//
// Select the channel mode
//
channelMode = a2dp_aac_caps.channelMode & sink_info_cie.channelMode;
codec_config_.channel_mode = BTAV_A2DP_CODEC_CHANNEL_MODE_NONE;
switch (codec_user_config_.channel_mode) {
case BTAV_A2DP_CODEC_CHANNEL_MODE_MONO:
if (channelMode & A2DP_AAC_CHANNEL_MODE_MONO) {
result_config_cie.channelMode = A2DP_AAC_CHANNEL_MODE_MONO;
codec_capability_.channel_mode = codec_user_config_.channel_mode;
codec_config_.channel_mode = codec_user_config_.channel_mode;
}
break;
case BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO:
if (channelMode & A2DP_AAC_CHANNEL_MODE_STEREO) {
result_config_cie.channelMode = A2DP_AAC_CHANNEL_MODE_STEREO;
codec_capability_.channel_mode = codec_user_config_.channel_mode;
codec_config_.channel_mode = codec_user_config_.channel_mode;
}
break;
case BTAV_A2DP_CODEC_CHANNEL_MODE_NONE:
codec_capability_.channel_mode = BTAV_A2DP_CODEC_CHANNEL_MODE_NONE;
codec_config_.channel_mode = BTAV_A2DP_CODEC_CHANNEL_MODE_NONE;
break;
}
// Select the channel mode if there is no user preference
do {
// Compute the selectable capability
if (channelMode & A2DP_AAC_CHANNEL_MODE_MONO) {
codec_selectable_capability_.channel_mode |=
BTAV_A2DP_CODEC_CHANNEL_MODE_MONO;
}
if (channelMode & A2DP_AAC_CHANNEL_MODE_STEREO) {
codec_selectable_capability_.channel_mode |=
BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO;
}
if (codec_config_.channel_mode != BTAV_A2DP_CODEC_CHANNEL_MODE_NONE) break;
// Compute the common capability
if (channelMode & A2DP_AAC_CHANNEL_MODE_MONO)
codec_capability_.channel_mode |= BTAV_A2DP_CODEC_CHANNEL_MODE_MONO;
if (channelMode & A2DP_AAC_CHANNEL_MODE_STEREO) {
codec_capability_.channel_mode |= BTAV_A2DP_CODEC_CHANNEL_MODE_STEREO;
}
// No user preference - try the codec audio config
if (select_audio_channel_mode(&codec_audio_config_, channelMode,
&result_config_cie, &codec_config_)) {
break;
}
// No user preference - try the default config
if (select_best_channel_mode(
a2dp_aac_default_config.channelMode & sink_info_cie.channelMode,
&result_config_cie, &codec_config_)) {
break;
}
// No user preference - use the best match
if (select_best_channel_mode(channelMode, &result_config_cie,
&codec_config_)) {
break;
}
} while (false);
if (codec_config_.channel_mode == BTAV_A2DP_CODEC_CHANNEL_MODE_NONE) {
LOG_ERROR(LOG_TAG,
"%s: cannot match channel mode: source caps = 0x%x "
"sink info = 0x%x",
__func__, a2dp_aac_caps.channelMode, sink_info_cie.channelMode);
goto fail;
}
if (A2DP_BuildInfoAac(AVDT_MEDIA_TYPE_AUDIO, &result_config_cie,
p_result_codec_config) != A2DP_SUCCESS) {
goto fail;
}
//
// Copy the codec-specific fields if they are not zero
//
if (codec_user_config_.codec_specific_1 != 0)
codec_config_.codec_specific_1 = codec_user_config_.codec_specific_1;
if (codec_user_config_.codec_specific_2 != 0)
codec_config_.codec_specific_2 = codec_user_config_.codec_specific_2;
if (codec_user_config_.codec_specific_3 != 0)
codec_config_.codec_specific_3 = codec_user_config_.codec_specific_3;
if (codec_user_config_.codec_specific_4 != 0)
codec_config_.codec_specific_4 = codec_user_config_.codec_specific_4;
// Create a local copy of the peer codec capability, and the
// result codec config.
if (is_capability) {
status = A2DP_BuildInfoAac(AVDT_MEDIA_TYPE_AUDIO, &sink_info_cie,
ota_codec_peer_capability_);
} else {
status = A2DP_BuildInfoAac(AVDT_MEDIA_TYPE_AUDIO, &sink_info_cie,
ota_codec_peer_config_);
}
CHECK(status == A2DP_SUCCESS);
status = A2DP_BuildInfoAac(AVDT_MEDIA_TYPE_AUDIO, &result_config_cie,
ota_codec_config_);
CHECK(status == A2DP_SUCCESS);
return true;
fail:
// Restore the internal state
codec_config_ = saved_codec_config;
codec_capability_ = saved_codec_capability;
codec_selectable_capability_ = saved_codec_selectable_capability;
codec_user_config_ = saved_codec_user_config;
codec_audio_config_ = saved_codec_audio_config;
memcpy(ota_codec_config_, saved_ota_codec_config, sizeof(ota_codec_config_));
memcpy(ota_codec_peer_capability_, saved_ota_codec_peer_capability,
sizeof(ota_codec_peer_capability_));
memcpy(ota_codec_peer_config_, saved_ota_codec_peer_config,
sizeof(ota_codec_peer_config_));
return false;
}
A2dpCodecConfigAacSink::A2dpCodecConfigAacSink(
btav_a2dp_codec_priority_t codec_priority)
: A2dpCodecConfig(BTAV_A2DP_CODEC_INDEX_SINK_AAC,
A2DP_CodecIndexStrAacSink(), codec_priority) {}
A2dpCodecConfigAacSink::~A2dpCodecConfigAacSink() {}
bool A2dpCodecConfigAacSink::init() {
if (!isValid()) return false;
// Load the decoder
if (!A2DP_LoadDecoderAac()) {
LOG_ERROR(LOG_TAG, "%s: cannot load the decoder", __func__);
return false;
}
return true;
}
period_ms_t A2dpCodecConfigAacSink::encoderIntervalMs() const {
// TODO: This method applies only to Source codecs
return 0;
}
bool A2dpCodecConfigAacSink::setCodecConfig(
UNUSED_ATTR const uint8_t* p_peer_codec_info,
UNUSED_ATTR bool is_capability,
UNUSED_ATTR uint8_t* p_result_codec_config) {
// TODO: This method applies only to Source codecs
return false;
}
bool A2dpCodecConfigAacSink::useRtpHeaderMarkerBit() const {
// TODO: This method applies only to Source codecs
return false;
}
bool A2dpCodecConfigAacSink::updateEncoderUserConfig(
UNUSED_ATTR const tA2DP_ENCODER_INIT_PEER_PARAMS* p_peer_params,
UNUSED_ATTR bool* p_restart_input, UNUSED_ATTR bool* p_restart_output,
UNUSED_ATTR bool* p_config_updated) {
// TODO: This method applies only to Source codecs
return false;
}