| /* |
| --------------------------------------------------------------------------- |
| Copyright (c) 1998-2008, Brian Gladman, Worcester, UK. All rights reserved. |
| |
| LICENSE TERMS |
| |
| The redistribution and use of this software (with or without changes) |
| is allowed without the payment of fees or royalties provided that: |
| |
| 1. source code distributions include the above copyright notice, this |
| list of conditions and the following disclaimer; |
| |
| 2. binary distributions include the above copyright notice, this list |
| of conditions and the following disclaimer in their documentation; |
| |
| 3. the name of the copyright holder is not used to endorse products |
| built using this software without specific written permission. |
| |
| DISCLAIMER |
| |
| This software is provided 'as is' with no explicit or implied warranties |
| in respect of its properties, including, but not limited to, correctness |
| and/or fitness for purpose. |
| --------------------------------------------------------------------------- |
| Issue 09/09/2006 |
| |
| This is an AES implementation that uses only 8-bit byte operations on the |
| cipher state (there are options to use 32-bit types if available). |
| |
| The combination of mix columns and byte substitution used here is based on |
| that developed by Karl Malbrain. His contribution is acknowledged. |
| */ |
| |
| /* define if you have a fast memcpy function on your system */ |
| #if 1 |
| # define HAVE_MEMCPY |
| # include <string.h> |
| #if 0 |
| # if defined( _MSC_VER ) |
| # include <intrin.h> |
| # pragma intrinsic( memcpy ) |
| # endif |
| #endif |
| #endif |
| |
| #include <stdlib.h> |
| |
| /* define if you have fast 32-bit types on your system */ |
| #if 1 |
| # define HAVE_UINT_32T |
| #endif |
| |
| /* define if you don't want any tables */ |
| #if 1 |
| # define USE_TABLES |
| #endif |
| |
| /* On Intel Core 2 duo VERSION_1 is faster */ |
| |
| /* alternative versions (test for performance on your system) */ |
| #if 1 |
| # define VERSION_1 |
| #endif |
| |
| #include "aes.h" |
| |
| #if defined( HAVE_UINT_32T ) |
| typedef unsigned long uint_32t; |
| #endif |
| |
| /* functions for finite field multiplication in the AES Galois field */ |
| |
| #define WPOLY 0x011b |
| #define BPOLY 0x1b |
| #define DPOLY 0x008d |
| |
| #define f1(x) (x) |
| #define f2(x) ((x << 1) ^ (((x >> 7) & 1) * WPOLY)) |
| #define f4(x) ((x << 2) ^ (((x >> 6) & 1) * WPOLY) ^ (((x >> 6) & 2) * WPOLY)) |
| #define f8(x) ((x << 3) ^ (((x >> 5) & 1) * WPOLY) ^ (((x >> 5) & 2) * WPOLY) \ |
| ^ (((x >> 5) & 4) * WPOLY)) |
| #define d2(x) (((x) >> 1) ^ ((x) & 1 ? DPOLY : 0)) |
| |
| #define f3(x) (f2(x) ^ x) |
| #define f9(x) (f8(x) ^ x) |
| #define fb(x) (f8(x) ^ f2(x) ^ x) |
| #define fd(x) (f8(x) ^ f4(x) ^ x) |
| #define fe(x) (f8(x) ^ f4(x) ^ f2(x)) |
| |
| #if defined( USE_TABLES ) |
| |
| #define sb_data(w) { /* S Box data values */ \ |
| w(0x63), w(0x7c), w(0x77), w(0x7b), w(0xf2), w(0x6b), w(0x6f), w(0xc5),\ |
| w(0x30), w(0x01), w(0x67), w(0x2b), w(0xfe), w(0xd7), w(0xab), w(0x76),\ |
| w(0xca), w(0x82), w(0xc9), w(0x7d), w(0xfa), w(0x59), w(0x47), w(0xf0),\ |
| w(0xad), w(0xd4), w(0xa2), w(0xaf), w(0x9c), w(0xa4), w(0x72), w(0xc0),\ |
| w(0xb7), w(0xfd), w(0x93), w(0x26), w(0x36), w(0x3f), w(0xf7), w(0xcc),\ |
| w(0x34), w(0xa5), w(0xe5), w(0xf1), w(0x71), w(0xd8), w(0x31), w(0x15),\ |
| w(0x04), w(0xc7), w(0x23), w(0xc3), w(0x18), w(0x96), w(0x05), w(0x9a),\ |
| w(0x07), w(0x12), w(0x80), w(0xe2), w(0xeb), w(0x27), w(0xb2), w(0x75),\ |
| w(0x09), w(0x83), w(0x2c), w(0x1a), w(0x1b), w(0x6e), w(0x5a), w(0xa0),\ |
| w(0x52), w(0x3b), w(0xd6), w(0xb3), w(0x29), w(0xe3), w(0x2f), w(0x84),\ |
| w(0x53), w(0xd1), w(0x00), w(0xed), w(0x20), w(0xfc), w(0xb1), w(0x5b),\ |
| w(0x6a), w(0xcb), w(0xbe), w(0x39), w(0x4a), w(0x4c), w(0x58), w(0xcf),\ |
| w(0xd0), w(0xef), w(0xaa), w(0xfb), w(0x43), w(0x4d), w(0x33), w(0x85),\ |
| w(0x45), w(0xf9), w(0x02), w(0x7f), w(0x50), w(0x3c), w(0x9f), w(0xa8),\ |
| w(0x51), w(0xa3), w(0x40), w(0x8f), w(0x92), w(0x9d), w(0x38), w(0xf5),\ |
| w(0xbc), w(0xb6), w(0xda), w(0x21), w(0x10), w(0xff), w(0xf3), w(0xd2),\ |
| w(0xcd), w(0x0c), w(0x13), w(0xec), w(0x5f), w(0x97), w(0x44), w(0x17),\ |
| w(0xc4), w(0xa7), w(0x7e), w(0x3d), w(0x64), w(0x5d), w(0x19), w(0x73),\ |
| w(0x60), w(0x81), w(0x4f), w(0xdc), w(0x22), w(0x2a), w(0x90), w(0x88),\ |
| w(0x46), w(0xee), w(0xb8), w(0x14), w(0xde), w(0x5e), w(0x0b), w(0xdb),\ |
| w(0xe0), w(0x32), w(0x3a), w(0x0a), w(0x49), w(0x06), w(0x24), w(0x5c),\ |
| w(0xc2), w(0xd3), w(0xac), w(0x62), w(0x91), w(0x95), w(0xe4), w(0x79),\ |
| w(0xe7), w(0xc8), w(0x37), w(0x6d), w(0x8d), w(0xd5), w(0x4e), w(0xa9),\ |
| w(0x6c), w(0x56), w(0xf4), w(0xea), w(0x65), w(0x7a), w(0xae), w(0x08),\ |
| w(0xba), w(0x78), w(0x25), w(0x2e), w(0x1c), w(0xa6), w(0xb4), w(0xc6),\ |
| w(0xe8), w(0xdd), w(0x74), w(0x1f), w(0x4b), w(0xbd), w(0x8b), w(0x8a),\ |
| w(0x70), w(0x3e), w(0xb5), w(0x66), w(0x48), w(0x03), w(0xf6), w(0x0e),\ |
| w(0x61), w(0x35), w(0x57), w(0xb9), w(0x86), w(0xc1), w(0x1d), w(0x9e),\ |
| w(0xe1), w(0xf8), w(0x98), w(0x11), w(0x69), w(0xd9), w(0x8e), w(0x94),\ |
| w(0x9b), w(0x1e), w(0x87), w(0xe9), w(0xce), w(0x55), w(0x28), w(0xdf),\ |
| w(0x8c), w(0xa1), w(0x89), w(0x0d), w(0xbf), w(0xe6), w(0x42), w(0x68),\ |
| w(0x41), w(0x99), w(0x2d), w(0x0f), w(0xb0), w(0x54), w(0xbb), w(0x16) } |
| |
| #define isb_data(w) { /* inverse S Box data values */ \ |
| w(0x52), w(0x09), w(0x6a), w(0xd5), w(0x30), w(0x36), w(0xa5), w(0x38),\ |
| w(0xbf), w(0x40), w(0xa3), w(0x9e), w(0x81), w(0xf3), w(0xd7), w(0xfb),\ |
| w(0x7c), w(0xe3), w(0x39), w(0x82), w(0x9b), w(0x2f), w(0xff), w(0x87),\ |
| w(0x34), w(0x8e), w(0x43), w(0x44), w(0xc4), w(0xde), w(0xe9), w(0xcb),\ |
| w(0x54), w(0x7b), w(0x94), w(0x32), w(0xa6), w(0xc2), w(0x23), w(0x3d),\ |
| w(0xee), w(0x4c), w(0x95), w(0x0b), w(0x42), w(0xfa), w(0xc3), w(0x4e),\ |
| w(0x08), w(0x2e), w(0xa1), w(0x66), w(0x28), w(0xd9), w(0x24), w(0xb2),\ |
| w(0x76), w(0x5b), w(0xa2), w(0x49), w(0x6d), w(0x8b), w(0xd1), w(0x25),\ |
| w(0x72), w(0xf8), w(0xf6), w(0x64), w(0x86), w(0x68), w(0x98), w(0x16),\ |
| w(0xd4), w(0xa4), w(0x5c), w(0xcc), w(0x5d), w(0x65), w(0xb6), w(0x92),\ |
| w(0x6c), w(0x70), w(0x48), w(0x50), w(0xfd), w(0xed), w(0xb9), w(0xda),\ |
| w(0x5e), w(0x15), w(0x46), w(0x57), w(0xa7), w(0x8d), w(0x9d), w(0x84),\ |
| w(0x90), w(0xd8), w(0xab), w(0x00), w(0x8c), w(0xbc), w(0xd3), w(0x0a),\ |
| w(0xf7), w(0xe4), w(0x58), w(0x05), w(0xb8), w(0xb3), w(0x45), w(0x06),\ |
| w(0xd0), w(0x2c), w(0x1e), w(0x8f), w(0xca), w(0x3f), w(0x0f), w(0x02),\ |
| w(0xc1), w(0xaf), w(0xbd), w(0x03), w(0x01), w(0x13), w(0x8a), w(0x6b),\ |
| w(0x3a), w(0x91), w(0x11), w(0x41), w(0x4f), w(0x67), w(0xdc), w(0xea),\ |
| w(0x97), w(0xf2), w(0xcf), w(0xce), w(0xf0), w(0xb4), w(0xe6), w(0x73),\ |
| w(0x96), w(0xac), w(0x74), w(0x22), w(0xe7), w(0xad), w(0x35), w(0x85),\ |
| w(0xe2), w(0xf9), w(0x37), w(0xe8), w(0x1c), w(0x75), w(0xdf), w(0x6e),\ |
| w(0x47), w(0xf1), w(0x1a), w(0x71), w(0x1d), w(0x29), w(0xc5), w(0x89),\ |
| w(0x6f), w(0xb7), w(0x62), w(0x0e), w(0xaa), w(0x18), w(0xbe), w(0x1b),\ |
| w(0xfc), w(0x56), w(0x3e), w(0x4b), w(0xc6), w(0xd2), w(0x79), w(0x20),\ |
| w(0x9a), w(0xdb), w(0xc0), w(0xfe), w(0x78), w(0xcd), w(0x5a), w(0xf4),\ |
| w(0x1f), w(0xdd), w(0xa8), w(0x33), w(0x88), w(0x07), w(0xc7), w(0x31),\ |
| w(0xb1), w(0x12), w(0x10), w(0x59), w(0x27), w(0x80), w(0xec), w(0x5f),\ |
| w(0x60), w(0x51), w(0x7f), w(0xa9), w(0x19), w(0xb5), w(0x4a), w(0x0d),\ |
| w(0x2d), w(0xe5), w(0x7a), w(0x9f), w(0x93), w(0xc9), w(0x9c), w(0xef),\ |
| w(0xa0), w(0xe0), w(0x3b), w(0x4d), w(0xae), w(0x2a), w(0xf5), w(0xb0),\ |
| w(0xc8), w(0xeb), w(0xbb), w(0x3c), w(0x83), w(0x53), w(0x99), w(0x61),\ |
| w(0x17), w(0x2b), w(0x04), w(0x7e), w(0xba), w(0x77), w(0xd6), w(0x26),\ |
| w(0xe1), w(0x69), w(0x14), w(0x63), w(0x55), w(0x21), w(0x0c), w(0x7d) } |
| |
| #define mm_data(w) { /* basic data for forming finite field tables */ \ |
| w(0x00), w(0x01), w(0x02), w(0x03), w(0x04), w(0x05), w(0x06), w(0x07),\ |
| w(0x08), w(0x09), w(0x0a), w(0x0b), w(0x0c), w(0x0d), w(0x0e), w(0x0f),\ |
| w(0x10), w(0x11), w(0x12), w(0x13), w(0x14), w(0x15), w(0x16), w(0x17),\ |
| w(0x18), w(0x19), w(0x1a), w(0x1b), w(0x1c), w(0x1d), w(0x1e), w(0x1f),\ |
| w(0x20), w(0x21), w(0x22), w(0x23), w(0x24), w(0x25), w(0x26), w(0x27),\ |
| w(0x28), w(0x29), w(0x2a), w(0x2b), w(0x2c), w(0x2d), w(0x2e), w(0x2f),\ |
| w(0x30), w(0x31), w(0x32), w(0x33), w(0x34), w(0x35), w(0x36), w(0x37),\ |
| w(0x38), w(0x39), w(0x3a), w(0x3b), w(0x3c), w(0x3d), w(0x3e), w(0x3f),\ |
| w(0x40), w(0x41), w(0x42), w(0x43), w(0x44), w(0x45), w(0x46), w(0x47),\ |
| w(0x48), w(0x49), w(0x4a), w(0x4b), w(0x4c), w(0x4d), w(0x4e), w(0x4f),\ |
| w(0x50), w(0x51), w(0x52), w(0x53), w(0x54), w(0x55), w(0x56), w(0x57),\ |
| w(0x58), w(0x59), w(0x5a), w(0x5b), w(0x5c), w(0x5d), w(0x5e), w(0x5f),\ |
| w(0x60), w(0x61), w(0x62), w(0x63), w(0x64), w(0x65), w(0x66), w(0x67),\ |
| w(0x68), w(0x69), w(0x6a), w(0x6b), w(0x6c), w(0x6d), w(0x6e), w(0x6f),\ |
| w(0x70), w(0x71), w(0x72), w(0x73), w(0x74), w(0x75), w(0x76), w(0x77),\ |
| w(0x78), w(0x79), w(0x7a), w(0x7b), w(0x7c), w(0x7d), w(0x7e), w(0x7f),\ |
| w(0x80), w(0x81), w(0x82), w(0x83), w(0x84), w(0x85), w(0x86), w(0x87),\ |
| w(0x88), w(0x89), w(0x8a), w(0x8b), w(0x8c), w(0x8d), w(0x8e), w(0x8f),\ |
| w(0x90), w(0x91), w(0x92), w(0x93), w(0x94), w(0x95), w(0x96), w(0x97),\ |
| w(0x98), w(0x99), w(0x9a), w(0x9b), w(0x9c), w(0x9d), w(0x9e), w(0x9f),\ |
| w(0xa0), w(0xa1), w(0xa2), w(0xa3), w(0xa4), w(0xa5), w(0xa6), w(0xa7),\ |
| w(0xa8), w(0xa9), w(0xaa), w(0xab), w(0xac), w(0xad), w(0xae), w(0xaf),\ |
| w(0xb0), w(0xb1), w(0xb2), w(0xb3), w(0xb4), w(0xb5), w(0xb6), w(0xb7),\ |
| w(0xb8), w(0xb9), w(0xba), w(0xbb), w(0xbc), w(0xbd), w(0xbe), w(0xbf),\ |
| w(0xc0), w(0xc1), w(0xc2), w(0xc3), w(0xc4), w(0xc5), w(0xc6), w(0xc7),\ |
| w(0xc8), w(0xc9), w(0xca), w(0xcb), w(0xcc), w(0xcd), w(0xce), w(0xcf),\ |
| w(0xd0), w(0xd1), w(0xd2), w(0xd3), w(0xd4), w(0xd5), w(0xd6), w(0xd7),\ |
| w(0xd8), w(0xd9), w(0xda), w(0xdb), w(0xdc), w(0xdd), w(0xde), w(0xdf),\ |
| w(0xe0), w(0xe1), w(0xe2), w(0xe3), w(0xe4), w(0xe5), w(0xe6), w(0xe7),\ |
| w(0xe8), w(0xe9), w(0xea), w(0xeb), w(0xec), w(0xed), w(0xee), w(0xef),\ |
| w(0xf0), w(0xf1), w(0xf2), w(0xf3), w(0xf4), w(0xf5), w(0xf6), w(0xf7),\ |
| w(0xf8), w(0xf9), w(0xfa), w(0xfb), w(0xfc), w(0xfd), w(0xfe), w(0xff) } |
| |
| static const uint_8t sbox[256] = sb_data(f1); |
| static const uint_8t isbox[256] = isb_data(f1); |
| |
| static const uint_8t gfm2_sbox[256] = sb_data(f2); |
| static const uint_8t gfm3_sbox[256] = sb_data(f3); |
| |
| static const uint_8t gfmul_9[256] = mm_data(f9); |
| static const uint_8t gfmul_b[256] = mm_data(fb); |
| static const uint_8t gfmul_d[256] = mm_data(fd); |
| static const uint_8t gfmul_e[256] = mm_data(fe); |
| |
| #define s_box(x) sbox[(x)] |
| #define is_box(x) isbox[(x)] |
| #define gfm2_sb(x) gfm2_sbox[(x)] |
| #define gfm3_sb(x) gfm3_sbox[(x)] |
| #define gfm_9(x) gfmul_9[(x)] |
| #define gfm_b(x) gfmul_b[(x)] |
| #define gfm_d(x) gfmul_d[(x)] |
| #define gfm_e(x) gfmul_e[(x)] |
| |
| #else |
| |
| /* this is the high bit of x right shifted by 1 */ |
| /* position. Since the starting polynomial has */ |
| /* 9 bits (0x11b), this right shift keeps the */ |
| /* values of all top bits within a byte */ |
| |
| static uint_8t hibit(const uint_8t x) |
| { uint_8t r = (uint_8t)((x >> 1) | (x >> 2)); |
| |
| r |= (r >> 2); |
| r |= (r >> 4); |
| return (r + 1) >> 1; |
| } |
| |
| /* return the inverse of the finite field element x */ |
| |
| static uint_8t gf_inv(const uint_8t x) |
| { uint_8t p1 = x, p2 = BPOLY, n1 = hibit(x), n2 = 0x80, v1 = 1, v2 = 0; |
| |
| if(x < 2) |
| return x; |
| |
| for( ; ; ) |
| { |
| if(n1) |
| while(n2 >= n1) /* divide polynomial p2 by p1 */ |
| { |
| n2 /= n1; /* shift smaller polynomial left */ |
| p2 ^= (p1 * n2) & 0xff; /* and remove from larger one */ |
| v2 ^= (v1 * n2); /* shift accumulated value and */ |
| n2 = hibit(p2); /* add into result */ |
| } |
| else |
| return v1; |
| |
| if(n2) /* repeat with values swapped */ |
| while(n1 >= n2) |
| { |
| n1 /= n2; |
| p1 ^= p2 * n1; |
| v1 ^= v2 * n1; |
| n1 = hibit(p1); |
| } |
| else |
| return v2; |
| } |
| } |
| |
| /* The forward and inverse affine transformations used in the S-box */ |
| uint_8t fwd_affine(const uint_8t x) |
| { |
| #if defined( HAVE_UINT_32T ) |
| uint_32t w = x; |
| w ^= (w << 1) ^ (w << 2) ^ (w << 3) ^ (w << 4); |
| return 0x63 ^ ((w ^ (w >> 8)) & 0xff); |
| #else |
| return 0x63 ^ x ^ (x << 1) ^ (x << 2) ^ (x << 3) ^ (x << 4) |
| ^ (x >> 7) ^ (x >> 6) ^ (x >> 5) ^ (x >> 4); |
| #endif |
| } |
| |
| uint_8t inv_affine(const uint_8t x) |
| { |
| #if defined( HAVE_UINT_32T ) |
| uint_32t w = x; |
| w = (w << 1) ^ (w << 3) ^ (w << 6); |
| return 0x05 ^ ((w ^ (w >> 8)) & 0xff); |
| #else |
| return 0x05 ^ (x << 1) ^ (x << 3) ^ (x << 6) |
| ^ (x >> 7) ^ (x >> 5) ^ (x >> 2); |
| #endif |
| } |
| |
| #define s_box(x) fwd_affine(gf_inv(x)) |
| #define is_box(x) gf_inv(inv_affine(x)) |
| #define gfm2_sb(x) f2(s_box(x)) |
| #define gfm3_sb(x) f3(s_box(x)) |
| #define gfm_9(x) f9(x) |
| #define gfm_b(x) fb(x) |
| #define gfm_d(x) fd(x) |
| #define gfm_e(x) fe(x) |
| |
| #endif |
| |
| #if defined( HAVE_MEMCPY ) |
| # define block_copy_nn(d, s, l) memcpy(d, s, l) |
| # define block_copy(d, s) memcpy(d, s, N_BLOCK) |
| #else |
| # define block_copy_nn(d, s, l) copy_block_nn(d, s, l) |
| # define block_copy(d, s) copy_block(d, s) |
| #endif |
| |
| #if !defined( HAVE_MEMCPY ) |
| static void copy_block( void *d, const void *s ) |
| { |
| #if defined( HAVE_UINT_32T ) |
| ((uint_32t*)d)[ 0] = ((uint_32t*)s)[ 0]; |
| ((uint_32t*)d)[ 1] = ((uint_32t*)s)[ 1]; |
| ((uint_32t*)d)[ 2] = ((uint_32t*)s)[ 2]; |
| ((uint_32t*)d)[ 3] = ((uint_32t*)s)[ 3]; |
| #else |
| ((uint_8t*)d)[ 0] = ((uint_8t*)s)[ 0]; |
| ((uint_8t*)d)[ 1] = ((uint_8t*)s)[ 1]; |
| ((uint_8t*)d)[ 2] = ((uint_8t*)s)[ 2]; |
| ((uint_8t*)d)[ 3] = ((uint_8t*)s)[ 3]; |
| ((uint_8t*)d)[ 4] = ((uint_8t*)s)[ 4]; |
| ((uint_8t*)d)[ 5] = ((uint_8t*)s)[ 5]; |
| ((uint_8t*)d)[ 6] = ((uint_8t*)s)[ 6]; |
| ((uint_8t*)d)[ 7] = ((uint_8t*)s)[ 7]; |
| ((uint_8t*)d)[ 8] = ((uint_8t*)s)[ 8]; |
| ((uint_8t*)d)[ 9] = ((uint_8t*)s)[ 9]; |
| ((uint_8t*)d)[10] = ((uint_8t*)s)[10]; |
| ((uint_8t*)d)[11] = ((uint_8t*)s)[11]; |
| ((uint_8t*)d)[12] = ((uint_8t*)s)[12]; |
| ((uint_8t*)d)[13] = ((uint_8t*)s)[13]; |
| ((uint_8t*)d)[14] = ((uint_8t*)s)[14]; |
| ((uint_8t*)d)[15] = ((uint_8t*)s)[15]; |
| #endif |
| } |
| |
| static void copy_block_nn( void * d, const void *s, uint_8t nn ) |
| { |
| while( nn-- ) |
| *((uint_8t*)d)++ = *((uint_8t*)s)++; |
| } |
| #endif |
| |
| static void xor_block( void *d, const void *s ) |
| { |
| #if defined( HAVE_UINT_32T ) |
| ((uint_32t*)d)[ 0] ^= ((uint_32t*)s)[ 0]; |
| ((uint_32t*)d)[ 1] ^= ((uint_32t*)s)[ 1]; |
| ((uint_32t*)d)[ 2] ^= ((uint_32t*)s)[ 2]; |
| ((uint_32t*)d)[ 3] ^= ((uint_32t*)s)[ 3]; |
| #else |
| ((uint_8t*)d)[ 0] ^= ((uint_8t*)s)[ 0]; |
| ((uint_8t*)d)[ 1] ^= ((uint_8t*)s)[ 1]; |
| ((uint_8t*)d)[ 2] ^= ((uint_8t*)s)[ 2]; |
| ((uint_8t*)d)[ 3] ^= ((uint_8t*)s)[ 3]; |
| ((uint_8t*)d)[ 4] ^= ((uint_8t*)s)[ 4]; |
| ((uint_8t*)d)[ 5] ^= ((uint_8t*)s)[ 5]; |
| ((uint_8t*)d)[ 6] ^= ((uint_8t*)s)[ 6]; |
| ((uint_8t*)d)[ 7] ^= ((uint_8t*)s)[ 7]; |
| ((uint_8t*)d)[ 8] ^= ((uint_8t*)s)[ 8]; |
| ((uint_8t*)d)[ 9] ^= ((uint_8t*)s)[ 9]; |
| ((uint_8t*)d)[10] ^= ((uint_8t*)s)[10]; |
| ((uint_8t*)d)[11] ^= ((uint_8t*)s)[11]; |
| ((uint_8t*)d)[12] ^= ((uint_8t*)s)[12]; |
| ((uint_8t*)d)[13] ^= ((uint_8t*)s)[13]; |
| ((uint_8t*)d)[14] ^= ((uint_8t*)s)[14]; |
| ((uint_8t*)d)[15] ^= ((uint_8t*)s)[15]; |
| #endif |
| } |
| |
| static void copy_and_key( void *d, const void *s, const void *k ) |
| { |
| #if defined( HAVE_UINT_32T ) |
| ((uint_32t*)d)[ 0] = ((uint_32t*)s)[ 0] ^ ((uint_32t*)k)[ 0]; |
| ((uint_32t*)d)[ 1] = ((uint_32t*)s)[ 1] ^ ((uint_32t*)k)[ 1]; |
| ((uint_32t*)d)[ 2] = ((uint_32t*)s)[ 2] ^ ((uint_32t*)k)[ 2]; |
| ((uint_32t*)d)[ 3] = ((uint_32t*)s)[ 3] ^ ((uint_32t*)k)[ 3]; |
| #elif 1 |
| ((uint_8t*)d)[ 0] = ((uint_8t*)s)[ 0] ^ ((uint_8t*)k)[ 0]; |
| ((uint_8t*)d)[ 1] = ((uint_8t*)s)[ 1] ^ ((uint_8t*)k)[ 1]; |
| ((uint_8t*)d)[ 2] = ((uint_8t*)s)[ 2] ^ ((uint_8t*)k)[ 2]; |
| ((uint_8t*)d)[ 3] = ((uint_8t*)s)[ 3] ^ ((uint_8t*)k)[ 3]; |
| ((uint_8t*)d)[ 4] = ((uint_8t*)s)[ 4] ^ ((uint_8t*)k)[ 4]; |
| ((uint_8t*)d)[ 5] = ((uint_8t*)s)[ 5] ^ ((uint_8t*)k)[ 5]; |
| ((uint_8t*)d)[ 6] = ((uint_8t*)s)[ 6] ^ ((uint_8t*)k)[ 6]; |
| ((uint_8t*)d)[ 7] = ((uint_8t*)s)[ 7] ^ ((uint_8t*)k)[ 7]; |
| ((uint_8t*)d)[ 8] = ((uint_8t*)s)[ 8] ^ ((uint_8t*)k)[ 8]; |
| ((uint_8t*)d)[ 9] = ((uint_8t*)s)[ 9] ^ ((uint_8t*)k)[ 9]; |
| ((uint_8t*)d)[10] = ((uint_8t*)s)[10] ^ ((uint_8t*)k)[10]; |
| ((uint_8t*)d)[11] = ((uint_8t*)s)[11] ^ ((uint_8t*)k)[11]; |
| ((uint_8t*)d)[12] = ((uint_8t*)s)[12] ^ ((uint_8t*)k)[12]; |
| ((uint_8t*)d)[13] = ((uint_8t*)s)[13] ^ ((uint_8t*)k)[13]; |
| ((uint_8t*)d)[14] = ((uint_8t*)s)[14] ^ ((uint_8t*)k)[14]; |
| ((uint_8t*)d)[15] = ((uint_8t*)s)[15] ^ ((uint_8t*)k)[15]; |
| #else |
| block_copy(d, s); |
| xor_block(d, k); |
| #endif |
| } |
| |
| static void add_round_key( uint_8t d[N_BLOCK], const uint_8t k[N_BLOCK] ) |
| { |
| xor_block(d, k); |
| } |
| |
| static void shift_sub_rows( uint_8t st[N_BLOCK] ) |
| { uint_8t tt; |
| |
| st[ 0] = s_box(st[ 0]); st[ 4] = s_box(st[ 4]); |
| st[ 8] = s_box(st[ 8]); st[12] = s_box(st[12]); |
| |
| tt = st[1]; st[ 1] = s_box(st[ 5]); st[ 5] = s_box(st[ 9]); |
| st[ 9] = s_box(st[13]); st[13] = s_box( tt ); |
| |
| tt = st[2]; st[ 2] = s_box(st[10]); st[10] = s_box( tt ); |
| tt = st[6]; st[ 6] = s_box(st[14]); st[14] = s_box( tt ); |
| |
| tt = st[15]; st[15] = s_box(st[11]); st[11] = s_box(st[ 7]); |
| st[ 7] = s_box(st[ 3]); st[ 3] = s_box( tt ); |
| } |
| |
| static void inv_shift_sub_rows( uint_8t st[N_BLOCK] ) |
| { uint_8t tt; |
| |
| st[ 0] = is_box(st[ 0]); st[ 4] = is_box(st[ 4]); |
| st[ 8] = is_box(st[ 8]); st[12] = is_box(st[12]); |
| |
| tt = st[13]; st[13] = is_box(st[9]); st[ 9] = is_box(st[5]); |
| st[ 5] = is_box(st[1]); st[ 1] = is_box( tt ); |
| |
| tt = st[2]; st[ 2] = is_box(st[10]); st[10] = is_box( tt ); |
| tt = st[6]; st[ 6] = is_box(st[14]); st[14] = is_box( tt ); |
| |
| tt = st[3]; st[ 3] = is_box(st[ 7]); st[ 7] = is_box(st[11]); |
| st[11] = is_box(st[15]); st[15] = is_box( tt ); |
| } |
| |
| #if defined( VERSION_1 ) |
| static void mix_sub_columns( uint_8t dt[N_BLOCK] ) |
| { uint_8t st[N_BLOCK]; |
| block_copy(st, dt); |
| #else |
| static void mix_sub_columns( uint_8t dt[N_BLOCK], uint_8t st[N_BLOCK] ) |
| { |
| #endif |
| dt[ 0] = gfm2_sb(st[0]) ^ gfm3_sb(st[5]) ^ s_box(st[10]) ^ s_box(st[15]); |
| dt[ 1] = s_box(st[0]) ^ gfm2_sb(st[5]) ^ gfm3_sb(st[10]) ^ s_box(st[15]); |
| dt[ 2] = s_box(st[0]) ^ s_box(st[5]) ^ gfm2_sb(st[10]) ^ gfm3_sb(st[15]); |
| dt[ 3] = gfm3_sb(st[0]) ^ s_box(st[5]) ^ s_box(st[10]) ^ gfm2_sb(st[15]); |
| |
| dt[ 4] = gfm2_sb(st[4]) ^ gfm3_sb(st[9]) ^ s_box(st[14]) ^ s_box(st[3]); |
| dt[ 5] = s_box(st[4]) ^ gfm2_sb(st[9]) ^ gfm3_sb(st[14]) ^ s_box(st[3]); |
| dt[ 6] = s_box(st[4]) ^ s_box(st[9]) ^ gfm2_sb(st[14]) ^ gfm3_sb(st[3]); |
| dt[ 7] = gfm3_sb(st[4]) ^ s_box(st[9]) ^ s_box(st[14]) ^ gfm2_sb(st[3]); |
| |
| dt[ 8] = gfm2_sb(st[8]) ^ gfm3_sb(st[13]) ^ s_box(st[2]) ^ s_box(st[7]); |
| dt[ 9] = s_box(st[8]) ^ gfm2_sb(st[13]) ^ gfm3_sb(st[2]) ^ s_box(st[7]); |
| dt[10] = s_box(st[8]) ^ s_box(st[13]) ^ gfm2_sb(st[2]) ^ gfm3_sb(st[7]); |
| dt[11] = gfm3_sb(st[8]) ^ s_box(st[13]) ^ s_box(st[2]) ^ gfm2_sb(st[7]); |
| |
| dt[12] = gfm2_sb(st[12]) ^ gfm3_sb(st[1]) ^ s_box(st[6]) ^ s_box(st[11]); |
| dt[13] = s_box(st[12]) ^ gfm2_sb(st[1]) ^ gfm3_sb(st[6]) ^ s_box(st[11]); |
| dt[14] = s_box(st[12]) ^ s_box(st[1]) ^ gfm2_sb(st[6]) ^ gfm3_sb(st[11]); |
| dt[15] = gfm3_sb(st[12]) ^ s_box(st[1]) ^ s_box(st[6]) ^ gfm2_sb(st[11]); |
| } |
| |
| #if defined( VERSION_1 ) |
| static void inv_mix_sub_columns( uint_8t dt[N_BLOCK] ) |
| { uint_8t st[N_BLOCK]; |
| block_copy(st, dt); |
| #else |
| static void inv_mix_sub_columns( uint_8t dt[N_BLOCK], uint_8t st[N_BLOCK] ) |
| { |
| #endif |
| dt[ 0] = is_box(gfm_e(st[ 0]) ^ gfm_b(st[ 1]) ^ gfm_d(st[ 2]) ^ gfm_9(st[ 3])); |
| dt[ 5] = is_box(gfm_9(st[ 0]) ^ gfm_e(st[ 1]) ^ gfm_b(st[ 2]) ^ gfm_d(st[ 3])); |
| dt[10] = is_box(gfm_d(st[ 0]) ^ gfm_9(st[ 1]) ^ gfm_e(st[ 2]) ^ gfm_b(st[ 3])); |
| dt[15] = is_box(gfm_b(st[ 0]) ^ gfm_d(st[ 1]) ^ gfm_9(st[ 2]) ^ gfm_e(st[ 3])); |
| |
| dt[ 4] = is_box(gfm_e(st[ 4]) ^ gfm_b(st[ 5]) ^ gfm_d(st[ 6]) ^ gfm_9(st[ 7])); |
| dt[ 9] = is_box(gfm_9(st[ 4]) ^ gfm_e(st[ 5]) ^ gfm_b(st[ 6]) ^ gfm_d(st[ 7])); |
| dt[14] = is_box(gfm_d(st[ 4]) ^ gfm_9(st[ 5]) ^ gfm_e(st[ 6]) ^ gfm_b(st[ 7])); |
| dt[ 3] = is_box(gfm_b(st[ 4]) ^ gfm_d(st[ 5]) ^ gfm_9(st[ 6]) ^ gfm_e(st[ 7])); |
| |
| dt[ 8] = is_box(gfm_e(st[ 8]) ^ gfm_b(st[ 9]) ^ gfm_d(st[10]) ^ gfm_9(st[11])); |
| dt[13] = is_box(gfm_9(st[ 8]) ^ gfm_e(st[ 9]) ^ gfm_b(st[10]) ^ gfm_d(st[11])); |
| dt[ 2] = is_box(gfm_d(st[ 8]) ^ gfm_9(st[ 9]) ^ gfm_e(st[10]) ^ gfm_b(st[11])); |
| dt[ 7] = is_box(gfm_b(st[ 8]) ^ gfm_d(st[ 9]) ^ gfm_9(st[10]) ^ gfm_e(st[11])); |
| |
| dt[12] = is_box(gfm_e(st[12]) ^ gfm_b(st[13]) ^ gfm_d(st[14]) ^ gfm_9(st[15])); |
| dt[ 1] = is_box(gfm_9(st[12]) ^ gfm_e(st[13]) ^ gfm_b(st[14]) ^ gfm_d(st[15])); |
| dt[ 6] = is_box(gfm_d(st[12]) ^ gfm_9(st[13]) ^ gfm_e(st[14]) ^ gfm_b(st[15])); |
| dt[11] = is_box(gfm_b(st[12]) ^ gfm_d(st[13]) ^ gfm_9(st[14]) ^ gfm_e(st[15])); |
| } |
| |
| #if defined( AES_ENC_PREKEYED ) || defined( AES_DEC_PREKEYED ) |
| |
| /* Set the cipher key for the pre-keyed version */ |
| |
| return_type aes_set_key( const unsigned char key[], length_type keylen, aes_context ctx[1] ) |
| { |
| uint_8t cc, rc, hi; |
| |
| switch( keylen ) |
| { |
| case 16: |
| case 128: |
| keylen = 16; |
| break; |
| case 24: |
| case 192: |
| keylen = 24; |
| break; |
| case 32: |
| case 256: |
| keylen = 32; |
| break; |
| default: |
| ctx->rnd = 0; |
| return (return_type)-1; |
| } |
| block_copy_nn(ctx->ksch, key, keylen); |
| hi = (keylen + 28) << 2; |
| ctx->rnd = (hi >> 4) - 1; |
| for( cc = keylen, rc = 1; cc < hi; cc += 4 ) |
| { uint_8t tt, t0, t1, t2, t3; |
| |
| t0 = ctx->ksch[cc - 4]; |
| t1 = ctx->ksch[cc - 3]; |
| t2 = ctx->ksch[cc - 2]; |
| t3 = ctx->ksch[cc - 1]; |
| if( cc % keylen == 0 ) |
| { |
| tt = t0; |
| t0 = s_box(t1) ^ rc; |
| t1 = s_box(t2); |
| t2 = s_box(t3); |
| t3 = s_box(tt); |
| rc = f2(rc); |
| } |
| else if( keylen > 24 && cc % keylen == 16 ) |
| { |
| t0 = s_box(t0); |
| t1 = s_box(t1); |
| t2 = s_box(t2); |
| t3 = s_box(t3); |
| } |
| tt = cc - keylen; |
| ctx->ksch[cc + 0] = ctx->ksch[tt + 0] ^ t0; |
| ctx->ksch[cc + 1] = ctx->ksch[tt + 1] ^ t1; |
| ctx->ksch[cc + 2] = ctx->ksch[tt + 2] ^ t2; |
| ctx->ksch[cc + 3] = ctx->ksch[tt + 3] ^ t3; |
| } |
| return 0; |
| } |
| |
| #endif |
| |
| #if defined( AES_ENC_PREKEYED ) |
| |
| /* Encrypt a single block of 16 bytes */ |
| |
| return_type aes_encrypt( const unsigned char in[N_BLOCK], unsigned char out[N_BLOCK], const aes_context ctx[1] ) |
| { |
| if( ctx->rnd ) |
| { |
| uint_8t s1[N_BLOCK], r; |
| copy_and_key( s1, in, ctx->ksch ); |
| |
| for( r = 1 ; r < ctx->rnd ; ++r ) |
| #if defined( VERSION_1 ) |
| { |
| mix_sub_columns( s1 ); |
| add_round_key( s1, ctx->ksch + r * N_BLOCK); |
| } |
| #else |
| { uint_8t s2[N_BLOCK]; |
| mix_sub_columns( s2, s1 ); |
| copy_and_key( s1, s2, ctx->ksch + r * N_BLOCK); |
| } |
| #endif |
| shift_sub_rows( s1 ); |
| copy_and_key( out, s1, ctx->ksch + r * N_BLOCK ); |
| } |
| else |
| return (return_type)-1; |
| return 0; |
| } |
| |
| /* CBC encrypt a number of blocks (input and return an IV) */ |
| |
| return_type aes_cbc_encrypt( const unsigned char *in, unsigned char *out, |
| int n_block, unsigned char iv[N_BLOCK], const aes_context ctx[1] ) |
| { |
| |
| while(n_block--) |
| { |
| xor_block(iv, in); |
| if(aes_encrypt(iv, iv, ctx) != EXIT_SUCCESS) |
| return EXIT_FAILURE; |
| memcpy(out, iv, N_BLOCK); |
| in += N_BLOCK; |
| out += N_BLOCK; |
| } |
| return EXIT_SUCCESS; |
| } |
| |
| #endif |
| |
| #if defined( AES_DEC_PREKEYED ) |
| |
| /* Decrypt a single block of 16 bytes */ |
| |
| return_type aes_decrypt( const unsigned char in[N_BLOCK], unsigned char out[N_BLOCK], const aes_context ctx[1] ) |
| { |
| if( ctx->rnd ) |
| { |
| uint_8t s1[N_BLOCK], r; |
| copy_and_key( s1, in, ctx->ksch + ctx->rnd * N_BLOCK ); |
| inv_shift_sub_rows( s1 ); |
| |
| for( r = ctx->rnd ; --r ; ) |
| #if defined( VERSION_1 ) |
| { |
| add_round_key( s1, ctx->ksch + r * N_BLOCK ); |
| inv_mix_sub_columns( s1 ); |
| } |
| #else |
| { uint_8t s2[N_BLOCK]; |
| copy_and_key( s2, s1, ctx->ksch + r * N_BLOCK ); |
| inv_mix_sub_columns( s1, s2 ); |
| } |
| #endif |
| copy_and_key( out, s1, ctx->ksch ); |
| } |
| else |
| return (return_type)-1; |
| return 0; |
| } |
| |
| /* CBC decrypt a number of blocks (input and return an IV) */ |
| |
| return_type aes_cbc_decrypt( const unsigned char *in, unsigned char *out, |
| int n_block, unsigned char iv[N_BLOCK], const aes_context ctx[1] ) |
| { |
| while(n_block--) |
| { uint_8t tmp[N_BLOCK]; |
| |
| memcpy(tmp, in, N_BLOCK); |
| if(aes_decrypt(in, out, ctx) != EXIT_SUCCESS) |
| return EXIT_FAILURE; |
| xor_block(out, iv); |
| memcpy(iv, tmp, N_BLOCK); |
| in += N_BLOCK; |
| out += N_BLOCK; |
| } |
| return EXIT_SUCCESS; |
| } |
| |
| #endif |
| |
| #if defined( AES_ENC_128_OTFK ) |
| |
| /* The 'on the fly' encryption key update for for 128 bit keys */ |
| |
| static void update_encrypt_key_128( uint_8t k[N_BLOCK], uint_8t *rc ) |
| { uint_8t cc; |
| |
| k[0] ^= s_box(k[13]) ^ *rc; |
| k[1] ^= s_box(k[14]); |
| k[2] ^= s_box(k[15]); |
| k[3] ^= s_box(k[12]); |
| *rc = f2( *rc ); |
| |
| for(cc = 4; cc < 16; cc += 4 ) |
| { |
| k[cc + 0] ^= k[cc - 4]; |
| k[cc + 1] ^= k[cc - 3]; |
| k[cc + 2] ^= k[cc - 2]; |
| k[cc + 3] ^= k[cc - 1]; |
| } |
| } |
| |
| /* Encrypt a single block of 16 bytes with 'on the fly' 128 bit keying */ |
| |
| void aes_encrypt_128( const unsigned char in[N_BLOCK], unsigned char out[N_BLOCK], |
| const unsigned char key[N_BLOCK], unsigned char o_key[N_BLOCK] ) |
| { uint_8t s1[N_BLOCK], r, rc = 1; |
| |
| if(o_key != key) |
| block_copy( o_key, key ); |
| copy_and_key( s1, in, o_key ); |
| |
| for( r = 1 ; r < 10 ; ++r ) |
| #if defined( VERSION_1 ) |
| { |
| mix_sub_columns( s1 ); |
| update_encrypt_key_128( o_key, &rc ); |
| add_round_key( s1, o_key ); |
| } |
| #else |
| { uint_8t s2[N_BLOCK]; |
| mix_sub_columns( s2, s1 ); |
| update_encrypt_key_128( o_key, &rc ); |
| copy_and_key( s1, s2, o_key ); |
| } |
| #endif |
| |
| shift_sub_rows( s1 ); |
| update_encrypt_key_128( o_key, &rc ); |
| copy_and_key( out, s1, o_key ); |
| } |
| |
| #endif |
| |
| #if defined( AES_DEC_128_OTFK ) |
| |
| /* The 'on the fly' decryption key update for for 128 bit keys */ |
| |
| static void update_decrypt_key_128( uint_8t k[N_BLOCK], uint_8t *rc ) |
| { uint_8t cc; |
| |
| for( cc = 12; cc > 0; cc -= 4 ) |
| { |
| k[cc + 0] ^= k[cc - 4]; |
| k[cc + 1] ^= k[cc - 3]; |
| k[cc + 2] ^= k[cc - 2]; |
| k[cc + 3] ^= k[cc - 1]; |
| } |
| *rc = d2(*rc); |
| k[0] ^= s_box(k[13]) ^ *rc; |
| k[1] ^= s_box(k[14]); |
| k[2] ^= s_box(k[15]); |
| k[3] ^= s_box(k[12]); |
| } |
| |
| /* Decrypt a single block of 16 bytes with 'on the fly' 128 bit keying */ |
| |
| void aes_decrypt_128( const unsigned char in[N_BLOCK], unsigned char out[N_BLOCK], |
| const unsigned char key[N_BLOCK], unsigned char o_key[N_BLOCK] ) |
| { |
| uint_8t s1[N_BLOCK], r, rc = 0x6c; |
| if(o_key != key) |
| block_copy( o_key, key ); |
| |
| copy_and_key( s1, in, o_key ); |
| inv_shift_sub_rows( s1 ); |
| |
| for( r = 10 ; --r ; ) |
| #if defined( VERSION_1 ) |
| { |
| update_decrypt_key_128( o_key, &rc ); |
| add_round_key( s1, o_key ); |
| inv_mix_sub_columns( s1 ); |
| } |
| #else |
| { uint_8t s2[N_BLOCK]; |
| update_decrypt_key_128( o_key, &rc ); |
| copy_and_key( s2, s1, o_key ); |
| inv_mix_sub_columns( s1, s2 ); |
| } |
| #endif |
| update_decrypt_key_128( o_key, &rc ); |
| copy_and_key( out, s1, o_key ); |
| } |
| |
| #endif |
| |
| #if defined( AES_ENC_256_OTFK ) |
| |
| /* The 'on the fly' encryption key update for for 256 bit keys */ |
| |
| static void update_encrypt_key_256( uint_8t k[2 * N_BLOCK], uint_8t *rc ) |
| { uint_8t cc; |
| |
| k[0] ^= s_box(k[29]) ^ *rc; |
| k[1] ^= s_box(k[30]); |
| k[2] ^= s_box(k[31]); |
| k[3] ^= s_box(k[28]); |
| *rc = f2( *rc ); |
| |
| for(cc = 4; cc < 16; cc += 4) |
| { |
| k[cc + 0] ^= k[cc - 4]; |
| k[cc + 1] ^= k[cc - 3]; |
| k[cc + 2] ^= k[cc - 2]; |
| k[cc + 3] ^= k[cc - 1]; |
| } |
| |
| k[16] ^= s_box(k[12]); |
| k[17] ^= s_box(k[13]); |
| k[18] ^= s_box(k[14]); |
| k[19] ^= s_box(k[15]); |
| |
| for( cc = 20; cc < 32; cc += 4 ) |
| { |
| k[cc + 0] ^= k[cc - 4]; |
| k[cc + 1] ^= k[cc - 3]; |
| k[cc + 2] ^= k[cc - 2]; |
| k[cc + 3] ^= k[cc - 1]; |
| } |
| } |
| |
| /* Encrypt a single block of 16 bytes with 'on the fly' 256 bit keying */ |
| |
| void aes_encrypt_256( const unsigned char in[N_BLOCK], unsigned char out[N_BLOCK], |
| const unsigned char key[2 * N_BLOCK], unsigned char o_key[2 * N_BLOCK] ) |
| { |
| uint_8t s1[N_BLOCK], r, rc = 1; |
| if(o_key != key) |
| { |
| block_copy( o_key, key ); |
| block_copy( o_key + 16, key + 16 ); |
| } |
| copy_and_key( s1, in, o_key ); |
| |
| for( r = 1 ; r < 14 ; ++r ) |
| #if defined( VERSION_1 ) |
| { |
| mix_sub_columns(s1); |
| if( r & 1 ) |
| add_round_key( s1, o_key + 16 ); |
| else |
| { |
| update_encrypt_key_256( o_key, &rc ); |
| add_round_key( s1, o_key ); |
| } |
| } |
| #else |
| { uint_8t s2[N_BLOCK]; |
| mix_sub_columns( s2, s1 ); |
| if( r & 1 ) |
| copy_and_key( s1, s2, o_key + 16 ); |
| else |
| { |
| update_encrypt_key_256( o_key, &rc ); |
| copy_and_key( s1, s2, o_key ); |
| } |
| } |
| #endif |
| |
| shift_sub_rows( s1 ); |
| update_encrypt_key_256( o_key, &rc ); |
| copy_and_key( out, s1, o_key ); |
| } |
| |
| #endif |
| |
| #if defined( AES_DEC_256_OTFK ) |
| |
| /* The 'on the fly' encryption key update for for 256 bit keys */ |
| |
| static void update_decrypt_key_256( uint_8t k[2 * N_BLOCK], uint_8t *rc ) |
| { uint_8t cc; |
| |
| for(cc = 28; cc > 16; cc -= 4) |
| { |
| k[cc + 0] ^= k[cc - 4]; |
| k[cc + 1] ^= k[cc - 3]; |
| k[cc + 2] ^= k[cc - 2]; |
| k[cc + 3] ^= k[cc - 1]; |
| } |
| |
| k[16] ^= s_box(k[12]); |
| k[17] ^= s_box(k[13]); |
| k[18] ^= s_box(k[14]); |
| k[19] ^= s_box(k[15]); |
| |
| for(cc = 12; cc > 0; cc -= 4) |
| { |
| k[cc + 0] ^= k[cc - 4]; |
| k[cc + 1] ^= k[cc - 3]; |
| k[cc + 2] ^= k[cc - 2]; |
| k[cc + 3] ^= k[cc - 1]; |
| } |
| |
| *rc = d2(*rc); |
| k[0] ^= s_box(k[29]) ^ *rc; |
| k[1] ^= s_box(k[30]); |
| k[2] ^= s_box(k[31]); |
| k[3] ^= s_box(k[28]); |
| } |
| |
| /* Decrypt a single block of 16 bytes with 'on the fly' |
| 256 bit keying |
| */ |
| void aes_decrypt_256( const unsigned char in[N_BLOCK], unsigned char out[N_BLOCK], |
| const unsigned char key[2 * N_BLOCK], unsigned char o_key[2 * N_BLOCK] ) |
| { |
| uint_8t s1[N_BLOCK], r, rc = 0x80; |
| |
| if(o_key != key) |
| { |
| block_copy( o_key, key ); |
| block_copy( o_key + 16, key + 16 ); |
| } |
| |
| copy_and_key( s1, in, o_key ); |
| inv_shift_sub_rows( s1 ); |
| |
| for( r = 14 ; --r ; ) |
| #if defined( VERSION_1 ) |
| { |
| if( ( r & 1 ) ) |
| { |
| update_decrypt_key_256( o_key, &rc ); |
| add_round_key( s1, o_key + 16 ); |
| } |
| else |
| add_round_key( s1, o_key ); |
| inv_mix_sub_columns( s1 ); |
| } |
| #else |
| { uint_8t s2[N_BLOCK]; |
| if( ( r & 1 ) ) |
| { |
| update_decrypt_key_256( o_key, &rc ); |
| copy_and_key( s2, s1, o_key + 16 ); |
| } |
| else |
| copy_and_key( s2, s1, o_key ); |
| inv_mix_sub_columns( s1, s2 ); |
| } |
| #endif |
| copy_and_key( out, s1, o_key ); |
| } |
| |
| #endif |